Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2017, Vol. 11 Issue (1) : 82-91    https://doi.org/10.1007/s11706-017-0364-1
RESEARCH ARTICLE
Surface functionalization of BiFeO3: A pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)--BiFeO3 composite films
Mukesh Kumar MISHRA1,Srikanta MOHARANA1,Banarji BEHERA2,Ram Naresh MAHALING1()
1. Laboratory of Polymeric and Materials Chemistry, School of Chemistry, Sambalpur University, Odisha, India
2. Materials Research Laboratory, School of Physics, Sambalpur University, Odisha, India
 Download: PDF(472 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A novel two-phase composite film is prepared by the solvent casting method employing poly(methyl methacrylate) (PMMA) as polymer matrix and bismuth ferrite (BFO) as ceramic filler. The surfaces of BFO are functionalized by proper hydroxylating agents to activate their chemical nature. The structural analysis of the composite films confirms that the composites made up of functionalized BFO (BFO-OH) have a distorted rhombohedral structure. The morphological analysis shows that BFO-OH particles are equally distributed over the polymer matrix. The −OH functionality of BFO-OH is confirmed by FTIR. The dielectric and electrical studies at a frequency range from 100 Hz to 1 MHz reveal that PMMA–(BFO-OH) composites have enhanced dielectric constant as well as electrical conductivities, much higher than that of unmodified composites. According to the ferroelectric measurement result, the hydroxylated composite film shows a superior ferroelectric behavior than that of the unmodified one, with a remanent polarization (2Pr) of 2.764 μC/cm2.

Keywords functionalized bismuth ferrite      composites      AC electrical conductivity      dielectric properties     
Corresponding Author(s): Ram Naresh MAHALING   
Online First Date: 29 December 2016    Issue Date: 22 January 2017
 Cite this article:   
Mukesh Kumar MISHRA,Srikanta MOHARANA,Banarji BEHERA, et al. Surface functionalization of BiFeO3: A pathway for the enhancement of dielectric and electrical properties of poly(methyl methacrylate)--BiFeO3 composite films[J]. Front. Mater. Sci., 2017, 11(1): 82-91.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-017-0364-1
https://academic.hep.com.cn/foms/EN/Y2017/V11/I1/82
Fig.1  Schematic illustration of the preparation of PMMA–(BFO-OH) composites.
Fig.2  (a) Diffraction patterns and (b) magnified view of the peak positions with a range of 30°≤2θ≤40° for pure BFO, pure BFO-OH, and composite films.
Fig.3  SEM images of (a) PMMA–BFO and (b) PMMA–(BFO-OH) composite films.
Fig.4  FTIR spectra of (a) BFO-OH and (b) PMMA–(BFO-OH) composite film.
Fig.5  Dielectric constants of (a) PMMA–BFO and (b) PMMA–(BFO-OH) composite films with various concentrations of BFO and BFO-OH @ wide ranges of frequencies.
Fig.6  Dielectric loss of (a) PMMA–BFO and (b) PMMA–(BFO-OH) composite films with various concentrations of BFO and BFO-OH @ wide ranges of frequencies.
Fig.7  Capacitance of (a) PMMA–BFO and (b) PMMA–(BFO-OH) composite films with various concentrations of BFO and BFO-OH @ wide ranges of frequencies.
Fig.8  AC conductivity of (a) PMMA–BFO and (b) PMMA–(BFO-OH) composite films with various concentrations of BFO and BFO-OH @ wide ranges of frequencies.
Fig.9  Plausible interaction between PMMA and BFO-OH.
Fig.10  PE loops of (a) PMMA–BFO and (b) PMMA–(BFO-OH) composite films @ frequency of 50 Hz.
1 Yuan J K, Li W L, Yao S H, . High dielectric permittivity and low percolation threshold in polymer composites based on SiC-carbon nanotubes micro/nano hybrid. Applied Physics Letters, 2011, 98(3): 032901
https://doi.org/10.1063/1.3544942
2 Vishnuvardhan T K, Kulkarni V R, Basavaraja C, . Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites. Bulletin of Materials Science, 2006, 29(1): 77–83
https://doi.org/10.1007/BF02709360
3 Sava F, Cristescu R, Socol G, . Structure of bulk and thin films of poly(methyl methacrilate (PMMA) polymer prepared by pulsed laser deposition. Journal of Optoelectronics and Advanced Materials, 2002, 4(4): 965–970
4 Grossiord N, Loos J, Koning C E, . Strategies for dispersing carbon nanotubes in highly viscous polymers. Journal of Materials Chemistry, 2005, 15(24): 2349–2352
https://doi.org/10.1039/b501805f
5 Arbatti M, Shan X, Cheng Z Y, . Ceramic–polymer composites with high dielectric constant. Advanced Materials, 2007, 19(10): 1369–1372
https://doi.org/10.1002/adma.200601996
6 Stefanescu E A, Tan X, Lin Z, . Multifunctional PMMA–ceramic composites as structural dielectrics. Polymer, 2010, 51(24): 5823–5832
https://doi.org/10.1016/j.polymer.2010.09.025
7 Wang H, Xiang F, Li K, . Ceramic–polymer Ba0.6Sr0.4TiO3/poly(methyl methacrylate) composites with different type composite structures for electronic technology. Applied Ceramic Technology, 2010, 7(4): 435–443
8 Khattari Z, Maghrabi M, McNally T, . Impedance study of polymethyl methacrylate composites/multi-walled carbon nanotubes (PMMA/MWCNTs). Physica B: Condensed Matter, 2012, 407(4): 759–764
https://doi.org/10.1016/j.physb.2011.12.019
9 Jung S, Baeg K, Yoon S, . Low-voltage-operated top-gate polymer thin-film transistors with high capacitance poly(vinylidene fluoride-trifluoroethylene)/poly(methyl methacrylate) dielectrics. Journal of Applied Physics, 2010, 108(10): 102810
https://doi.org/10.1063/1.3511697
10 Ahlawat A, Satapathy S, Bhartiya S, . BiFeO3/poly(methyl methacrylate) nanocomposite films: A study on magnetic and dielectric properties. Applied Physics Letters, 2014, 104(4): 042902 (3 pages)
https://doi.org/10.1063/1.4863228
11 Fiebig M, Lottermoser T, Fröhlich D, . Observation of coupled magnetic and electric domains. Nature, 2002, 419(6909): 818–820
https://doi.org/10.1038/nature01077 pmid: 12397352
12 Loh K J, Chang D. Zinc oxide nanoparticle-polymeric thin films for dynamic strain sensing. Journal of Materials Science, 2011, 46(1): 228–237
https://doi.org/10.1007/s10853-010-4940-3
13 Setvín M, Daniel B, Mansfeldova V, . Surface preparation of TiO2 anatase (101): Pitfalls and how to avoid them. Surface Science, 2014, 626: 61–67
https://doi.org/10.1016/j.susc.2014.04.001
14 Beier C W, Cuevas M A, Brutchey R L. Effect of surface modification on the dielectric properties of BaTiO3 nanocrystals. Langmuir, 2010, 26(7): 5067–5071
https://doi.org/10.1021/la9035419 pmid: 20039602
15 Kim P, Jones S C, Hotchkiss P J, . Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Advanced Materials, 2007, 19(7): 1001–1005
https://doi.org/10.1002/adma.200602422
16 Song Y, Shen Y, Liu H Y, . Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. Journal of Materials Chemistry, 2012, 22(32): 16491–16498
https://doi.org/10.1039/c2jm32579a
17 Chon J, Ye S, Cha K J, . High-dielectric sol–gel hybrid materials containing barium titanate nanoparticles. Chemistry of Materials, 2010, 22(19): 5445–5452
https://doi.org/10.1021/cm100729d
18 Li J, Claude J, Norena-Franco L E, . Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chemistry of Materials, 2008, 20(20): 6304–6306
https://doi.org/10.1021/cm8021648
19 Chu L W, Prakash K N, Tsai M T, . Dispersion of nano-sized BaTiO3 powders in nonaqueous suspension with phosphate ester and their applications for MLCC. Journal of the European Ceramic Society, 2008, 28(6): 1205–1212
https://doi.org/10.1016/j.jeurceramsoc.2007.10.015
20 Sharma S, Tomar M, Kumar A, . Multiferroic properties of BiFeO3/BaTiO3 multilayered thin films. Physica B: Condensed Matter, 2014, 448: 125–127
https://doi.org/10.1016/j.physb.2014.03.089
21 Lee M H, Lee S C, Sung Y S, . Improvement of ferroelectric and leakage current properties with Zn–Mn co-doping in BiFeO3 thin films. Ferroelectrics, 2010, 401(1): 186–191
https://doi.org/10.1080/00150191003676595
22 Godara S, Sinha N, Ray G, . Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route. Journal of Asian Ceramic Societies, 2014, 2(4): 416–421
https://doi.org/10.1016/j.jascer.2014.09.001
23 Xie L, Huang X, Huang Y, . Core@double-shell structured BaTiO3–polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. The Journal of Physical Chemistry C, 2013, 117(44): 22525–22537
https://doi.org/10.1021/jp407340n
24 Paniagua S A, Kim Y, Henry K, . Surface-initiated polymerization from barium titanate nanoparticles for hybrid dielectric capacitors. ACS Applied Materials & Interfaces, 2014, 6(5): 3477–3482
https://doi.org/10.1021/am4056276 pmid: 24490753
25 Bajpai O P, Kamdi J B, Selvakumar M, . Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto–dielectric properties of polyvinylacetate/BiFeO3 nanocomposites. Express Polymer Letters, 2014, 8(9): 669–681
https://doi.org/10.3144/expresspolymlett.2014.70
26 Ray D K, Himanshu A K, Sinha T P, . Structural and low frequency dielectric studies of conducting polymer nanocomposites. Indian Journal of Pure and Applied Physics, 2007, 45: 692–699
27 Tripathi S K, Gupta A, Kumari M, . Studies on electrical conductivity and dielectric behaviour of PVdF–HFP–PMMA–NaI polymer blend electrolyte. Bulletin of Materials Science, 2012, 35(6): 969–975
https://doi.org/10.1007/s12034-012-0387-2
28 Zhao R, Zhao J, Wang L, . Reduced sedimentation of barium titanate nanoparticles in poly(vinylidene fluoride) films during solution casting by surface modification. Journal of Applied Polymer Science, 2015, 132(42): 42662
https://doi.org/10.1002/app.42662
29 Prakash B S, Varma K B R. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites. Composites Science and Technology, 2007, 67(11–12): 2363–2368
https://doi.org/10.1016/j.compscitech.2007.01.010
30 Sengwa R J, Choundhary S, Sankhla S. Dielectric properties of montmorillonite clay filled poly(vinyl alcohol)/poly(ethylene oxide) blend nanocomposites. Composites Science and Techno-logy, 2010, 70(11): 1621–1627
https://doi.org/10.1016/j.compscitech.2010.06.003
31 Catalan G, Scott J F. Physics and applications of bismuth ferrite. Advanced Materials, 2009, 21(24): 2463–2485
https://doi.org/10.1002/adma.200802849
32 Luther G. Dielectric dispersion of ferroelectric triglycine sulphate in the microwave region. Physica Status Solidi A: Applied Research, 1973, 20(1): 227–236
https://doi.org/10.1002/pssa.2210200123
33 Thakur V K, Tan E J, Lin M F, . Poly(vinylidene fluoride)-graft-poly(2-hydroxyethyl methacrylate): a novel material for high energy density capacitors. Journal of Materials Chemistry, 2011, 21(11): 3751–3759
https://doi.org/10.1039/c0jm02408b
34 Jayalakshmi M, Balasubramanian K. Simple capacitors to supercapacitors- an overview. International Journal of Electrochemical Science, 2008, 3: 1196–1217
35 Rajalakshmi R, Kambhala N, Angappane S, . Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer. Materials Science and Engineering B, 2012, 177(11): 908–912
https://doi.org/10.1016/j.mseb.2012.04.014
36 Ramesh S, Liew C W, Arof A K. Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. Journal of Non-Crystalline Solids, 2011, 357(21): 3654–3660
https://doi.org/10.1016/j.jnoncrysol.2011.06.030
37 Park J H, Hwang D K, Lee J, . Studies on poly(methyl methacrylate) dielectric layer for field effect transistor: Influence of polymer tacticity. Thin Solid Films, 2007, 515(7–8): 4041–4044
https://doi.org/10.1016/j.tsf.2006.10.121
38 Gravatt C C, Gross P M. Effect of hydrogen bonding on the electrical conductivity of organic solids. Journal of Chemical Physics, 1967, 46(2): 413
https://doi.org/10.1063/1.1840681
39 Singh V R, Dixit A, Garg A, . Effect of heat treatment on the structure and properties of chemical solution processed multiferroic BiFeO3 thin films. Applied Physics A: Materials Science & Processing, 2008, 90(1): 197–202
https://doi.org/10.1007/s00339-007-4257-5
[1] Rui ZHAO, Weikai LI, Tian WANG, Ke ZHAN, Zheng YANG, Ya YAN, Bin ZHAO, Junhe YANG. Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications[J]. Front. Mater. Sci., 2020, 14(2): 188-197.
[2] Haiyan LI, Yucheng ZHAO, Chang-An WANG. MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials[J]. Front. Mater. Sci., 2018, 12(4): 354-360.
[3] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[4] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
[5] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
[6] Dirk ZAHN. Multi-scale simulations of apatite–collagen composites: from molecules to materials[J]. Front. Mater. Sci., 2017, 11(1): 1-12.
[7] Xian-Ping WANG,Yi ZHANG,Yu XIA,Wei-Bing JIANG,Hui LIU,Wang LIU,Yun-Xia GAO,Tao ZHANG,Qian-Feng FANG. Enhanced micro-vibration sensitive high-damping capacity and mechanical strength achieved in Al matrix composites reinforced with garnet-like lithium electrolyte[J]. Front. Mater. Sci., 2017, 11(1): 75-81.
[8] Hassan Rayat AZIMI,Mahmood GHORANNEVISS,Seyed Mohammad ELAHI,Mohammad Reza MAHMOUDIAN,Farid JAMALI-SHEINI,Ramin YOUSEFI. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method[J]. Front. Mater. Sci., 2016, 10(4): 385-393.
[9] Bei ZHANG, Lian-Meng ZHANG, . Lattice Boltzmann modeling of the effective elastic property for ZrB 2 -based composites[J]. Front. Mater. Sci., 2010, 4(3): 239-244.
[10] Hai-Jun LEI, Bin LIU, Dai-Ning FANG, . The coefficient of thermal expansion of biomimetic composites[J]. Front. Mater. Sci., 2010, 4(3): 234-238.
[11] De-Bao LIU, Ming-Fang CHEN, Xin-Yu YE, . Fabrication and corrosion behavior of HA/Mg-Zn biocomposites[J]. Front. Mater. Sci., 2010, 4(2): 139-144.
[12] Hai-long WANG, Chang-an WANG. Preparation and mechanical properties of laminated zirconium diboride/molybdenum composites sintered by spark plasma sintering[J]. Front Mater Sci Chin, 2009, 3(3): 273-280.
[13] Xue-tong ZHANG, Wen-hui SONG. Electrochemical preparation and electrochemical behavior of polypyrrole/carbon nanotube composite films[J]. Front Mater Sci Chin, 2009, 3(2): 194-200.
[14] LI Zai-feng, WANG Sheng-jun, LI Jin-yan. Synthesis and characterization of waterborne polyurethane/organic clay nanocomposites[J]. Front. Mater. Sci., 2008, 2(3): 271-275.
[15] ZHANG Hui, ZHANG Zhong, PARK Hyung-Woo, ZHU Xing. Influence of surface-modified TiO nanoparticles on fracture behavior of injection molded polypropylene[J]. Front. Mater. Sci., 2008, 2(1): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed