Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2013, Vol. 6 Issue (3) : 338-345    https://doi.org/10.1007/s12200-013-0348-4
RESEARCH ARTICLE
High performance of low voltage controlled ring oscillator with reverse body bias technology
Akansha SHRIVASTAVA(), Anshul SAXENA, Shyam AKASHE
Electronics and Communication Department, ITM University, Gwalior 474001, India
 Download: PDF(284 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In complementary metal oxide semiconductor (CMOS) nanoscale technology, power dissipation is becoming important metric. In this work low leakage voltage controlled ring oscillator circuit system was proposed for critical communication systems with high oscillation frequency. An ideal approach has been presented with substrate biasing technique for reduction of power consumption. The simulation have been completed using cadence virtuoso 45 nm standard CMOS technology at room temperature 27°C with supply voltage Vdd = 0.7 V. The simulation results suggest that voltage controlled ring oscillator has characterized with efficient low power voltage controlled oscillator (VCO) in term of minimum leakage power (1.23 nW) and maximum oscillation frequency (4.76 GHz) with joint positive channel metal oxide semiconductor and negative channel metal oxide semiconductor (PMOS and NMOS) reverse substrate bias technique. PMOS, NMOS and joint reverse body bias techniques have been compared in the presented work.

Keywords voltage controlled oscillator (VCO)      leakage power      active power      oscillation frequency      efficiency      cadence tool     
Corresponding Author(s): SHRIVASTAVA Akansha,Email:erakansha.mp@gmail.com   
Issue Date: 05 September 2013
 Cite this article:   
Akansha SHRIVASTAVA,Anshul SAXENA,Shyam AKASHE. High performance of low voltage controlled ring oscillator with reverse body bias technology[J]. Front Optoelec, 2013, 6(3): 338-345.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0348-4
https://academic.hep.com.cn/foe/EN/Y2013/V6/I3/338
Fig.1  Five stage VCO ring oscillator
Fig.2  Waveform of VCO ring oscillator.
Fig.3  Inverter schematic diagram using PMOS and NMOS, where varies from 0.7 to1.8 V
Fig.4  Ring oscillator schematic diagram using PMOS and NMOS, with NMOS reverse substrate bias, where varies from 0.7 to 1.8 V
Fig.5  Ring oscillator schematic diagram using PMOS and NMOS, with PMOS reverse substrate bias, where varies from 0.7 to 1.8 V
Fig.6  Ring oscillator schematic diagram using PMOS and NMOS, with joint PMOS and NMOS reverse substrate bias, where varies from 0.7 to 1.8 V
voltage/Voscillation frequency
NMOS reverse body bias/MHzPMOS reverse body bias/MHzjoint PMOS and NMOS reverse body bias/GHz
0.73.85.334.76
1.03.38.924.92
1.22.811.644.73
1.81.7913.013.0
Tab.1  Oscillation frequency of five stages VCO ring oscillator.
voltage/Vactive power
NMOS reverse body bias/μWPMOS reverse body bias/μWjoint PMOS and NMOS reverse body bias/nW
0.75.682.6812.03
1.08 44.7216.25
1.221.3219.3723.15
1.831.0124.7829.68
Tab.2  Active power of ring oscillator with NMOS, PMOS, joint PMOS & NMOS reverse substrate bias techniques
volatge/Vleakage power
NMOS reverse body bias/nWPMOS reverse body bias/nWjoint PMOS and NMOS reverse body bias/pW
0.79.496.191.23
1.011.848.241.88
1.215.5310.132.94
1.824.2214.223.59
Tab.3  Leakage power of ring oscillator with NMOS, PMOS joint PMOS and NMOS reverse subtract bias techniques
Fig.7  parameter of Smith chart
Fig.8  parameter of Smith chart
Fig.9  Efficiency of Voltage controlled oscillator with joint reverse substrate bias
joint PMOS and NMOSreverse body bias/GHztechnologysupply (Vdd)power consumptionoscillation frequency/GHz
previous papermicro meter (μm)1.8 Vmile watt (mW)4.76
presented papernano meter (nm)0.7 Vnano watt (nW)0.8
Tab.4  Compression of joint PMOS and NMOS reverse body bias between pervious published paper and presented paper
1 Tao R, Berroth M. 5 GHz voltage controlled ring oscillator using source capacitively coupled current amplifier. In: Proceedings of IEEE Topic Meeting on Silicon Monolithic Integrated Circuits in RF System , 2003, 45–48
2 Deen M J, Kazemeini M J, Naseh S. Performance characteristics of an ultra-low power VCO. In: Proceedings of the International Symposium on Circuits and Systems , 2003, 697–700
3 Catli B, Haskell M M. A 0.5 V 3.6/5.2 GHz CMOS multi-band VCO for ultra low-voltage wireless applications. In: Proceedings of IEEE International Symposium on Circuits and Systems . 2008, 996–999
4 Tu W H, Yeh J Y, Tsai H C, Wang C K. A 1.8 V 2.5-5.2 GHz CMOS dual-input two stage ring VCO. In: Proceedings of IEEE Asia-Pacific Conference on Advanced System Integrated Circuits , 2004, 134–137
5 Kim H R, Chu C Y, Min Oh S, Yang M S, Lee S G.A very low power quadrature VCO with back-gate coupling. IEEE Journal of Solid-State Circuits , 2004, 39 (6): 952–955
6 Bero B, Nyathi J. Bulk CMOS device optimization for high-speed and ultra-low power operations. In: Proceedings of 49th IEEE International Midwest Symposium on Circuit and System . 2006, 2: 221–225
7 Mandal M K, Sarkar B C. Ring oscillators: characteristics and applications. Indian Journal of Pure & Applied Physics , 2010, 48: 136–145
8 Leung B H.A novel model on phase noise of ring oscillator based on last passage time. IEEE Transactions on Circuits System I: Regular Papers , 2004, 51(3): 471–482
9 Abidi A A. Phase noise and jitter in CMOS ring oscillator. IEEE Journal of Solid-State Circuits , 2006, 41(8): 1803–1816
10 Deng H H, Yin Y S, Du G M. Phase noise analysis and design of CMOS differential ring VCO. In: Proceedings of 9th International Conference in Electronic Measurement & Instruments , 2009, 4-731–4-736
11 Lee S Y, Hsieh J Y. Analysis and implementation of a 0.9 V voltage-controlled oscillator with low phase noise and low power dissipation. IEEE Transaction on Circuits and Systems II , 2008, 55(7): 624–627
doi: 10.1109/TCSII.2008.921574
12 Kumar M, Arya S K, Pandey S. Low power voltage controlled ring oscillator design with substrate biasing. International Journal of Information and Electronics Engineering , 2012, 2(2): 156–159
13 Fong N, Kim J, Plouchart J O, Zamdmer N, Liu D X, Wagner L, Plett C, Tarr G. A low-voltage 40 GHz complementary VCO with 15% frequency tuning range in SOI CMOS technology. IEEE Journal of Solid-State Circuits , 2004, 39(5): 841–846
doi: 10.1109/JSSC.2004.826341
14 Yeop L S, Amakawa S, Ishihara N, Masu K. Low-phasenoise wide-frequency-range ring-VCO-based scalable PLL with sub harmonic injection locking in 0.18 m CMOS. In: Proceedings of IEEE International Microwave Symposium Digest , 2010, 1178–1181
15 Paula L S, Banpi S, Fabris E, Susin A A. A wide band CMOS differential voltage-controlled ring oscillators. In: Proceedings of International IEEE Northeast Workshop on Circuits and System Design , 2008, 9–12
16 Mangalam H, Gunavathi K. Gate and subthreshold leakage reduction SRAM cells. DSP Journal 2006, 6(1): 51–55
17 Huang S Z, Lin W, Wang Y T, Zheng L. Design of a voltage controlled ring oscillator based on MOS capacitances. In: Proceedings of the International MultiConference of Engineers and Computer Scientists , 2009, 2
18 Yang S G, Wong K K Y, Chen M H, Xie S Z. Fiber optical parametric oscillator based on highly nonlinear dispersion-shifted fiber. Frontiers of Optoelectronics, 2013, 6(1): 25–29
doi: 10.1007/s12200-012-0303-9
[1] Shuaicheng LU, Chao CHEN, Jiang TANG. Possible top cells for next-generation Si-based tandem solar cells[J]. Front. Optoelectron., 2020, 13(3): 246-255.
[2] Runda GUO, Wenzhi ZHANG, Qing ZHANG, Xialei LV, Lei WANG. Efficient deep red phosphorescent OLEDs using 1,2,4-thiadiazole core-based novel bipolar host with low efficiency roll-off[J]. Front. Optoelectron., 2018, 11(4): 375-384.
[3] Andrey V. BELIKOV, Andrey N. SERGEEV, Sergey N. SMIRNOV, Anastasia D. TAVALINSKAYA. Microperforation of the human nail plate by radiation of erbium lasers[J]. Front. Optoelectron., 2017, 10(3): 299-307.
[4] Anjin LIU,Dieter BIMBERG. Vertical-cavity surface-emitting lasers with nanostructures for optical interconnects[J]. Front. Optoelectron., 2016, 9(2): 249-258.
[5] Daojun XUE,Shaohua YU,Qi YANG,Nan CHI,Lan RAO,Xiangjun XIN,Wei LI,Songnian FU,Sheng CUI,Demin LIU,Zhuo LI,Aijun WEN,Chongxiu YU,Xinmei WANG. Frontier research of ultra-high-speed ultra-large-capacity and ultra-long-haul optical transmission[J]. Front. Optoelectron., 2016, 9(2): 123-137.
[6] Shaoqing ZHUANG, Wenzhi ZHANG, Xiao YANG, Lei WANG. A simple unilateral homogenous PhOLEDs with enhanced efficiency and reduced efficiency roll-off[J]. Front Optoelec, 2013, 6(4): 435-439.
[7] G. PALAI, T. K. DHIR, B. NATH, S. L. PATRA. Modelling overall transmitted efficiency at 1550 nm for polymer grating Silicon-on-insulator structure with defect[J]. Front Optoelec, 2013, 6(2): 153-159.
[8] Jiangming XU, Xiaolin DONG, Jinyong LENG, Pu ZHOU, Jing HOU. Efficient, 62.5 Watts all-fiber single-mode 1091 nm MOPA laser[J]. Front Optoelec Chin, 2011, 4(4): 426-429.
[9] Qingqing MIAO, Mingxing WU, Wei GUO, Tingli MA. Studies of high-efficient and low-cost dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 103-107.
[10] XI Fengjie, XU Xiaojun, WANG Tiezhi, JIANG Zongfu, GENG Yifeng. Wavefront curvature sensor with phase defocus grating[J]. Front. Optoelectron., 2008, 1(1-2): 119-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed