Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2022, Vol. 15 Issue (1) : 11    https://doi.org/10.1007/s12200-022-00021-8
RESEARCH ARTICLE
Improved transient electroluminescence technique based on time-correlated single-photon counting technology to evaluate organic mobility
Xianfeng Qiao1,2(), Shu Xiao1, Peisen Yuan1, Dezhi Yang1, Dongge Ma1()
1. Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(929 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The transient electroluminescence (EL) technique is widely used to evaluate the carrier mobility in the field of organic light emitting diodes. The traditional analog detection strategy using oscilloscopes is generally limited since the background noise causes an underestimation of the mobility value. In this paper, we utilize time-correlated single-photon counting (TCSPC) to probe the transient EL for mobility calculation. The measurements on tris(8-hydroxyquinoline) aluminum (Alq3) show that the electron mobilities obtained using the TCSPC technique are slightly higher than those obtained from the analog method at all the investigated voltages. Moreover, the TCSPC mobilities demonstrate weaker dependence on the root of electrical field compared to the oscilloscope mobilities. These improvements are attributed to the unique principle of TCSPC, which quantifies the EL intensity by counting the number of single-photon pulses, improving its single-photon sensitivity and eliminating the negative impacts of electrical noise. These advantages make TCSPC a powerful technique in the characterization of time-resolved electroluminescence.

Keywords Mobility      Transient electroluminescence (EL)      Time-correlated single-photon counting (TCSPC)      Sensitivity      Signal-to-noise ratio (SNR)      Device     
Corresponding Author(s): Xianfeng Qiao,Dongge Ma   
Issue Date: 06 May 2022
 Cite this article:   
Xianfeng Qiao,Shu Xiao,Peisen Yuan, et al. Improved transient electroluminescence technique based on time-correlated single-photon counting technology to evaluate organic mobility[J]. Front. Optoelectron., 2022, 15(1): 11.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-022-00021-8
https://academic.hep.com.cn/foe/EN/Y2022/V15/I1/11
1 H. Bässler, : Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Status Solid (b) 175, 15- 55 (1993)
2 J. Liu, , H. Zhang, , H. Dong, , L. Meng, , L. Jiang, , L. Jiang, , Y. Wang, , J. Yu, , Y. Sun, , W. Hu, , A.J. Heeger, : High mobility emissive organic semiconductor. Nat. Commun. 6 (1), 10032 (2015)
3 M. O'Neill, , S.M. Kelly, : Ordered materials for organic electronics and photonics. Adv. Mater. 23 (5), 566- 584 (2011)
4 T. Matsushima, , F. Bencheikh, , T. Komino, , M.R. Leyden, , A.S.D. Sandanayaka, , C. Qin, , C. Adachi, : High performance from extraordinarily thick organic light-emitting diodes. Nature 572 (7770), 502- 506 (2019)
5 K. Xu, , S. Hu, , J. Hu, , X. Wang, : Numerical simulation of mobility effects on transient electroluminescence spikes in organic lightemitting diodes. J. Electron. Mater. 48 (2), 838- 844 (2019)
6 N.F. Mott, , R.W. Gurney, : Electronic Processes in Ionic Crystals, pp. 169-170. Oxford University Press, London (1964)
7 P.N. Murgatroyd, : Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D Appl. Phys. 3 (2), 151- 156 (1970)
8 A. Rose, : Space-charge-limited currents in solid. Phys. Rev. 97 (6), 1538- 1544 (1955)
9 M.A. Lampert, : Simplified theory of space-charge-limited currents in an insulator with taps. Phys. Rev. 103, 1648- 1656 (1956)
10 W.D. Gill, : Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. J. Appl. Phys. 43 (12), 5033- 5040 (1972)
11 P.W.M. Blom, , M.C.J.M. Vissenberg, : Dispersive hole transport in poly(p-phenylene vinylene). Phys. Rev. Lett. 80 (17), 3819- 3822 (1998)
12 C. Hosokawa, , H. Tokailin, , H. Higashi, , T. Kusumoto, : Transient behavior of organic thin film electroluminescence. Appl. Phys. Lett. 60, 1220- 1992 (1992)
13 D. Braun, , D. Moses, , C. Zhang, , A.J. Heeger, : Nanoseconed transient electroluminescence from polymer light-emitting diodes. Appl. Phys. Lett. 61 (26), 3092- 3094 (1992)
14 D. Poplavskyy, , J. Nelson, : Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. J. Appl. Phys. 93 (1), 341- 346 (2003)
15 S. Knox, , H. Jones, , T. Esward, : Device history dependent effects in dark injection transient current measurements of charge mobility in organic light emitting diodes. Proc. SPIE Int. Soc. Opt. Eng. 7722, 772218 (2010)
16 I. Lelidis, , G. Barbero, : Effect of different anionic and cationic mobilities on the impedance spectroscopy measurements. Phys. Lett. A 343, 440- 445 (2005)
17 N.S.J. Murphy, , F. Berz, , I. Flinn, : Carrier mobility in silicon MOST's. Solid-State Electron. 12 (10), 775- 786 (1969)
18 H. Lee, : Investigation of charge-transport properties in polymer/fullerene blends using transient electroluminescence technique. Jpn. J. Appl. Phys. 59 (8), 081004 (2020)
19 S. Nabha-Barnea, , D. Gotleyb, , A. Yonish, , R. Shikler, : Relating transient electroluminescence lifetime and bulk transit time in OLED during switch-off. J. Mater. Chem. C, Mater. Opt. Electron. Devices 9 (2), 719- 726 (2021)
20 Q. Shen, , Y. Hao, , L. Ma, , X. Wang, : Comparative study of red/green/blue quantum-dot light-emitting diodes by time-resolved transient electroluminescence. J. Phys. Chem. Lett. 12 (29), 7019- 7025 (2021)
21 M. Xu, , Q. Peng, , W. Zou, , L. Gu, , L. Xu, , L. Cheng, , Y. He, , M. Yang, , N. Wang, , W. Huang, , J. Wang, : A transient-electroluminescence study on perovskite light-emitting diodes. Appl. Phys. Lett. 115 (4), 041102 (2019)
22 N.R.A. Amin, , K.K. Kesavan, , S. Biring, , C.C. Lee, , T.H. Yeh, , T.Y. Ko, , S.W. Liu, , K.T. Wong, : A comparative study via photophysical and electrical characterizations on interfacial and bulk exciplex-forming systems for efficient organic lightemitting diodes. ACS Appl. Electron. Mater. 2 (4), 1011- 1019 (2020)
23 Y. Chen, , Q. Sun, , Y. Dai, , D. Yang, , X. Qiao, , D. Ma, : EL properties and exciton dynamics of high-performance dopingfree hybrid WOLEDs based on 4P-NPD/Bepp2 heterojunction as blue emitter. Adv. Opt. Mater. 7 (20), 1900703 (2019)
24 C. Lin, , P. Han, , S. Xiao, , F. Qu, , J. Yao, , X. Qiao, , D. Yang, , Y. Dai, , Q. Sun, , D. Hu, , A. Qin, , Y. Ma, , B. Tang, , D. Ma, : Efficiency breakthrough of fluorescence OLEDs by the strategic management of "hot excitons" at highly-lying excitation triplet energy levels. Adv. Funct. Mater. 31, 2106912 (2021)
25 S. Xiao, , X. Qiao, , C. Lin, , L. Chen, , R. Guo, , P. Lu, , L. Wang, , D. Ma, : In-situ quantifying the physical parameters determining the efficiency of OLEDs relying on triplet-triplet annihilation up-conversion. Adv. Opt. Mater. 10 (6), 2102333 (2022)
26 W. Beker, , B.H. The, : TCSPC Handbook, 7th edn., pp. 83-84. Becker&Hickl Gmbh, Berlin (2017)
27 C.W. Tang, , S.A. Vanslyke, : Organic electroluminescent diodes. Appl. Phys. Lett. 51 (12), 913- 915 (1987)
28 J. Kang, , J.B. Son, , G.W. Kim, , S. Bae, , K.S. Min, , S. Sul, , W.S. Jeon, , J. Jang, , G.S. Park, , J.K. Shin, , J.H. Kwon, , S.K. Kim, : Time-resolved electroluminescence study for the effect of charge traps on the luminescence properties of organic lightemitting diodes. Phys. Status Solidi A-Appl. Mater. 217 (17), 2000081 (2020)
29 H.W. Bae, , G.W. Kim, , R. Lampande, , J.H. Park, , I.J. Ko, , H.J. Yu, , C.Y. Lee, , J.H. Kwon, : Efficiency enhancement in fluorescent deep-blue OLEDs by boosting singlet exciton generation through triplet fusion and charge recombination rate. Org. Electron. 70, 1- 6 (2019)
30 J. Yao, , S. Ying, , Q. Sun, , Y. Dai, , X. Qiao, , D. Yang, , J. Chen, , D. Ma, : High efficiency blue/green/yellow/red fluorescent organic light-emitting diodes sensitized by phosphors:general design rules and electroluminescence performance analysis. J. Mater. Chem. C, Mater. Opt. Electron. Devices 7 (36), 11293- 11302 (2019)
31 P. Murgatroyd, : Theory of space-charge limited current enhanced by Frenkel effect. J. Phys. D Appl. Phys. 3 (2), 151- 156 (1970)
32 D.H. Dunlap, , P.E. Parris, , V.M. Kenkre, : Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers. Phys. Rev. Lett. 77 (3), 542- 545 (1996)
33 P. Parris, , D. Dunlap, , V. Kenkre, : Energetic disorder, spatial correlations, and the high-field mobility of injected charge carriers in organic solids. Phys. Status Solidi (b) 218, 47- 53 (2000)
[1] Kaixuan Chen, Huan Wei, Ping-An Chen, Yu Liu, Jing Guo, Jiangnan Xia, Haihong Xie, Xincan Qiu, Yuanyuan Hu. Band-like transport in non-fullerene acceptor semiconductor Y6[J]. Front. Optoelectron., 2022, 15(2): 26-.
[2] Can Ma, Jin Hou, Chunyong Yang, Ming Shi, Shaoping Chen. Complete photonic bandgap in silicon nitride slab assisted by effective index difference between polarizations[J]. Front. Optoelectron., 2022, 15(2): 20-.
[3] Haozhe Zhang, Zhe Wang, Zhixun Wang, Bing He, Mengxiao Chen, Miao Qi, Yanting Liu, Jiwu Xin, Lei Wei. Recent progress of fiber-based transistors: materials, structures and applications[J]. Front. Optoelectron., 2022, 15(1): 2-.
[4] Dao ZHANG, Xiaofeng LIU, Jianrong QIU. 3D printing of glass by additive manufacturing techniques: a review[J]. Front. Optoelectron., 2021, 14(3): 263-277.
[5] Kangnian WANG, Yuan WANG, Xuhan GUO, Yong ZHANG, An HE, Yikai SU. Ultracompact bandwidth-tunable filter based on subwavelength grating-assisted contra-directional couplers[J]. Front. Optoelectron., 2021, 14(3): 374-380.
[6] Yucheng LU, Xin YANG, Hongrun JIN, Kaisi LIU, Guoqun ZHANG, Liang HUANG, Jia LI, Jun ZHOU. LixNa2−xW4O13 nanosheet for scalable electrochromic device[J]. Front. Optoelectron., 2021, 14(3): 298-310.
[7] Kun REN, Ying ZHANG, Xiaobin REN, Yumeng HE, Qun HAN. Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials[J]. Front. Optoelectron., 2021, 14(2): 221-228.
[8] Yu BI, Lingling HUANG, Xiaowei LI, Yongtian WANG. Magnetically controllable metasurface and its application[J]. Front. Optoelectron., 2021, 14(2): 154-169.
[9] Etu PODDER, Md. Bellal HOSSAIN, Rayhan Habib JIBON, Abdullah Al-Mamun BULBUL, Himadri Shekhar MONDAL. Chemical sensing through photonic crystal fiber: sulfuric acid detection[J]. Front. Optoelectron., 2019, 12(4): 372-381.
[10] Jianfeng GAO, Junqiang SUN, Heng ZHOU, Jialin JIANG, Yang ZHOU. Design and fabrication of compact Ge-on-SOI coupling structure[J]. Front. Optoelectron., 2019, 12(3): 276-285.
[11] Kuanhong XU, Xiaonong ZHU, Peng HUANG, Zhiqiang Yu, Nan ZHANG. Origin of peculiar inerratic diffraction patterns recorded by charge-coupled device cameras[J]. Front. Optoelectron., 2019, 12(2): 174-179.
[12] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[13] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
[14] Runda GUO, Wenzhi ZHANG, Qing ZHANG, Xialei LV, Lei WANG. Efficient deep red phosphorescent OLEDs using 1,2,4-thiadiazole core-based novel bipolar host with low efficiency roll-off[J]. Front. Optoelectron., 2018, 11(4): 375-384.
[15] Mingzhu SONG, Hongsong QU, Guixiang ZHANG, Guang JIN. Detection of small ship targets from an optical remote sensing image[J]. Front. Optoelectron., 2018, 11(3): 275-284.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed