Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2014, Vol. 7 Issue (4) : 475-485    https://doi.org/10.1007/s12200-014-0418-2
REVIEW ARTICLE
Progress of super-resolution near-field structure and its application in optical data storage
Kui ZHANG1,Yongyou GENG1,Yang WANG1,Yiqun WU1,2,*()
1. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2. Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Harbin 150080, China
 Download: PDF(1525 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The era of big data has necessitated the use of ultra-high density optical storage devices. Super-resolution near-field structure (super-RENS), which has successfully surpassed the fundamental optical diffraction limit, is one of the promising next generation high-density optical storage technologies. This technology combines the traditional super-resolution optical disk with a near-field structure, and has the advantages of structural simplicity, strong practicability, and, more importantly, compatibility with the current optical storage pickup. The mask layer in super-RENS functions as the key to realizing super-resolution. Development of suitable materials and stack designs has greatly been improved in the last decade. This paper described several types of super-RENS, such as aperture-type, light scattering center-type, bubble-type, and other types (e.g., WOxand ZnO), particularly the newly proposed super-RENS technology and research achievements. The paper also reviews the applications of super-RENS in high-density optical data storage in recent years. After analyzing and comparing various types of super-RENS technology, the paper proposes the aperture-type based on the mechanism of nonlinear optics as the most suitable candidate for practical applications in the near future.

Keywords super-resolution      near-field      mask layer      optical nonlinear      localized surface plasmas     
Corresponding Author(s): Yiqun WU   
Online First Date: 13 August 2014    Issue Date: 12 December 2014
 Cite this article:   
Kui ZHANG,Yongyou GENG,Yang WANG, et al. Progress of super-resolution near-field structure and its application in optical data storage[J]. Front. Optoelectron., 2014, 7(4): 475-485.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-014-0418-2
https://academic.hep.com.cn/foe/EN/Y2014/V7/I4/475
Fig.1  Schematic of the super-RENS disk structure and near-field recording [4]
Fig.2  Power-time-transmission plot of crystalline Sb-Te samples [17]. (a) Sb; (b) SbTe; (c) Sb2Te3; (d) Sb2Te
Fig.3  (a) Structure of In-Sb super-RENS ROM disk [19]; (b) snapshot of playback demonstration of HD video content from In-Sb super-RENS disk [20]
Fig.4  Z-scan measurement results for Sb2Te3 thin films [28]
Fig.5  Schematic and principle of nano-optical information storage: (a) sample structure; (b) optical spot intensity profile [28]
Fig.6  Cross section of an AgOx super-RENS disk [10]
Fig.7  TEM images of ZnS-SiO2/AgOx/ZnS-SiO2 films after being irradiated by a blue laser pulse with a power of 7 mW at a duration of 1 μs [29]: (a) 0.2; (b) 0.5; (c) 0.7
Fig.8  Bright-field TEM images of the silver-nanoparticle-embedded phase change recording pits with different laser power and pulse width [32]: (a) random Ag nanoparticles distribution; (b) ring Ag nanoparticles distribution
Fig.9  (a) TEM bright-field images recorded at 10 mW and subsequently readout by 4 mW sample and (b) magnified bubble pit [34]. The inserted image in (b) is the selected area of the electron diffraction patterns around the recorded pits
Fig.10  (a) Semicircular bubble-type super-RENS disk [36]; (b) elliptical bubble-type super-RENS disk [37]
Fig.11  Schematic of the super-RENS [41]: (a) recorded super-RENS disk; (b) simplified super-RENS
1 Gan F X. Digital Optical Disc Storage Technology. Beijing: Science Press, 1998, 1–10
2 Hosaka S, Shintani T, Miyamoto M, Hirotsune A, Terao M, Yoshida M, Fujita K, K?mmer S. Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode. Japanese Journal of Applied Physics, 1996, 35(1B): 443–447
3 Terris B D, Mamin H J, Rugar D, Studenmund W R, Kino G S. Near-field optical data storage using a solid immersion lens. Applied Physics Letters, 1994, 65(4): 388–390
https://doi.org/10.1063/1.112341
4 Tominaga J, Nakano T, Atoda N. An approach for recording and readout beyond the diffraction limit with an Sb thin film. Applied Physics Letters, 1998, 73(15): 2078–2080
https://doi.org/10.1063/1.122383
5 Yasuda K, Ono M, Aratani K, Fukumoto A, Kaneko M. Premastered optical disk by superresolution. Japanese Journal of Applied Physics, 1993, 32(11B): 5210–5213
6 Lu X M, Wu Y Q, Wang Y, Wei J S. Optical characterization of antimony-based bismuth-doped thin films with different annealing temperatures. Chinese Optics Letters, 2011, 9(10): 102101–102104
https://doi.org/10.3788/COL201109.102101
7 Zhang F, Wang Y, Xu W D, Shi H R, Wei J S, Gan F X. High-density read-only memory disc with Ag11In12Sb51Te26 super-resolution mask layer. Chinese Physics Letters, 2004, 21(10): 1973–1975
https://doi.org/10.1088/0256-307X/21/10/030
8 Lee H S, Lee T S, Lee Y, Kim J, Lee S, Huh J Y, Kim D, Cheong B K. Microstructural and optical analysis of superresolution phenomena due to Ge2Sb2Te5 thin films at blue light regime. Applied Physics Letters, 2008, 93(22): 221108
https://doi.org/10.1063/1.3040695
9 Assafrao A C, Wachters A J H, Verheijen M, Nugrowati A M, Pereira S F, Urbach H P, Armand M F, Olivier S. Direct measurement of the near-field super resolved focused spot in InSb. Optics Express, 2012, 20(9): 10426–10437
https://doi.org/10.1364/OE.20.010426 pmid: 22535133
10 Fuji H, Tominaga J, Men L, Nakano T, Katayama H, Atoda N. A near-field recording and readout technology using a metallic probe in an optical disk. Japanese Journal of Applied Physics, 2000, 39(2B): 980–981
11 Qu Q L, Wang Y, Gan F X. Numerical analysis and comparison of three metal-oxide-type super-resolution near field structures. Chinese Physics Letters, 2006, 23(12): 3363–3365
https://doi.org/10.1088/0256-307X/23/12/067
12 Fu Y H, Ho F H, Hsu W C, Tsai S Y, Tsai D P. Nonlinear optical properties of the Au-SiO2 nanocomposite superresolution near-field thin film. Japanese Journal of Applied Physics, 2004, 43(7B): 5020–5023
https://doi.org/10.1143/JJAP.43.5020
13 Wei J S, Liu J, Xiao M F. Giant optical nonlinearity of silver-doped silicon thin film at low power input: laser triggered cluster resonance. Applied Physics. A, Materials Science & Processing, 2011, 104(4): 1031–1037
https://doi.org/10.1007/s00339-011-6464-3
14 Zhao S L, Geng Y Y, Shi H R. Study on super-resolution readout performance of Si-doped Ag film. Acta Optica Sinica, 2012, 32(6): 0631004
https://doi.org/10.3788/AOS201232.0631004
15 Fukaya T, Tominaga J, Nakano T, Atoda N. Optical switching property of a light-induced pinhole in antimony thin film. Applied Physics Letters, 1999, 75(20): 3114–3116
https://doi.org/10.1063/1.125248
16 Tsai D P, Lin W C. Probing the near fields of the super-resolution near-field optical structure. Applied Physics Letters, 2000, 77(10): 1413–1415
https://doi.org/10.1063/1.1290692
17 Simpson R E, Fons P, Wang X, Kolobov A V, Fukaya T, Tominaga J. Non-melting super-resolution near-field apertures in Sb-Te alloys. Applied Physics Letters, 2010, 97(16): 161906
https://doi.org/10.1063/1.3502593
18 Lu X M, Wu Y Q, Wang Y, Wei J S. Super-resolution readout property of bismuth-doped antimony-based thin film as a functional mask for read-only memory. Applied Physics A, Materials Science & Processing, 2012, 108(4): 765–769
https://doi.org/10.1007/s00339-012-6968-5
19 Nakai K, Ohmaki M, Takeshita N, Hyot B, André B, Poupinet L. Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material InSb. Japanese Journal of Applied Physics, 2010, 49(8): 08KE01
https://doi.org/10.1143/JJAP.49.08KE01
20 Nakai K, Ohmaki M, Takeshita N, Shinoda M, Hwang I, Lee Y, Zhao H, Kim J, Hyot B, André B, Poupinet L, Shima T, Nakano T, Tominaga J. First playback of high-definition video contents from super-resolution near-field structure optical disc. Japanese Journal of Applied Physics, 2010, 49(8): 08KE02
https://doi.org/10.1143/JJAP.49.08KE02
21 Nakai K, Ohmaki M, Takeshita N, Hyot B, André B, Poupinet L, Shima T. Super-resolution optical disc with radial density increased by narrowed track pitch corresponding to diffraction limit. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LB03
https://doi.org/10.7567/JJAP.52.09LB03
22 Wei J S. On the dynamic readout characteristic of nonlinear super-resolution optical storage. Optics Communications, 2013, 291: 143–149
https://doi.org/10.1016/j.optcom.2012.11.020
23 Wei J S, Liu J, Jiao X B. Subwavelength direct laser writing by strong optical nonlinear absorption and melt-ablation threshold characteristics. Applied Physics Letters, 2009, 95(24): 241105
https://doi.org/10.1063/1.3272011
24 Liu J, Wei J S. Optical nonlinear absorption characteristics of AgInSbTe phase change thin films. Journal of Applied Physics, 2009, 106(8): 083112
https://doi.org/10.1063/1.3247194
25 Liu J, Liu S, Wei J S. Origin of the giant optical nonlinearity of Sb2Te3 phase change materials. Applied Physics Letters, 2010, 97(26): 261903
https://doi.org/10.1063/1.3530428
26 Liu S, Wei J S, Gan F X. Optical nonlinear absorption characteristics of crystalline Ge2Sb2Te5 thin films. Journal of Applied Physics, 2011, 110(3): 033503
https://doi.org/10.1063/1.3614501
27 Liu S, Wei J S, Gan F X. Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond. Applied Physics Letters, 2012, 100(11): 111903
https://doi.org/10.1063/1.3693156
28 Wei J, Liu S, Geng Y, Wang Y, Li X, Wu Y, Dun A. Nano-optical information storage induced by the nonlinear saturable absorption effect. Nanoscale, 2011, 3(8): 3233–3237
https://doi.org/10.1039/c1nr10395d pmid: 21660356
29 Her Y C, Lan Y C, Hsu W C, Tsai S Y. Recording and readout mechanisms of super-resolution near-field structure disk with a silver oxide mask layer. Applied Physics Letters, 2003, 83(11): 2136–2138
https://doi.org/10.1063/1.1609256
30 Li J M, Shi L P, Miao X S, Lim K G, Yang H X, Tan P K, Chong T C. Near-field characteristics and signal enhancement of super-resolution near-field structure disk with metal nanoparticles. Japanese Journal of Applied Physics, 2006, 45(2B): 1398–1400
https://doi.org/10.1143/JJAP.45.1398
31 Chou Y F C. Comparison of surface plasmon resonance effects between solid silver and silver-shell nanoparticles in active layer of AgOx-type super-resolution near-field structure. In: Proceedings of International Conference on Photonics Solutions. 2013, 88831E
32 Huang H, Zhang L, Wang Y, Han X D, Wu Y Q, Zhang Z, Gan F X. Locally formation of Ag nanoparticles in chalcogenide phase change thin films induced by nanosecond laser pulses. Materials Chemistry and Physics, 2012, 135(2–3): 467–473
https://doi.org/10.1016/j.matchemphys.2012.05.009
33 Lin J C, Huang H, Wang Y, Wu Y Q. FDTD analysis of silver-nanoparticle-embedded phase change recording pits. In: Proceedings of SPIE, International Workshop on Information Storage and Ninth International Symposium on Optical Storage. 2012, 878207
34 Kikukawa T, Nakano T, Shima T, Tominaga J. Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer. Applied Physics Letters, 2002, 81(25): 4697–4699
https://doi.org/10.1063/1.1529078
35 Liu Q, Kim J, Fukaya T,Tominaga J. Thermal-induced optical properties of a PdOx mask layer in an optical data storage system with a superresolution near-field structure. Optics Express, 2003, 11(21): 2646–2653
36 Liu Q, Tominaga J, Fukaya T. Bubble’s function in the process of readout for PdOx- and PtOx-type super-RENS disk. In: Proceedings of SPIE, BioMEMS and Nanotechnology. 2004, 5275
37 Kim J, Hwang I, Yoon D, Park I, Shin D, Kikukawa T, Shima T, Tominaga J. Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers. Applied Physics Letters, 2003, 83(9): 1701–1703
https://doi.org/10.1063/1.1605794
38 Shima T, Nakano T, Kim J, Tominaga J. Super-RENS disk for blue laser system retrieving signals from polycarbonate substrate side. Japanese Journal of Applied Physics, 2005, 44(5B): 3631–3633
https://doi.org/10.1143/JJAP.44.3631
39 Shima T, Nakano T, Tominaga J. Effect of SiO2 addition to PtOx recording layer of super-resolution near-field structure disc. Japanese Journal of Applied Physics, 2007, 46(6B): 3912–3916
https://doi.org/10.1143/JJAP.46.3912
40 Shima T, Yamakawa Y, Tominaga J. Readout durability improvement of super-resolution near-field structure discs with PtOx-SiO2 recording and GeNy interfacial layers. Japanese Journal of Applied Physics, 2007, 46(7): L135–L137
https://doi.org/10.1143/JJAP.46.L135
41 Liu Q, Fukaya T, Cao S, Guo C, Zhang Z, Guo Y, Wei J, Tominaga J. Study on readout durability of super-RENS disk. Optics Express, 2008, 16(1): 213–218
https://doi.org/10.1364/OE.16.000213 pmid: 18521150
42 Kuwahara M, Shima T, Fons P, Fukaya T, Tominaga J. On a thermally induced readout mechanism in super-resolution optical disks. Journal of Applied Physics, 2006, 100(4): 043106
https://doi.org/10.1063/1.2227643
43 Kim J, Hwang I, Yoon D, Park I, Shin D, Kuwahara M, Tominaga J.Super-resolution near-field structure with alternative recording and mask materials. Japanese Journal of Applied Physics, 2003, 42(2B): 1014–1017
44 Lin W C, Kao T S, Chang H H, Lin Y H, Fu Y H, Wu C T, Chen K H, Tsai D P. Study of a super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2. Japanese Journal of Applied Physics, 2003, 42(2B): 1029–1030
45 Mori G, Yamamoto M, Tajima H, Takamori N, Takahashi A. Energy-gap-induced super-resolution (EG-SR) optical disc using ZnO interference film. Japanese Journal of Applied Physics, 2005, 44(5B): 3627–3630
https://doi.org/10.1143/JJAP.44.3627
[1] Wanjun GONG, Wenhui PAN, Ying HE, Meina HUANG, Jianguo ZHANG, Zhenyu GU, Dan ZHANG, Zhigang YANG, Junle QU. Super-resolution imaging of the dynamic cleavage of intercellular tunneling nanotubes[J]. Front. Optoelectron., 2020, 13(4): 318-326.
[2] Nuo-Hua XIE, Ying CHEN, Huan YE, Chong LI, Ming-Qiang ZHU. Progress on photochromic diarylethenes with aggregation induced emission[J]. Front. Optoelectron., 2018, 11(4): 317-332.
[3] Shaosheng DAI, Dezhou ZHANG, Junjie CUI, Xiaoxiao ZHANG, Jinsong LIU. Edge preserving super-resolution infrared image reconstruction based on L1- and L2-norms[J]. Front. Optoelectron., 2017, 10(2): 189-194.
[4] Shaosheng DAI,Zhihui DU,Haiyan XIANG,Jinsong LIU. Reconstruction algorithm of super-resolution infrared image based on human vision processing mechanism[J]. Front. Optoelectron., 2015, 8(2): 195-202.
[5] Yue FANG,Cuifang KUANG,Ye MA,Yifan WANG,Xu LIU. Resolution and contrast enhancements of optical microscope based on point spread function engineering[J]. Front. Optoelectron., 2015, 8(2): 152-162.
[6] Wen-Liang GONG, Zhe HU?§?, Chong LI, Guo-Feng ZHANG, Tao CHEN, Matthew. P. ALDRED, Zhen-Li HUANG, Ming-Qiang ZHU. Condensed state fluorescence switching of hexaarylbiimidazole-tetraphenylethene conjugate for super-resolution fluorescence nanolocalization[J]. Front Optoelec, 2013, 6(4): 458-467.
[7] Jia WANG, Qingyan WANG, Mingqian ZHANG. Development and prospect of near-field optical measurements and characterizations[J]. Front Optoelec, 2012, 5(2): 171-181.
[8] Yuzhang CHEN, Kecheng YANG, Xiaohui ZHANG, Min XIA, Wei LI. Modelling of beam propagation and its applications for underwater imaging[J]. Front Optoelec Chin, 2011, 4(4): 398-406.
[9] Xiaofei YANG, Qian LI, Xiaomin CHENG. Progress of super-resolution near-field structure in near-field optical storage technology[J]. Front Optoelec Chin, 2008, 1(3-4): 292-298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed