Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (2) : 139-144    https://doi.org/10.1007/s11706-010-0034-z
Research articles
Fabrication and corrosion behavior of HA/Mg-Zn biocomposites
De-Bao LIU1,Ming-Fang CHEN2,Xin-Yu YE3,
1.School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;Key Laboratory of Display Materials and Photoelectric Device (Ministry of Education), Tianjin University of Technology, Tianjin 300384, China; 2.School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;Tianjin Key Laboratory of Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China; 3.School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;
 Download: PDF(616 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The thermal-treated hydroxyapatite (HA) particles, Mg and Zn powders were used to prepare the HA/Mg-Zn composites with different HA contents by means of powder metallurgy technology. The microstructures, formation phases, and corrosion behaviors in simulated body fluid (SBF) were studied in comparison with pure magnesium and HA/Mg composites fabricated by the same preparation technology. As a result, no evident reaction happened between HA particles and Mg matrix during sintering process, and Zn atoms diffused into Mg matrix to form a single phase Mg-Zn alloy matrix. The addition of HA particles changed the corrosion mechanism of Mg matrix. During the corrosion process, HA particles would adsorb "Graphic"and Ca2+ ions efficiently and induce the deposition of Ca-P compounds on the surface of composites. HA could improve the corrosion resistance of magnesium matrix composites in SBF and restrain the increase of pH of SBF. Furthermore, the addition of Zn was favorable to improve the corrosion resistance of HA/Mg composites due to the densification of composites and the formation of Mg-Zn alloy matrix.
Keywords composites      hydroxyapatite (HA)      Mg-Zn alloy      fabrication      corrosion behavior      
Issue Date: 05 June 2010
 Cite this article:   
De-Bao LIU,Ming-Fang CHEN,Xin-Yu YE. Fabrication and corrosion behavior of HA/Mg-Zn biocomposites[J]. Front. Mater. Sci., 2010, 4(2): 139-144.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0034-z
https://academic.hep.com.cn/foms/EN/Y2010/V4/I2/139
Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and itsalloys as orthopedic biomaterials: a review. Biomaterial, 2006, 27(9): 1728―1734

doi: 10.1016/j.biomaterials.2005.10.003
Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557―3563

doi: 10.1016/j.biomaterials.2004.09.049
Song G L. Control of biodegradation of biocompatible magnesiumalloys. Corrosion Science, 2007, 49(4): 1696―1701

doi: 10.1016/j.corsci.2007.01.001
Li Z J, Gu X N, Lou S Q, et al. The development of binary Mg-Caalloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329―1344

doi: 10.1016/j.biomaterials.2007.12.021
Gu X N, Zheng Y F, Cheng Y, et al. In vitrocorrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30(4): 484―498

doi: 10.1016/j.biomaterials.2008.10.021
Li L C, Gao J C, Wang Y. Corrosion behaviors and surface modificationof magnesium alloys for biomaterial applications. Materials Review, 2003, 17: 29―32
Li L, Gao J, Wang Y. Evaluation of cyto-toxicity and corrosionbehavior of alkali-heat-treated magnesium in simulated body fluid. Surface and Coatings Technology, 2004, 185(1): 92―98

doi: 10.1016/j.surfcoat.2004.01.004
Witte F, Feyerabend F, Maier P, et al. Biodegradable magnesium-hydroxyapatitemetal matrix composites. Biomaterials, 2007, 28(13): 2163―2174

doi: 10.1016/j.biomaterials.2006.12.027
Tiwari S, Balasubramaniam R, Gupta M. Corrosion behavior of SiCreinforced magnesium composites. CorrosionScience, 2007, 49(2): 711―725

doi: 10.1016/j.corsci.2006.05.047
Pardo A, Merino S, Merino M C, et al. Corrosion behaviourof silicon–carbide-particle reinforced AZ92 magnesium alloy. Corrosion Science, 2009, 51(4): 841―849

doi: 10.1016/j.corsci.2009.01.024
[1] Rui ZHAO, Weikai LI, Tian WANG, Ke ZHAN, Zheng YANG, Ya YAN, Bin ZHAO, Junhe YANG. Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications[J]. Front. Mater. Sci., 2020, 14(2): 188-197.
[2] Zhiyu ZHANG, Lixia HU, Hui ZHANG, Liping YU, Yunxiao LIANG. Large-sized nano-TiO2/SiO2 mesoporous nanofilm-constructed macroporous photocatalysts with excellent photocatalytic performance[J]. Front. Mater. Sci., 2020, 14(2): 163-176.
[3] Haiyan LI, Yucheng ZHAO, Chang-An WANG. MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials[J]. Front. Mater. Sci., 2018, 12(4): 354-360.
[4] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[5] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
[6] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
[7] Mukesh Kumar MISHRA,Srikanta MOHARANA,Banarji BEHERA,Ram Naresh MAHALING. Surface functionalization of BiFeO3: A pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)--BiFeO3 composite films[J]. Front. Mater. Sci., 2017, 11(1): 82-91.
[8] Dirk ZAHN. Multi-scale simulations of apatite–collagen composites: from molecules to materials[J]. Front. Mater. Sci., 2017, 11(1): 1-12.
[9] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[10] Hassan Rayat AZIMI,Mahmood GHORANNEVISS,Seyed Mohammad ELAHI,Mohammad Reza MAHMOUDIAN,Farid JAMALI-SHEINI,Ramin YOUSEFI. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method[J]. Front. Mater. Sci., 2016, 10(4): 385-393.
[11] Xin-Bo XIONG, Jian-Feng HUANG, Xie-Rong ZENG, Ping LIANG, Ji-Zhao ZOU. Coatings of needle/stripe-like fluoridated hydroxyapatite on H2O2-treated carbon/carbon composites prepared by induction heating and hydrothermal methods[J]. Front Mater Sci, 2012, 6(2): 160-167.
[12] Bei ZHANG, Lian-Meng ZHANG, . Lattice Boltzmann modeling of the effective elastic property for ZrB 2 -based composites[J]. Front. Mater. Sci., 2010, 4(3): 239-244.
[13] Hai-Jun LEI, Bin LIU, Dai-Ning FANG, . The coefficient of thermal expansion of biomimetic composites[J]. Front. Mater. Sci., 2010, 4(3): 234-238.
[14] Yong-feng LIANG, Jun-pin LIN, Feng YE, Yan-li WANG, Lai-qi ZHANG, Guo-liang CHEN. Processing of Fe-6.5wt.%Si alloy foils by cold rolling[J]. Front Mater Sci Chin, 2009, 3(3): 329-332.
[15] Hai-long WANG, Chang-an WANG. Preparation and mechanical properties of laminated zirconium diboride/molybdenum composites sintered by spark plasma sintering[J]. Front Mater Sci Chin, 2009, 3(3): 273-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed