Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (2) : 221-228    https://doi.org/10.1007/s12200-019-0921-6
RESEARCH ARTICLE
Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials
Kun REN1(), Ying ZHANG1, Xiaobin REN2, Yumeng HE1, Qun HAN1
1. College of Precision Instrument and Opto-electronics Engineering, Tianjin University; Key Laboratory of Opto-electronics Information Technology, Ministry of Education, Tianjin 300072, China
2. School of Science, Tianjin University of Science and Technology, Tianjin 300222, China
 Download: PDF(1567 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Electromagnetically induced transparency (EIT) phenomenon is observed in simple metamaterial which consists of concentric double U-shaped resonators (USRs). The numerical and theoretical analysis reveals that EIT arises from the bright-bright mode coupling. The transmission spectra at different polarization angle of incident light shows that EIT transparency window is polarization sensitive. More interestingly, Fano resonance appears in the transmission spectrum at certain polarization angles. The sharp and asymmetric Fano lineshape is high valuable for sensing. The performance of sensor is investigated and the sensitivity is high up to 327 GHz/RIU. Furthermore, active control of EIT window is realized by incorporating photosensitive silicon. The proposed USR structure is simple and compact, which may find significant applications in tunable integrated devices such as biosensor, filters, and THz modulators.

Keywords electromagnetically induced transparency (EIT)      metamaterial      polarization-sensitive      active optical devices      sensor     
Corresponding Author(s): Kun REN   
Just Accepted Date: 26 June 2019   Online First Date: 23 September 2019    Issue Date: 14 July 2021
 Cite this article:   
Kun REN,Ying ZHANG,Xiaobin REN, et al. Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials[J]. Front. Optoelectron., 2021, 14(2): 221-228.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-019-0921-6
https://academic.hep.com.cn/foe/EN/Y2021/V14/I2/221
Fig.1  Schematic diagram of a unit cell consisting of concentric double USRs. Px = Py = 160 μm, a = 140 μm, b = 105 μm, w1 = w2 = 10 μm, s = 7.5 μm, h1 = 50 μm
Fig.2  Transmission spectra for (a) only the outer USR, (b) only the inner USR, and (c) concentric double USRs. The electric field distribution of concentric double USR for (d) dip1 at 0.32 THz, (e) peak at 0.395 THz and (f) dip2 at 0.45 THz
Fig.3  Simulated transmission spectrum with different lengths of USR. (a) Length a of outer USR; (b) length b of inner USR. The other geometric parameters remain unchanged
Fig.4  Fitted transmission spectrum with different (a) ω1 and (b) ω2
Fig.5  (a) Spectral transmission at different refractive indices; (b) resonance frequency of dip1/peak/dip2 versus the refractive index
our work Ref. [27] Ref. [36] Ref. [37] Ref. [38]
working frequency band/THz 0.1−0.7 1−3 0.4−0.7 20−36 15−45
sensitivity/(THz·RIU−1) 0.25 0.59 0.112 26.6 6.4
sensitivity (S* = S/f0) 0.633 0.32 0.164 0.85 0.285
Tab.1  Comparison of performance of reported EIT-based sensor
Fig.6  (a) Transmission spectrum under different polarizations; (b) transmission spectra at different refractive indices. The polarization angle q = 60°
Fig.7  (a) Geometric diagram of structure. The red region is photosensitive silicon; (b) transmission spectrum, (c) phase shift, and (d) group delay of the EIT metamaterial with increasing the conductivity dSi
1 S E Harris. Electromagnetically induced transparency. Physics Today, 1997, 50(7): 36–42
https://doi.org/10.1063/1.881806
2 M Fleischhauer, A Imamoglu, J P Marangos. Electromagnetically induced transparency: optics in coherent media. Reviews of Modern Physics, 2005, 77(2): 633–673
https://doi.org/10.1103/RevModPhys.77.633
3 Y Vardi, E Cohen-Hoshen, G Shalem, I Bar-Joseph. Fano resonance in an electrically driven plasmonic device. Nano Letters, 2016, 16(1): 748–752
https://doi.org/10.1021/acs.nanolett.5b04622 pmid: 26717292
4 S Savo, B D F Casse, W T Lu, S Sridhar. Observation of slow-light in a metamaterials waveguide at microwave frequencies. Applied Physics Letters, 2011, 98(17): 171907
https://doi.org/10.1063/1.3583521
5 P Neutens, L Lagae, G Borghs, P Van Dorpe. Plasmon filters and resonators in metal-insulator-metal waveguides. Optics Express, 2012, 20(4): 3408–3423
https://doi.org/10.1364/OE.20.003408 pmid: 22418100
6 H Lu, X Liu, L Wang, Y Gong, D Mao. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Optics Express, 2011, 19(4): 2910–2915
https://doi.org/10.1364/OE.19.002910 pmid: 21369113
7 C Min, G Veronis. Absorption switches in metal-dielectric-metal plasmonic waveguides. Optics Express, 2009, 17(13): 10757–10766
https://doi.org/10.1364/OE.17.010757 pmid: 19550473
8 J Wang, B Yuan, C Fan, J He, P Ding, Q Xue, E Liang. A novel planar metamaterial design for electromagnetically induced transparency and slow light. Optics Express, 2013, 21(21): 25159–25166
https://doi.org/10.1364/OE.21.025159 pmid: 24150357
9 R A Shelby, D R Smith, S Schultz. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
https://doi.org/10.1126/science.1058847 pmid: 11292865
10 R O Ouedraogo, E J Rothwell, A R Diaz, K Fuchi, A Temme. Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2175–2182
https://doi.org/10.1109/TAP.2012.2189699
11 Y D Dong, H Toyao, T Itoh. Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Transactions on Antennas and Propagation, 2011, 59(11): 4329–4333
https://doi.org/10.1109/TAP.2011.2164223
12 J B Pendry. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
https://doi.org/10.1103/PhysRevLett.85.3966 pmid: 11041972
13 T Ergin, N Stenger, P Brenner, J B Pendry, M Wegener. Three-dimensional invisibility cloak at optical wavelengths. Science, 2010, 328(5976): 337–339
https://doi.org/10.1126/science.1186351 pmid: 20299551
14 S Zhang, C Xia, N Fang. Broadband acoustic cloak for ultrasound waves. Physical Review Letters, 2011, 106(2): 024301
https://doi.org/10.1103/PhysRevLett.106.024301 pmid: 21405230
15 H Y Meng, X X Xue, Q Lin, G D Liu, X Zhai, L L Wang. Tunable and multi-channel perfect absorber based on graphene at mid-infrared region. Applied Physics Express, 2018, 11(5): 052002
https://doi.org/10.7567/APEX.11.052002
16 S X Xia, X Zhai, Y Huang, J Q Liu, L L Wang, S C Wen. Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Optics Letters, 2017, 42(15): 3052–3055
https://doi.org/10.1364/OL.42.003052 pmid: 28957243
17 H Meng, L Wang, G Liu, X Xue, Q Lin, X Zhai. Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region. Applied Optics, 2017, 56(21): 6022–6027
https://doi.org/10.1364/AO.56.006022 pmid: 29047925
18 S X Xia, X Zhai, L L Wang, B Sun, J Q Liu, S C Wen. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Optics Express, 2016, 24(16): 17886–17899
https://doi.org/10.1364/OE.24.017886 pmid: 27505756
19 S X Xia, X Zhai, L L Wang, S C Wen. Plasmonically induced transparency in double-layered graphene nanoribbons. Photonics Research, 2018, 6(7): 692–702
https://doi.org/10.1364/PRJ.6.000692
20 S Zhang, D A Genov, Y Wang, M Liu, X Zhang. Plasmon-induced transparency in metamaterials. Physical Review Letters, 2008, 101(4): 047401
https://doi.org/10.1103/PhysRevLett.101.047401 pmid: 18764363
21 N Liu, L Langguth, T Weiss, J Kästel, M Fleischhauer, T Pfau, H Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Materials, 2009, 8(9): 758–762
https://doi.org/10.1038/nmat2495 pmid: 19578334
22 Y Zhu, X Hu, H Yang, Q Gong. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Scientific Reports, 2014, 4(1): 3752
https://doi.org/10.1038/srep03752 pmid: 24435059
23 S Lee, Q H Park. Dynamic coupling of plasmonic resonators. Scientific Reports, 2016, 6(1): 21989
https://doi.org/10.1038/srep21989 pmid: 26911786
24 Y M Yang, I I Kravchenko, D P Briggs, J Valentine. All-dielectric metasurface analogue of electromagnetically induced transparency. Nature Communications, 2014, 5: 5753
25 S Y Xiao, T Wang, T T Liu, X C Yan, Z Li, C Xu. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 2018, 126: 271–278
https://doi.org/10.1016/j.carbon.2017.10.035
26 H Y Zhang, Y Y Cao, Y Z Liu, Y Li, Y P Zhang. A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling. Optics Communications, 2017, 391: 9–15
https://doi.org/10.1016/j.optcom.2017.01.008
27 S Hu, D Liu, H L Yang. Electromagnetically induced transparency in an integrated metasurface based on bright–dark–bright mode coupling. Journal of Physics D, Applied Physics, 2019, 52(17): 175305
https://doi.org/10.1088/1361-6463/ab03c3
28 X Ren, K Ren, C Ming. Self-reference refractive index sensor based on independently controlled double resonances in side-coupled U-shaped resonators. Sensors (Basel), 2018, 18(5): 1376
https://doi.org/10.3390/s18051376 pmid: 29710806
29 R Singh, I A I Al-Naib, M Koch, W Zhang. Sharp Fano resonances in THz metamaterials. Optics Express, 2011, 19(7): 6312–6319
https://doi.org/10.1364/OE.19.006312 pmid: 21451657
30 R Singh, A K Azad, Q X Jia, A J Taylor, H T Chen. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Optics Letters, 2011, 36(7): 1230–1232
https://doi.org/10.1364/OL.36.001230 pmid: 21479039
31 M B Cortie, A Dowd, N Harris, M J Ford. Core-shell nanoparticles with self-regulating plasmonic functionality. Physical Review B, 2007, 75(11): 113405
https://doi.org/10.1103/PhysRevB.75.113405
32 Y Wang, Y B Leng, L Wang, L H Dong, S R Liu, J Wang, Y J Sun. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band. Applied Physics Express, 2018, 11(6): 062001
https://doi.org/10.7567/APEX.11.062001
33 Z X Xu, S Y Liu, S L Li, X X Yin. Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states. Physical Review B, 2019, 99(4): 041104
https://doi.org/10.1103/PhysRevB.99.041104
34 K Ren, X Ren, Y He, Q Han. Magnetic-field sensor with self-reference characteristic based on a magnetic fluid and independent plasmonic dual resonances. Beilstein Journal of Nanotechnology, 2019, 10: 247–255
https://doi.org/10.3762/bjnano.10.23 pmid: 30746318
35 Q M Li, B Zhang, W Xiong, J L Shen. Modulation of the resonance frequency in double-split ring terahertz metamaterials. Optics Communications, 2014, 323: 162–166
https://doi.org/10.1016/j.optcom.2014.03.007
36 W Pan, Y J Yan, Y Ma, D J Shen. A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance. Optics Communications, 2019, 431: 115–119
https://doi.org/10.1016/j.optcom.2018.09.014
37 H L Huang, H Xia, Z B Guo, H J Li, D Xie. Polarization-insensitive and tunable plasmon induced transparency in a graphene-based terahertz metamaterial. Optics Communications, 2018, 424: 163–169
https://doi.org/10.1016/j.optcom.2018.04.060
38 C J Liu, Y Y Huang, Z H Yao, L L Yu, Y P Jin, X L Xu. Giant angular dependence of electromagnetic induced transparency in THz metamaterials. EPL, 2018, 121(4): 44004
https://doi.org/10.1209/0295-5075/121/44004
39 M Manjappa, Y K Srivastava, L Cong, I Al-Naib, R Singh. Active photoswitching of sharp Fano resonances in THz metadevices. Advanced Materials, 2017, 29(3): 1603355
https://doi.org/10.1002/adma.201603355 pmid: 27862423
40 X Ren, K Ren, Y Cai. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Applied Optics, 2017, 56(31): H1–H9
https://doi.org/10.1364/AO.56.0000H1 pmid: 29091660
[1] Zhilu YE, Minye YANG, Liang ZHU, Pai-Yen CHEN. PTX-symmetric metasurfaces for sensing applications[J]. Front. Optoelectron., 2021, 14(2): 211-220.
[2] Briliant Adhi PRABOWO, I Dewa Putu HERMIDA, Robeth Viktoria MANURUNG, Agnes PURWIDYANTRI, Kou-Chen LIU. Nano-film aluminum-gold for ultra-high dynamic-range surface plasmon resonance chemical sensor[J]. Front. Optoelectron., 2019, 12(3): 286-295.
[3] Muhammad Noaman ZAHID, Jianliang JIANG, Saad RIZVI. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Front. Optoelectron., 2019, 12(2): 215-226.
[4] Ayad KAKEI, Jayantha A. EPAARACHCHI. Use of fiber Bragg grating sensors for monitoring delamination damage propagation in glass-fiber reinforced composite structures[J]. Front. Optoelectron., 2018, 11(1): 60-68.
[5] Xiangkun KONG, Junyi XU, Jin-jun MO, Shaobin LIU. Broadband and conformal metamaterial absorber[J]. Front. Optoelectron., 2017, 10(2): 124-131.
[6] Xiaoying HE,Min XU,Xiangchao ZHANG,Hao ZHANG. A tutorial introduction to graphene-microfiber waveguide and its applications[J]. Front. Optoelectron., 2016, 9(4): 535-543.
[7] Benxin WANG,Xiang ZHAI,Guizhen WANG,Weiqing HUANG,Lingling WANG. Broadband coplane metamaterial filter based on two nested split-ring-resonators[J]. Front. Optoelectron., 2016, 9(4): 565-570.
[8] Zhenzhou CHENG,Changyuan QIN,Fengqiu WANG,Hao HE,Keisuke GODA. Progress on mid-IR graphene photonics and biochemical applications[J]. Front. Optoelectron., 2016, 9(2): 259-269.
[9] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[10] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[11] Lili MAO,Qizhen SUN,Ping LU,Zefeng LAO,Deming LIU. Fiber up-taper assisted Mach-Zehnder interferometer for high sensitive temperature sensing[J]. Front. Optoelectron., 2015, 8(4): 431-438.
[12] Saeed OLYAEE,Hassan ARMAN. Improved gas sensor with air-core photonic bandgap fiber[J]. Front. Optoelectron., 2015, 8(3): 314-318.
[13] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[14] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[15] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed