Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (2) : 128-140    https://doi.org/10.1007/s12200-015-0475-1
REVIEW ARTICLE
Technology developments and biomedical applications of polarization-sensitive optical coherence tomography
Zhenyang DING,Chia-Pin LIANG,Yu CHEN()
Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
 Download: PDF(6573 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polarization-sensitive optical coherence tomography (PS-OCT) enables depth-resolved mapping of sample polarization information, such as phase-retardation and optical axis orientation, which is particularly useful when the nano-scale organization of tissue that are difficult to be observed in the intensity images of a regular optical coherence tomography (OCT). In this review, we survey two types of methods and systems of PS-OCT. The first type is PS-OCT with single input polarization state, which contain bulk optics or polarization maintaining fiber (PMF) based systems and single-mode fiber (SMF) based systems. The second type is PS-OCT with two different input polarization states, which contain SMF based systems and PMF based systems, through either time, frequency, or depth multiplexing. In addition, representative biomedical applications using PS-OCT, such as retinal imaging, skin cancer detection, and brain mapping, are demonstrated.

Keywords optical coherence tomography (OCT)      polarization-sensitive optical coherence tomography (PS-OCT)      polarization      imaging     
Corresponding Author(s): Yu CHEN   
Just Accepted Date: 04 February 2015   Issue Date: 24 June 2015
 Cite this article:   
Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0475-1
https://academic.hep.com.cn/foe/EN/Y2015/V8/I2/128
type sub-type pros cons reference
single input polarization state PMF and bulk optics ? simple algorithm? no need for calibration? stable ? ghost peak? high cost? no local birefringence? no diattenuation [1,38-42]
SMF ? simple system and algorithm? low cost? no ghost peak ? need calibration? not very stable? no local birefringence? no diattenuation [43,44]
two input polarization states SMF ? local birefringence? diattenuation ? complex system (modulation or multiplex)? high cost? complex algorithm [19,23,45,46]
PMF and bulk optics ? local birefringence? diattenuation ? complex system (modulation or multiplex)? high cost? complex algorithm [30,47-50]
Tab.1  Summary of different PS-OCT configurations
Fig.1  Scheme of sweep-source PS-OCT with PM fiber using single input polarization state [42]. PC, polarization controller; QWP, quarter wave plate; M, mirror; XY scan, galvo scanner; PBS, polarizing beam splitter; BPD, balanced photodetector; DAQ, data acquisition card. Reproduced from Ref. [42] with permission
Fig.2  Schematic diagram of a fiber-based PS-OCT with two different input polarization state [23]. Pol. Mod., polarization modulator; Pol., polarization controller. In the case of time-domain and spectral-domain OCTs, the light source is a broadband light source. It is a wavelength-swept light source for swept-source OCT. PDX and PDY are photodetection devices to detect the orthogonal polarization axes X and Y. Photodetection devices are photodetectors for time-domain and swept-source OCTs, and they are spectrometers for spectral-domain OCT. Typically the polarizer is introduced in the reference arm to deliver the same optical power of reference beam to two photodetectors. Reproduced from Ref. [23] with permission
Fig.3  Schematic diagram of a PS-OCT using frequency multiplexing [46]. WSL, wavelength-swept laser, RM, reference mirror; PDD, polarization diverse detection; PBS, polarization beam splitter; FS, frequency shifter; DC, directional coupler. Two polarization states occupy different electrical frequency bands, so the two polarization channels can be acquired simultaneously and demultiplexed in data processing. Reproduced from Ref. [46] with permission
Fig.4  Swept-source / Fourier domain OCT with a passive polarization delay unit [19]. (a) Scheme of PS-OCT with a polarization delay. The sample and reference beam interfere at the non-polarizing beam splitter and are then split up into orthogonal polarization X and Y by a polarizion beam splitters. The two orthogonal polarization channels are detected by two balanced photodetectors. (b) Scheme of the passive delay unit. (c) Representative image of the location difference between the orthogonal detection channels. The OCT signals originating from the two incident states are separated by ?z in depth. PC, polarization controller; PDU: polarization delay unit; GS, galvanometer scanner; PBS, polarizing beam splitter; NPBS, non-polarizing beam splitter; QWP, quarter wave plate; M, mirror. Reproduced from Ref. [19] with permission
Fig.5  Wide field PS-OCT imaging of the human retina [19]. (a) Fundus projection image. As indicated in the color fundus photo (b). (c) Reflectivity B-scan image on the location indicated by the arrow in (a). (d) Corresponding phase retardation image (color scale: 0°- 180°). Increasing phase retardation due to RNFL birefringence can be observed by a color change from blue to yellow. (e) Wide field fundus image of phase retardation (color scale: 0° - 27°). Strong birefringence can be observed around the optic disk along the nerve fiber bundles. (f) Scanning laser polarimetry image of the same eye taken with the Zeiss GDx. Color map below. The scanned area of 15° × 15° is indicated by the dashed rectangle in (e). Reproduced from Ref. [19] with permission
Fig.6  Representative histological (left column), intensity (middle column), and phase retardation (right column) images obtained from the same or similar locations in healthy (top row), endogenous BCC (top row), and allograft BCC (bottom row) mouse skin tissue. White arrows indicate location of tumors. The scale bars are applicable to all images [11]. Reproduced from Ref. [11] with permission
Fig.7  Microscopy image (a) and reconstructed MC-OCT en-face images (b-d) of a sagittal rat brain section, with comparison of anatomy (f) [35]. Structures are labeled on the microscope image (a): cp, cerebral peduncle; CPu, caudate putamen; fi, fimbria; GP, globus pallidus; HIPP, hippocampus; ic- internal capsule; ml, medial lemniscus; opt, optic tract; SN, substania nigra; TH, thalamus; ZI, zona incerta. Leftward arrow: cranial; upward arrow: dorsal. Reconstructed brain maps of reflectivity (b), phase retardance (c), optic axis orientation (d) and combined image for tractography (e) are shown. The arrows in (d) indicate three groups of fiber bundles with different orientations. The image in (f) is modified from The Rat Brain in Stereotaxic Coordinates with permission. Abbreviations of structures: bic, brachium of the inferior colliculus; bsc, brachium of the superior colliculus; cp, cerebral peduncle; eml- external medullary lamina; fi- fimbria; ic, internal capsule; ml, medial lemniscus; opt, optic tract; st, stria terminalis; str, superior thalamic radiation [35]. Reproduced from Ref. [35] with permission
1 Hee M R, Huang D, Swanson E A, Fujimoto J G. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America. B, Optical Physics, 1992, 9(6): 903–908
https://doi.org/10.1364/JOSAB.9.000903
2 Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A. Optical coherence tomography. Science, 1991, 254(5035): 1178–1181
https://doi.org/10.1126/science.1957169 pmid: 1957169
3 de Boer J, Srinivas S, Malekafzali A, Chen Z, Nelson J. Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Optics Express, 1998, 3(6): 212–218
https://doi.org/10.1364/OE.3.000212 pmid: 19384363
4 Schoenenberger K, Colston B W, Maitland D J, Da Silva L B, Everett M J. Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography. Applied Optics, 1998, 37(25): 6026–6036
https://doi.org/10.1364/AO.37.006026 pmid: 18286100
5 Park B H, Saxer C, Srinivas S M, Nelson J S, de Boer J F. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2001, 6(4): 474–479
https://doi.org/10.1117/1.1413208 pmid: 11728208
6 Jiao S, Wang L V. Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. Journal of Biomedical Optics, 2002, 7(3): 350–358
https://doi.org/10.1117/1.1483878 pmid: 12175284
7 Jiao S, Yu W, Stoica G, Wang L V. Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Applied Optics, 2003, 42(25): 5191–5197
https://doi.org/10.1364/AO.42.005191 pmid: 12962400
8 Pierce M C, Strasswimmer J, Park B H, Cense B, de Boer J F. Advances in optical coherence tomography imaging for dermatology. The Journal of Investigative Dermatology, 2004, 123(3): 458–463
https://doi.org/10.1111/j.0022-202X.2004.23404.x pmid: 15304083
9 Srinivas S M, de Boer J F, Park H, Keikhanzadeh K, Huang H E, Zhang J, Jung W Q, Chen Z, Nelson J S. Determination of burn depth by polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 207–212
https://doi.org/10.1117/1.1629680 pmid: 14715075
10 Strasswimmer J, Pierce M C, Park B H, Neel V, de Boer J F. Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. Journal of Biomedical Optics, 2004, 9(2): 292–298
https://doi.org/10.1117/1.1644118 pmid: 15065894
11 Duan L, Marvdashti T, Lee A, Tang J Y, Ellerbee A K. Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2014, 5(10): 3717–3729
https://doi.org/10.1364/BOE.5.003717 pmid: 25360384
12 Pircher M, Goetzinger E, Leitgeb R, Hitzenberger C K. Transversal phase resolved polarization sensitive optical coherence tomography. Physics in Medicine and Biology, 2004, 49(7): 1257–1263
https://doi.org/10.1088/0031-9155/49/7/013 pmid: 15128203
13 G?tzinger E, Pircher M, Sticker M, Fercher A F, Hitzenberger C K. Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 94–102
https://doi.org/10.1117/1.1629308 pmid: 14715060
14 Ducros M G, de Boer J F, Huang H E, Chao L C, Chen Z P, Nelson J S, Milner T E, Rylander H III. Polarization sensitive optical coherence tomography of the rabbit eye. IEEE Journal on Selected Topics in Quantum Electronics, 1999, 5(4): 1159–1167
https://doi.org/10.1109/2944.796342
15 Ducros M G, Marsack J D, Rylander H G 3rd, Thomsen S L, Milner T E. Primate retina imaging with polarization-sensitive optical coherence tomography. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2001, 18(12): 2945–2956
https://doi.org/10.1364/JOSAA.18.002945 pmid: 11760194
16 Cense B, Chen T C, Park B H, Pierce M C, de Boer J F. In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2004, 9(1): 121–125
https://doi.org/10.1117/1.1627774 pmid: 14715063
17 G?tzinger E, Pircher M, Hitzenberger C K. High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Optics Express, 2005, 13(25): 10217–10229
https://doi.org/10.1364/OPEX.13.010217 pmid: 19503236
18 Kemp N J, Park J, Zaatari H N, Rylander H G, Milner T E. High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2005, 22(3): 552–560
https://doi.org/10.1364/JOSAA.22.000552 pmid: 15770994
19 Baumann B, Choi W, Potsaid B, Huang D, Duker J S, Fujimoto J G. Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Optics Express, 2012, 20(9): 10229–10241
https://doi.org/10.1364/OE.20.010229 pmid: 22535114
20 G?tzinger E, Pircher M, Geitzenauer W, Ahlers C, Baumann B, Michels S, Schmidt-Erfurth U, Hitzenberger C K. Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Optics Express, 2008, 16(21): 16410–16422
https://doi.org/10.1364/OE.16.016410 pmid: 18852747
21 Zotter S, Pircher M, Torzicky T, Baumann B, Yoshida H, Hirose F, Roberts P, Ritter M, Schütze C, G?tzinger E, Trasischker W, Vass C, Schmidt-Erfurth U, Hitzenberger C K. Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology. Biomedical Optics Express, 2012, 3(11): 2720–2732
https://doi.org/10.1364/BOE.3.002720 pmid: 23162711
22 Cense B, Chen T C, Park B H, Pierce M C, de Boer J F. Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Investigative Ophthalmology & Visual Science, 2004, 45(8): 2606–2612
https://doi.org/10.1167/iovs.03-1160 pmid: 15277483
23 Makita S, Yamanari M, Yasuno Y. Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging. Optics Express, 2010, 18(2): 854–876
https://doi.org/10.1364/OE.18.000854 pmid: 20173907
24 Wang X J, Milner T E, de Boer J F, Zhang Y, Pashley D H, Nelson J S. Characterization of dentin and enamel by use of optical coherence tomography. Applied Optics, 1999, 38(10): 2092–2096
https://doi.org/10.1364/AO.38.002092 pmid: 18319769
25 Baumgartner A, Dichtl S, Hitzenberger C K, Sattmann H, Robl B, Moritz A, Fercher A F, Sperr W. Polarization-sensitive optical coherence tomography of dental structures. Caries Research, 2000, 34(1): 59–69
https://doi.org/10.1159/000016571 pmid: 10601786
26 Fried D, Xie J, Shafi S, Featherstone J D, Breunig T M, Le C. Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 2002, 7(4): 618–627
https://doi.org/10.1117/1.1509752 pmid: 12421130
27 Chen Y, Otis L, Piao D, Zhu Q. Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system. Applied Optics, 2005, 44(11): 2041–2048
https://doi.org/10.1364/AO.44.002041 pmid: 15835353
28 Jones R S, Darling C L, Featherstone J D, Fried D. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography. Journal of biomedical optics, 2006, 11(1): 014016
29 Pierce M, Shishkov M, Park B, Nassif N, Bouma B, Tearney G, de Boer J. Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography. Optics Express, 2005, 13(15): 5739–5749
https://doi.org/10.1364/OPEX.13.005739 pmid: 19498576
30 Fan C, Yao G. Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography. Biomedical Optics Express, 2013, 4(3): 460–465
https://doi.org/10.1364/BOE.4.000460 pmid: 23504508
31 Wang Y, Yao G. Optical tractography of the mouse heart using polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2013, 4(11): 2540–2545
https://doi.org/10.1364/BOE.4.002540 pmid: 24298414
32 Hariri L P, Villiger M, Applegate M B, Mino-Kenudson M, Mark E J, Bouma B E, Suter M J. Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy. American Journal of Respiratory and Critical Care Medicine, 2013, 187(2): 125–129
https://doi.org/10.1164/rccm.201208-1483OE pmid: 23322794
33 Pasquesi J J, Schlachter S C, Boppart M D, Chaney E, Kaufman S J, Boppart S A. In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. Optics Express, 2006, 14(4): 1547–1556
https://doi.org/10.1364/OE.14.001547 pmid: 19503481
34 Matcher S J, Winlove C P, Gangnus S V. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography. Physics in Medicine and Biology, 2004, 49(7): 1295–1306
https://doi.org/10.1088/0031-9155/49/7/016 pmid: 15128206
35 Wang H, Black A J, Zhu J, Stigen T W, Al-Qaisi M K, Netoff T I, Abosch A, Akkin T. Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography. NeuroImage, 2011, 58(4): 984–992
https://doi.org/10.1016/j.neuroimage.2011.07.005 pmid: 21771662
36 Wang H, Zhu J, Akkin T. Serial optical coherence scanner for large-scale brain imaging at microscopic resolution. NeuroImage, 2014, 84: 1007–1017
https://doi.org/10.1016/j.neuroimage.2013.09.063 pmid: 24099843
37 Nakaji H, Kouyama N, Muragaki Y, Kawakami Y, Iseki H. Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography. Journal of Neuroscience Methods, 2008, 174(1): 82–90
https://doi.org/10.1016/j.jneumeth.2008.07.004 pmid: 18675301
38 Al-Qaisi M K, Akkin T. Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber. Optics Express, 2010, 18(4): 3392–3403
https://doi.org/10.1364/OE.18.003392 pmid: 20389349
39 Hitzenberger C, Goetzinger E, Sticker M, Pircher M, Fercher A. Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Optics Express, 2001, 9(13): 780–790
https://doi.org/10.1364/OE.9.000780 pmid: 19424315
40 Wang H, Al-Qaisi M K, Akkin T. Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain. Optics Letters, 2010, 35(2): 154–156
https://doi.org/10.1364/OL.35.000154 pmid: 20081952
41 de Boer J F, Milner T E. Review of polarization sensitive optical coherence tomography and Stokes vector determination. Journal of Biomedical Optics, 2002, 7(3): 359–371
https://doi.org/10.1117/1.1483879 pmid: 12175285
42 Bonesi M, Sattmann H, Torzicky T, Zotter S, Baumann B, Pircher M, G?tzinger E, Eigenwillig C, Wieser W, Huber R, Hitzenberger C K. High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser. Biomedical Optics Express, 2012, 3(11): 2987–3000
https://doi.org/10.1364/BOE.3.002987 pmid: 23162734
43 Trasischker W, Zotter S, Torzicky T, Baumann B, Haindl R, Pircher M, Hitzenberger C K. Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer. Biomedical Optics Express, 2014, 5(8): 2798–2809
https://doi.org/10.1364/BOE.5.002798 pmid: 25136503
44 Ding Z, Liang C, Tang Q, Chen Y. Quantitative measurement of tissue birefringence by single mode fiber based PS-OCT with a single input polarization state using Muller matrix. Submitted to Biomedical Optics Express
45 Park B H, Pierce M C, Cense B, de Boer J F. Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Optics Letters, 2004, 29(21): 2512–2514
https://doi.org/10.1364/OL.29.002512 pmid: 15584278
46 Oh W Y, Yun S H, Vakoc B J, Shishkov M, Desjardins A E, Park B H, de Boer J F, Tearney G J, Bouma B E. High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Optics Express, 2008, 16(2): 1096–1103
https://doi.org/10.1364/OE.16.001096 pmid: 18542183
47 Fan C, Yao G. Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography. Optics Letters, 2012, 37(9): 1415–1417
https://doi.org/10.1364/OL.37.001415 pmid: 22555689
48 Fan C, Yao G. Mapping local optical axis in birefringent samples using polarization-sensitive optical coherence tomography. Journal of Biomedical Optics, 2012, 17(11): 110501
https://doi.org/10.1117/1.JBO.17.11.110501 pmid: 23047300
49 Fan C, Yao G. Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera. Optics Express, 2012, 20(20): 22360–22371
https://doi.org/10.1364/OE.20.022360 pmid: 23037384
50 Fan C, Yao G. Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation. Optics Express, 2010, 18(7): 7281–7287
https://doi.org/10.1364/OE.18.007281 pmid: 20389749
51 Yamanari M, Makita S, Yasuno Y. Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Optics Express, 2008, 16(8): 5892–5906
https://doi.org/10.1364/OE.16.005892 pmid: 18542701
52 Guo S, Zhang J, Wang L, Nelson J S, Chen Z. Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography. Optics Letters, 2004, 29(17): 2025–2027
https://doi.org/10.1364/OL.29.002025 pmid: 15455768
53 Yun S, Tearney G, de Boer J, Bouma B. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting. Optics Express, 2004, 12(20): 4822–4828
https://doi.org/10.1364/OPEX.12.004822 pmid: 19484034
54 Corsi F, Galtarossa A, Palmieri L. Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique. Journal of Lightwave Technology, 1998, 16(10): 1832–1843
https://doi.org/10.1109/50.721070
55 Park B, Pierce M, Cense B, de Boer J. Real-time multi-functional optical coherence tomography. Optics Express, 2003, 11(7): 782–793
https://doi.org/10.1364/OE.11.000782 pmid: 19461791
[1] Xiazi HUANG, Yingying ZHOU, Chi Man WOO, Yue PAN, Liming NIE, Puxiang LAI. Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review[J]. Front. Optoelectron., 2020, 13(4): 327-351.
[2] Sergey Yu. KSENOFONTOV, Pavel A. SHILYAGIN, Dmitry A. TERPELOV, Valentin M. GELIKONOV, Grigory V. GELIKONOV. Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2020, 13(4): 393-401.
[3] Jonas OGIEN, Anthony DAURES, Maxime CAZALAS, Jean-Luc PERROT, Arnaud DUBOIS. Line-field confocal optical coherence tomography for three-dimensional skin imaging[J]. Front. Optoelectron., 2020, 13(4): 381-392.
[4] Jiayu LI, Yijun XIE, Ping SUN. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin[J]. Front. Optoelectron., 2019, 12(3): 317-323.
[5] Rekha SAHA, Md. Mahbub HOSSAIN, Md. Ekhlasur RAHAMAN, Himadri Shekhar MONDAL. Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber[J]. Front. Optoelectron., 2019, 12(2): 165-173.
[6] Md. Nazmul HOSSEN, Md. FERDOUS, Kawsar AHMED, Md. Abdul KHALEK, Sujan CHAKMA, Bikash Kumar PAUL. Single polarization photonic crystal fiber filter based on surface plasmon resonance[J]. Front. Optoelectron., 2019, 12(2): 157-164.
[7] Peng LI, Sheng LIU, Yi ZHANG, Lei HAN, Dongjing WU, Huachao CHENG, Shuxia QI, Xuyue GUO, Jianlin ZHAO. Modulation of orbital angular momentum on the propagation dynamics of light fields[J]. Front. Optoelectron., 2019, 12(1): 69-87.
[8] Nuo-Hua XIE, Ying CHEN, Huan YE, Chong LI, Ming-Qiang ZHU. Progress on photochromic diarylethenes with aggregation induced emission[J]. Front. Optoelectron., 2018, 11(4): 317-332.
[9] Leslie A. RUSCH, Sophie LAROCHELLE. Fiber transmission demonstrations in vector mode space division multiplexing[J]. Front. Optoelectron., 2018, 11(2): 155-162.
[10] Yong ZHANG, Yu HE, Qingming ZHU, Xinhong JIANG, Xuhan Guo, Ciyuan QIU, Yikai SU. On-chip silicon polarization and mode handling devices[J]. Front. Optoelectron., 2018, 11(1): 77-91.
[11] Chunyun XU, Haobo CHENG, Yunpeng FENG. Optical design of rectangular illumination with freeform lenses for the application of LED road lighting[J]. Front. Optoelectron., 2017, 10(4): 353-362.
[12] Sergey SAVENKOV, Alexander V. PRIEZZHEV, Yevgen OBEREMOK, Sergey SHOLOM, Ivan KOLOMIETS. Characterization of irradiated nails in terms of depolarizing Mueller matrix decompositions[J]. Front. Optoelectron., 2017, 10(3): 308-316.
[13] Jacqueline GUNTHER, Stefan ANDERSSON-ENGELS. Review of current methods of acousto-optical tomography for biomedical applications[J]. Front. Optoelectron., 2017, 10(3): 211-238.
[14] Janis SPIGULIS. In vivo skin imaging prototypes “made in Latvia”[J]. Front. Optoelectron., 2017, 10(3): 255-266.
[15] Vasily A. MATKIVSKY, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2017, 10(3): 323-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed