Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2016, Vol. 10 Issue (1) : 38-44    https://doi.org/10.1007/s11706-016-0318-z
RESEARCH ARTICLE
Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb,Er/NaGdF4 nanocomposites synthesized by a boiling water seed-mediated route
Chao-Qing YANG,Ao-Ju LI,Wei GUO,Peng-Hua TIAN,Xiao-Long YU,Zhong-Xin LIU,Yang CAO,Zhong-Liang SUN()
Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou 570228, China
 Download: PDF(878 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In a route boiling water served as reaction medium, a stoichiometric amount of rare-earth compound and fluoride are put into this system to form α-NaYF4:Yb,Er nuclei. Then prepared sample is heated at elevated temperature to improve the fluorescence intensity, and next a NaGdF4 shell grows on the surface of NaYF4 nuclei. NaYF4:Yb,Er/NaGdF4 core--shell structured upconversion nanoparticles (CSUCNPs) have been successfully synthesized by above route. The use of boiling water decreases the cubic-to-hexagonal phase transition temperature of NaYF4:Yb,Er to 350°C and increases its upconversion (UC) luminescence intensity. A heterogeneous NaGdF4 epitaxially growing on the surface of Ln3+-doped NaYF4 not only improves UC luminescence, but also creates a paramagnetic shell, which can be used as contrast agents in magnetic resonance imaging (MRI). The solution of CSUCNPs shows bright green UC fluorescence under the excitation at 980 nm in a power density only about 50 mW·cm−2. A broad spectrum with a dominant resonance at g of about 2 is observed by the electron paramagnetic resonance (EPR) spectrum of CSUCNPs. Above properties suggest that the obtained CSUCNPs could be potential candidates for dual-mode optical/magnetic bioapplications.

Keywords boiling water      upconversion      nanoparticle      fluorescence imaging      paramagnetism     
Corresponding Author(s): Zhong-Liang SUN   
Online First Date: 29 December 2015    Issue Date: 15 January 2016
 Cite this article:   
Chao-Qing YANG,Ao-Ju LI,Wei GUO, et al. Paramagnetism and improved upconversion luminescence properties of NaYF4:Yb,Er/NaGdF4 nanocomposites synthesized by a boiling water seed-mediated route[J]. Front. Mater. Sci., 2016, 10(1): 38-44.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-016-0318-z
https://academic.hep.com.cn/foms/EN/Y2016/V10/I1/38
Fig.1  (a) TEM image, (b) SAED pattern and (c) HRTEM image of NaYF4:Yb,Er nanocrystals obtained in boiling water and annealed at 400°C.
Fig.2  XRD patterns of NaYF4:Yb,Er nanocrystals obtained in boiling water and annealed at 500°C (a), 450°C (b), 400°C (c), 350°C (d), and 300°C (e) (red and blue vertical bars at the bottom are respectively positions of standard α-NaYF4 and β-NaYF4 from JCPDS Nos. 77-2042 and 16-0334).
Fig.3  PL spectra of NaYF4:Yb,Er obtained at boiling water (a), 85°C (b), 65°C (c), 45°C (d), 25°C (e), boiling water and annealed at 400°C (a'), 85°C and annealed at 400°C (b'), 65°C and annealed at 400°C (c'), 45°C and annealed at 400°C (d'), and 25°C and annealed at 400°C (e').
Fig.4  (a) TEM image, (b) SAED pattern and (c) HRTEM image of the prepared NaYF4:Yb,Er/NaGdF4 CSUCNPs.
Fig.5  XRD patterns of NaYF4:Yb,Er/NaGdF4 CSUCNPs (a) and NaYF4:Yb,Er seeds (b) (green, black and blue vertical bars at the bottom are respectively positions of standard α-NaYF4, β-NaYF4 and β-NaGdF4 from JCPDS Nos. 77-2042, 16-0334 and 27-0699).
Fig.6  PL spectra of NaYF4:Yb,Er/NaGdF4 CSUCNPs with different molar ratios of n(Gd)/n(Y): 0 (a); 0.25 (b); 0.50 (c); 0.75 (d); 1 (e); 1.25 (f). Inset: the UC fluorescence photo of the colloidal dispersion corresponding to Curve b under the 980 nm laser excitation.
Fig.7  EPR spectrum of NaYF4:Yb,Er/NaGdF4 CSUCNPs.
CSUCNPcore–shell structured upconversion nanoparticle
EDSenergy-dispersive X-ray spectrometry
EDTAethylene diamine tetraacetic acid
EPRelectron paramagnetic resonance
HRTEMhigh-resolution transmission electron microscopy
MRImagnetic resonance imaging
PLphotoluminescence
SAEDselected-area electron diffraction
SEMscanning electron microscopy
TEMtransmission electron microscopy
UCupconversion
XRDX-ray diffraction
Tab.1  
Fig.1  EDS results of (a) NaYF4:Yb,Er nanocrystals and (b) NaYF4:Yb,Er/NaGdF4 CSUCNPs.
1 Bouclé  J, Ravirajan  P, Nelson  J. Hybrid polymer–metal oxide thin films for photovoltaic applications. Journal of Materials Che-mistry, 2007, 17(30): 3141–3153
2 Haase  M, Schäfer  H. Upconverting nanoparticles. Angewandte Chemie International Edition, 2011, 50(26): 5808–5829
3 Dong  C, Korinek  A, Blasiak  B, . Cation exchange: a facile method to make NaYF4: Yb, Tm–NaGdF4 core–shell n<?Pub Caret?>anoparticles with a thin, tunable, and uniform shell. Chemistry of Materials, 2012, 24(7): 1297–1305
4 Johnson  N J J, van Veggel  F C J M. Sodium lanthanide fluoride core–shell nanocrystals: a general perspective on epitaxial shell growth. Nano Research, 2013, 6(8): 547–561
5 Liu  Y, Tu  D, Zhu  H, . Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chemical Society Reviews, 2013, 42(16): 6924–6958
6 Cheng  L, Wang  C, Liu  Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale, 2013, 5(1): 23–37
7 Jiang  Z, Liu  C. Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. The Journal of Physical Chemistry B, 2003, 107(45): 12411–12415
8 Ding  W, Zhang  P, Li  Y, . Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich method. ChemPhysChem, 2015, 16(2): 447–454
9 Akiya  N, Savage  P E. Roles of water for chemical reactions in high-temperature water. Chemical Reviews, 2002, 102(8): 2725–2750
10 Yi  G, Lu  H, Zhao  S, . Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Letters, 2004, 4(11): 2191–2196
11 Krämer  K W, Biner  D, Frei  G, . Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chemistry of Materials, 2004, 16(7): 1244–1251
12 Kruse  A, Dinjus  E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. Journal of Supercritical Fluids, 2007, 39(3): 362–380
13 Lothar  H, Nicolle  G M, Merbach  A E. Water and proton exchange processes on metal ions. Advances in Inorganic Chemistry, 2005, 57: 327–379
14 Komban  R, Klare  J P, Voss  B, . An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals. Angewandte Chemie International Edition, 2012, 51(26): 6506–6510
15 Brodbeck  C M, Iton  L E. The EPR spectra of Gd3+ and Eu2+ in glassy systems. The Journal of Chemical Physics, 1985, 83(9): 4285–4299
[1] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[2] Tanya NANDA, Ankita RATHORE, Deepika SHARMA. Biomineralized and chemically synthesized magnetic nanoparticles: A contrast[J]. Front. Mater. Sci., 2020, 14(4): 387-401.
[3] Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Front. Mater. Sci., 2020, 14(4): 373-386.
[4] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[5] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[6] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[7] Meenaketan SETHI, U. Sandhya SHENOY, Selvakumar MUTHU, D. Krishna BHAT. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications[J]. Front. Mater. Sci., 2020, 14(2): 120-132.
[8] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[9] Sudipta BISWAS, Satadru PRAMANIK, Suman MANDAL, Sudeshna SARKAR, Sujata CHAUDHURI, Swati DE. Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity[J]. Front. Mater. Sci., 2020, 14(1): 24-32.
[10] Qin LI, Min XING, Lan CHANG, Linlin MA, Zhi CHEN, Jianrong QIU, Jianding YU, Jiang CHANG. Upconversion luminescence Ca--Mg--Si bioactive glasses synthesized using the containerless processing technique[J]. Front. Mater. Sci., 2019, 13(4): 399-409.
[11] Kaushik DAS, G. A. KUMAR, Leonardo MIRANDOLA, Maurizio CHIRIVA-INTERNATI, Jharna CHAUDHURI. Synthesis and characterization of lanthanide-doped sodium holmium fluoride nanoparticles for potential application in photothermal therapy[J]. Front. Mater. Sci., 2019, 13(4): 389-398.
[12] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[13] Weiwei FAN, Jilu WANG, Jiajun FENG, Yong WANG. Facile preparation of acid/CO2 stimuli-responsive sheddable nanoparticles based on carboxymethylated chitosan[J]. Front. Mater. Sci., 2019, 13(3): 296-304.
[14] Pengcheng WU, Chang LIU, Yan LUO, Keliang WU, Jianning WU, Xuhong GUO, Juan HOU, Zhiyong LIU. A novel black TiO2/ZnO nanocone arrays heterojunction on carbon cloth for highly efficient photoelectrochemical performance[J]. Front. Mater. Sci., 2019, 13(1): 43-53.
[15] Cong ZHAO, Da-chuan ZHU, Xiao-yao CHENG, Shi-xiu CAO. Highly ordered Ag--TiO2 nanocomposited arrays with high visible-light photocatalytic activity[J]. Front. Mater. Sci., 2017, 11(3): 241-249.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed