Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (3) : 312-320    https://doi.org/10.1007/s11465-017-0433-2
REVIEW ARTICLE
Review of fluid and control technology of hydraulic wind turbines
Maolin CAI, Yixuan WANG, Zongxia JIAO(), Yan SHI()
School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
 Download: PDF(483 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

Keywords wind turbine      hydraulic system      fluid model      control technology     
Corresponding Author(s): Zongxia JIAO,Yan SHI   
Just Accepted Date: 07 April 2017   Online First Date: 04 May 2017    Issue Date: 04 August 2017
 Cite this article:   
Maolin CAI,Yixuan WANG,Zongxia JIAO, et al. Review of fluid and control technology of hydraulic wind turbines[J]. Front. Mech. Eng., 2017, 12(3): 312-320.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0433-2
https://academic.hep.com.cn/fme/EN/Y2017/V12/I3/312
Fig.1  Diagram of a hydraulic wind turbine
Fig.2  Diagram of the hydraulic wind power technology model of Artemis Intelligent Power Ltd. [13]
Fig.3  Diagram of the generator test system of RWTH Aachen University [13]
Fig.4  Actual wind speed curve [21]
Fig.5  Flow tube diagram
Fig.6  Air flow and pressure through the flow tube
Fig.7  Wind turbine power characteristic curve
Fig.8  Wind turbine torque curve
Fig.9  Relationship between wind speed and output power
Fig.10  Volume timing circuit of the fixed-quantity pump and variable hydraulic motor system
Fig.11  Characteristic curve of the volume timing circuit of the fixed-quantity pump and variable hydraulic motor system
Fig.12  Schematic of the hydraulic wind power transfer system built by Energy Systems and Power Electronics Laboratory of IUPUI [30]
Fig.13  Experimental setup of the hydraulic wind power transfer system of the Energy Systems and Power Electronics Laboratory [30]
Fig.14  Schematic of the three piping parts of the circuit on which the compressibility equations are used [31]
Fig.15  Primary motor velocity profile as a result of wind speed step changes [31]
Fig.16  Auxiliary motor velocity profile as a result of wind speed step changes [31]
Fig.17  Configuration of a flow battery [58]
Fig.18  The structure of the flow battery model [58]. “up” and “lo” are the up and low limit of the input energy signal, respectively, “u” means the input Laplace signal; Emax and Emin are the max and min of the energy, respectively; Pmax and Pmin are the max and min of the power, respectively
1 Jelavić M, Petrović V, Perić N. Estimation based individual pitch control of wind turbine. Automatika: Časopis Za Automatiku Mjerenje Elektroniku Računarstvo I Komunikacije, 2010, 51(2): 181–192
2 Muyeen S M, Takahashi R, Murata T, et al.. Low voltage ride through capability enhancement of fixed speed wind generator. In: Proceedings of PowerTech. Bucharest: IEEE, 2009, 1–6
https://doi.org/10.1109/PTC.2009.5282108
3 Teninge A, Roye D, Bacha S, et al.. Low voltage ride-through capabilities of wind plant combining different turbine technologies. In: Proceedings of 13th European Conference on Power Electronics and Applications. IEEE, 2009, 1–9
4 Albadi M H, El-Saadany E F. Wind turbines capacity factor modeling—A novel approach. IEEE Transactions on Power Systems, 2009, 24(3): 1637–1638
https://doi.org/10.1109/TPWRS.2009.2023274
5 Yang W, Tavner P J, Wilkinson M R. Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train. IET Renewable Power Generation, 2009, 3(1): 1–11
https://doi.org/10.1049/iet-rpg:20080006
6 Geng H, Yang G. Robust pitch controller for output power levelling of variable-speed variable-pitch wind turbine generator systems. IET Renewable Power Generation, 2009, 3(2): 168–179
https://doi.org/10.1049/iet-rpg:20070043
7 Kusiak A, Zhang Z, Li M.Optimization of wind turbine performance with data-driven models. IEEE Transactions on Sustainable Energy, 2010, 1(2): 66–76
https://doi.org/10.1109/TSTE.2010.2046919
8 Chen P, Siano P, Bak-Jensen B, et al.Stochastic optimization of wind turbine power factor using stochastic model of wind power. IEEE Transactions on Sustainable Energy, 2010, 1(1): 19–29
https://doi.org/10.1109/TSTE.2010.2044900
9 Bao G, Shi J, Jiang J. A survy on variable speed constant frequency wind power systems with direct coupled generators. Small & Special Electrical Machines, 2008, 36(8): 52–55 (in Chinese)
10 Hamzehlouia S, Izadian A. Modeling of hydraulic wind power transfers. In: Proceedings of 2012 IEEE Power and Energy Conference at Illinois. IEEE, 2012, 1–6
https://doi.org/10.1109/PECI.2012.6184610
11 Murrenhoff H. Recent sustainability related research results in fluid power. In: Proceedings of the 2011 International Conference on Fluid Power and Mechatronics. IEEE, 2011, 991–1001
https://doi.org/10.1109/FPM.2011.6045907
12 Kong X, Ai C, Wang J. A summary on the control system of hydrostatic drive train for wind turbines. Chinese Hydraulics & Pneumatics, 2013, 0(01): 1–6 (in Chinese)
13 Ai C. Research on speed control and power control of hydraulic type wind turbine. Dissertation for the Doctoral Degree. Qinhuangdao: Yanshan University, 2012
14 Lei F. Designing and debugging of wind power hydraulic assembly system. China Science & Technology Overview, 2016, 3(06): 59 (in Chinese)
15 Yuan Y. Research on switched reluctance four port electromechanical energy transducer used for wind power. Dissertation for the Master’s Degree. Harbin: Harbin Institute of Technology, 2008 (in Chinese)
16 Whitby R D. Hydraulic fluids in wind turbines. Tribology & Lubrication Technology, 2010, 66(3): 72–73
17 Murrenhoff H. Servohydraulik—Geregelte Hydraulische Antriebe. 3rd ed. Aachen: RWTH, 2008
18 Kohmascher T. Modelling analysis and interpretation of hydraulic system concepts. Dissertation for the Doctoral Degree. Nord Rhein-Westfalen: Rheinisch-Westfaelische Technische Hochschule Aachen, 2008
19 Chen J, Zhou Q. Application of hydraulic drive in wind power generation system. Movable Power Station & Vehicle, 2011, 42(1): 30–32 (in Chinese)
20 Yao J, L i B, Kong X, et al.Displacement and dual-pressure compound control for fast forging hydraulic system. Journal of Mechanical Science and Technology, 2016, 30(1): 353–363
21 Ai C, Chen W, Kong X, et al.Maximum power point tracking control of hydraulic type wind turbine based on feedback linearization. Control Theory & Applications, 2015, 32(6): 778–786 (in Chinese)
22 Kong A, Zhang X, Hao G. Simulation study on constant speed output control of fixed displacement pump-variable displacement motor hydraulic system. In: Proceedings of the 2011 International Conference on Fluid Power and Mechatronics. IEEE, 2011, 276–281
https://doi.org/10.1109/FPM.2011.6045772
23 Kong X, Ba K, Yu B, et al.Force control compensation method with variable load stiffness and damping of the hydraulic drive unit force control system. Chinese Journal of Mechanical Engineering, 2016, 29(3): 454–464
24 Kong X, Ba K, Yu B, et al.Trajectory sensitivity analysis of first order and second order on position control system of highly integrated valve-controlled cylinder. Journal of Mechanical Science and Technology, 2015, 29(10): 4445–4464
25 Schachles. US Patent, 4503673,  1979-05-25
26 Global  M L H. Canada Patent, 03816799,  2005-09-14
27 Chapp Drive Company. Norway Patent, 200680040609.5.  2008-11-05
28 Chen Z, Wen X. China Patent, 201010106583.8,  2010-08-04
29 Zhang Y, Kong X, Hao L, et al.Controls of hydraulic wind turbine. In: Proceedings of 2015 International Conference on Mechanical Engineering and Electrical Systems. EDP Sciences, 2016
https://doi.org/10.1051/matecconf/20164008002
30 Vaezi M, Izadian A. Control of a hydraulic wind power transfer system under disturbances. In: Proceedings of International Conference on Renewable Energy Research and Application. IEEE, 2014, 886–890
https://doi.org/10.1109/ICRERA.2014.7016512
31 Deldar M, Izadian A, Vaezi M, et al.Modeling of a hydraulic wind power transfer utilizing a proportional valve. IEEE Transactions on Industry Applications, 2015, 51(2): 1837–1844
https://doi.org/10.1109/TIA.2014.2354745
32 Seguro J V, Lambert T W. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85(1): 75–84
https://doi.org/10.1016/S0167-6105(99)00122-1
33 Zhang X. Parameter estimate method application of Weibull distribution. Acta Meteorologica Sinica, 1996, 54(1): 108–116 (in Chinese)
34 Zhi L, LiQ, HuF. Field measurements of strong wind characteristics near ground in urban area. Journal of Hunan University (Natural Sciences), 2009, 36(2): 8–12 (in Chinese)
35 Sun C. Study of control methods of wind power system. Dissertation for the Doctoral Degree. Changsha: Hunan University, 2008, 85–90 (in Chinese)
36 Sun J. Research on wind farm modeling and simulating. Dissertation for the Master’s Degree. Beijing: Tsinghua University, 2004, 19–23 (in Chinese)
37 Welfonder E, Neifer R, Spanner M. Development and experimental identification of dynamic models for wind turbines. Control Engineering Practice, 1997, 5(1): 63–73
https://doi.org/10.1016/S0967-0661(96)00208-0
38 Lojowska A, Kurowicka D, Papaefthymiou G, et al.Advantages of ARMA-GARCH wind speed time series modeling. In: Proceedings of IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems. IEEE, 2010, 83–88
https://doi.org/10.1109/PMAPS.2010.5528979
39 Wang X, Liu X.Application of ARMA time series model. Techniques of Automation and Applications, 2008, 27(8): 65–66 (in Chinese)
40 Nichita C, Luca D, Dakyo B, et al.Large band simulation of the wind speed for real time wind turbine simulators. IEEE Transactions on Energy Conversion, 2002, 17(4): 523–529 doi:10.1109/TEC.2002.805216
41 Abo-Khalil A G, Lee D C. MPPT control of wind generation systems based on estimated wind speed using SVR. IEEE Transactions on Industrial Electronics, 2008, 55(3): 1489–1490 doi:10.1109/TIE.2007.907672
42 He P, Hu S, Huang H, et al.Research on intelligent controller for large-scale wind turbine power generator with active stall and pitch control. Water Power, 2008, 34(12): 100–102 (in Chinese)
43 Yang J.Wind speed model of wind turbine suitable for dynamic analysis. Journal of Southwest University of Science & Technology, 2010, 25(1): 39–44 (in Chinese)
44 Wu X, Zhang X, Yin Y, et al.Application of models of the wind turbine induction generators (WTIGs) to wind power system dynamic stability analysis. Power System Technology, 1998, 22(6): 68–72 (in Chinese)
45 Anderson P M, Bose A. Stability simulation of wind turbine systems. IEEE Transactions on Power Apparatus and Systems, 1983, PAS-102(12): 3791–3795
https://doi.org/10.1109/TPAS.1983.317873
46 Yang X. Research on the performance of wind turbine drive train. Dissertation for the Master’s Degree. Chongqing: Chongqing University, 2008, 7–9 (in Chinese)
47 Kishinami K, Suzuki J, Sugiyama H, et al.Theoretical and Experimental Study on Aerodynamic Characteristics of H. A. W. T.: In case of NACA44 series blade equipped with a single-slotted flap. In: Proceedings of Symposium on Environmental Engineering. The Japan Society of Mechanical Engineers, 2003, 438–441
48 Nikranjbar A, Shahrbabaki A N. Simulation and control of wind turbine using hydrostatic drive train. Majlesi Journal of Energy Management, 2013, 2(2): 12–17
49 Wang Z. Modern Wind Power Technology and Its Engineering Application. Beijing: Publishing House of Electronics Industry, 2010, 24–27 (in Chinese)
50 Jiang Z, Yu X.Modeling and control of an integrated wind power generation and energy storage system. In: Proceedings of IEEE Power & Energy Society General Meeting. IEEE, 2009, 1–8
https://doi.org/10.1109/PES.2009.5275753
51 Burton T, Sharpe D, Jenkins N, et al.Wind Energy Handbook, 2011
52 Fitch E C, Hong I T. Hydraulic Component Design and Selection. Stillwater: Bardyne Inc., 2004
53 Merritt H E. Hydraulic Control Systems. New York: John Wiley & Sons, 1967
54 Blackburn J F. Fluid Power Control. Cambridge: MIT Press, 1969
55 Gorbeshko M. Development of mathematical models for the hydraulic machinery of systems controlling the moving components. Hydrotechnical Construction, 1997, 31(12): 745–750 doi:10.1007/BF02766233
56 Manring N. Hydraulic Control Systems. New York: John Wiley & Sons, 2005
57 Akkaya A V. Effect of bulk modulus on performance of a hydrostatic transmission control system. Sadhana, 2006, 31(5): 543–556
58 Gelazanskas L, Baranauskas A, Gamage K A A, et al.Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries. International Journal of Electrical Power & Energy Systems, 2016, 74: 310–321
https://doi.org/10.1016/j.ijepes.2015.08.002
[1] Min PAN, Andrew PLUMMER. Digital switched hydraulics[J]. Front. Mech. Eng., 2018, 13(2): 225-231.
[2] Yi WANG, Yong XIE, Guanghua XU, Sicong ZHANG, Chenggang HOU. Tacholess order-tracking approach for wind turbine gearbox fault detection[J]. Front. Mech. Eng., 2017, 12(3): 427-439.
[3] Yun KONG, Tianyang WANG, Zheng LI, Fulei CHU. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum[J]. Front. Mech. Eng., 2017, 12(3): 406-419.
[4] Lingli JIANG, Zhenyong DENG, Fengshou GU, Andrew D. BALL, Xuejun LI. Effect of friction coefficients on the dynamic response of gear systems[J]. Front. Mech. Eng., 2017, 12(3): 397-405.
[5] Hamed HABIBI, Hamed RAHIMI NOHOOJI, Ian HOWARD. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control[J]. Front. Mech. Eng., 2017, 12(3): 377-388.
[6] Xueping PAN, Ping JU, Feng WU, Yuqing JIN. Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator[J]. Front. Mech. Eng., 2017, 12(3): 367-376.
[7] Xiaoli XU, Xiuli LIU. Weak characteristic information extraction from early fault of wind turbine generator gearbox[J]. Front. Mech. Eng., 2017, 12(3): 357-366.
[8] Binrong WEN, Sha WEI, Kexiang WEI, Wenxian YANG, Zhike PENG, Fulei CHU. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow[J]. Front. Mech. Eng., 2017, 12(3): 321-332.
[9] Shoudao HUANG, Xuan WU, Xiao LIU, Jian GAO, Yunze HE. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults[J]. Front. Mech. Eng., 2017, 12(3): 281-302.
[10] Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN. Effects of elastic support on the dynamic behaviors of the wind turbine drive train[J]. Front. Mech. Eng., 2017, 12(3): 348-356.
[11] Pengxing YI,Peng HUANG,Tielin SHI. Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine[J]. Front. Mech. Eng., 2016, 11(4): 388-402.
[12] Sampath S. S.,Sawan SHETTY,Chithirai Pon Selvan M.. Estimation of power in low velocity vertical axis wind turbine[J]. Front. Mech. Eng., 2015, 10(2): 211-218.
[13] Pengxing YI,Lijian DONG,Tielin SHI. Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox[J]. Front. Mech. Eng., 2014, 9(4): 354-367.
[14] Wade A. SMITH, Nong ZHANG, . Recent developments in passive interconnected vehicle suspension[J]. Front. Mech. Eng., 2010, 5(1): 1-18.
[15] Xiaohu CHEN, Wenfeng WU, Hangong WANG, Yongtao ZHOU, . Distributed monitoring and diagnosis system for hydraulic system of construction machinery[J]. Front. Mech. Eng., 2010, 5(1): 106-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed