Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2023, Vol. 17 Issue (2) : 230649    https://doi.org/10.1007/s11706-023-0649-5
RESEARCH ARTICLE
Enhanced catalytic activity and thermal stability by highly dispersed Pd-based nanocatalysts embedded in ZrO2 hollow spheres
Tianli Liu1,2, Jian Zhang2, Mingjie Xu2,3, Chuanjin Tian1(), Chang-An Wang2()
1. School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
2. State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
3. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
 Download: PDF(3056 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Sintering resistant noble metal nanoparticles are critical to the development of advanced catalysts with high activity and stability. Herein, we reported the construction of highly dispersed Pd nanoparticles loaded at the inner wall of ZrO2 hollow spheres (Pd@HS-ZrO2), which shows improved activity and thermal stability over references in the Pd-ZrO2 (catalyst-support) system. Even after 800 °C high temperature calcination, the Pd nanoparticles and ZrO2 hollow spheres did not undergo morphological changes. The Pd@HS-ZrO2 manifests batter catalytic activity and thermal stability than the counterpart Pd/ZrO2 catalysts. In comparison to Pd/ZrO2-800, Pd@ZrO2-800 exhibits a 25°C reduction in the temperature required for complete conversion of CO. The enhanced catalytic activity and thermal stability of Pd@HS-ZrO2 can be attributed to the nanoconfinement effect offered by the 10 nm wall thickness of the ZrO2 hollow spheres, which suppresses the coarsening of the Pd nanoparticles (active center for catalysis).

Keywords catalysis      nanoparticles      coarsening      thermal stability     
Corresponding Author(s): Chuanjin Tian,Chang-An Wang   
Issue Date: 26 May 2023
 Cite this article:   
Tianli Liu,Jian Zhang,Mingjie Xu, et al. Enhanced catalytic activity and thermal stability by highly dispersed Pd-based nanocatalysts embedded in ZrO2 hollow spheres[J]. Front. Mater. Sci., 2023, 17(2): 230649.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-023-0649-5
https://academic.hep.com.cn/foms/EN/Y2023/V17/I2/230649
Fig.1  Schematic diagram of the synthesis process of Pd@HS-ZrO2 hollow sphere.
Fig.2  SEM images of (a) CS, (c) CS@Pd@ZrO2, (d) Pd@HS-ZrO2-450, (e) Pd@HS-ZrO2-700, and (f) Pd@HS-ZrO2-800. (b) TEM image of CS@Pd.
Fig.3  TEM images, element mapping images, and EDS spectrum of Pd@HS-ZrO2-450 hollow spheres.
Fig.4  XRD patterns of Pd@HS-ZrO2 samples calcined at 450, 700, 800, and 900 °C.
Fig.5  XPS spectra of Pd 3d + Zr 3p of Pd@HS-ZrO2 samples calcined at (a) 450 °C, (b) 700 °C, (c) 800 °C, and (d) 900 °C.
Fig.6  (a) CO conversion curves of samples (Pd@HS-ZrO2-450, Pd@HS-ZrO2-700, Pd@HS-ZrO2-800, Pd@HS-ZrO2-900, Pd/ZrO2-450, and Pd/ZrO2-800). (b) Cycle test of Pd@HS-ZrO2-800. (c) Catalytic stability test of the Pd@HS-ZrO2-800 catalyst. (d) Apparent activation energies of Pd@HS-ZrO2 samples.
1 G, Prieto H, Tüysüz N, Duyckaerts et al.. Hollow nano- and microstructures as catalysts.Chemical Reviews, 2016, 116(22): 14056–14119
https://doi.org/10.1021/acs.chemrev.6b00374 pmid: 27712067
2 F, Alonso I P, Beletskaya M Yus . Metal-mediated reductive hydrodehalogenation of organic halides.Chemical Reviews, 2002, 102(11): 4009–4092
https://doi.org/10.1021/cr0102967 pmid: 12428984
3 J, Zhang D, Bian G, Shao et al.. Facile synthesis of sandwich-like MnO2@Pd@MnO2 hollow spheres with superior catalytic stability and activity.Journal of Alloys and Compounds, 2021, 870: 159415
https://doi.org/10.1016/j.jallcom.2021.159415
4 N, Cheng M N, Banis J, Liu et al.. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction.Advanced Materials, 2015, 27(2): 277–281
https://doi.org/10.1002/adma.201404314 pmid: 25405600
5 G, Spezzati Y, Su J P, Hofmann et al.. Atomically dispersed Pd−O species on CeO2 (1 1 1) as highly active sites for low-temperature CO oxidation.ACS Catalysis, 2017, 7(10): 6887–6891
https://doi.org/10.1021/acscatal.7b02001 pmid: 29034121
6 J, Chen D, Wang J, Qi et al.. Monodisperse hollow spheres with sandwich heterostructured shells as high-performance catalysts via an extended SiO2 template method.Small, 2015, 11(4): 420–425
https://doi.org/10.1002/smll.201402423 pmid: 25228105
7 A, Kumar V Ramani . Strong metal–support interactions enhance the activity and durability of platinum supported on tantalum-modified titanium dioxide electrocatalysts.ACS Catalysis, 2014, 4(5): 1516–1525
https://doi.org/10.1021/cs500116h
8 S Tauster . Strong metal–support interactions.Accounts of Chemical Research, 1987, 20(11): 389–394
https://doi.org/10.1021/ar00143a001
9 J, Zhang D, Zhu J, Yan et al.. Strong metal–support interactions induced by an ultrafast laser.Nature Communications, 2021, 12(1): 6665
https://doi.org/10.1038/s41467-021-27000-5 pmid: 34795268
10 Z, Luo G, Zhao H, Pan et al.. Strong metal–support interaction in heterogeneous catalysts.Advanced Energy Materials, 2022, 12(37): 2201395
https://doi.org/10.1002/aenm.202201395
11 M, Tang S, Li S, Chen et al.. Facet-dependent oxidative strong metal–support interactions of palladium–TiO2 determined by in situ transmission electron microscopy.Angewandte Chemie International Edition, 2021, 60(41): 22339–22344
https://doi.org/10.1002/anie.202106805
12 S, Liu W, Xu Y, Niu et al.. Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere.Nature Communications, 2019, 10(1): 5790
https://doi.org/10.1038/s41467-019-13755-5 pmid: 31857592
13 M, Oschatz W S, Lamme J, Xie et al.. Ordered mesoporous materials as supports for stable iron catalysts in the Fischer–Tropsch synthesis of lower olefins.ChemCatChem, 2016, 8(17): 2846–2852
https://doi.org/10.1002/cctc.201600492
14 S, Song X, Liu J, Li et al.. Confining the nucleation of Pt to in situ form (Pt-enriched cage)@CeO2 core@shell nanostructure as excellent catalysts for hydrogenation reactions.Advanced Materials, 2017, 29(28): 1700495
https://doi.org/10.1002/adma.201700495 pmid: 28585246
15 Y, Chen S, Ji Y, Wang et al.. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction.Angewandte Chemie International Edition, 2017, 56(24): 6937–6941
https://doi.org/10.1002/anie.201702473 pmid: 28402604
16 L, Yue J, Li C, Chen et al.. Thermal-stable Pd@mesoporous silica core–shell nanocatalysts for dry reforming of methane with good coke-resistant performance.Fuel, 2018, 218: 335–341
https://doi.org/10.1016/j.fuel.2018.01.052
17 Y, Tian H, Duan B, Zhang et al.. Template guiding for the encapsulation of uniformly subnanometric platinum clusters in beta-zeolites enabling high catalytic activity and stability.Angewandte Chemie International Edition, 2021, 60(40): 21713–21717
https://doi.org/10.1002/anie.202108059 pmid: 34350671
18 F, Yang C, Wu H, Yu et al.. The fabrication of hollow ZrO2 nanoreactors encapsulating Au-Fe2O3 dumbbell nanoparticles for CO oxidation.Nanoscale, 2021, 13(14): 6856–6862
https://doi.org/10.1039/D1NR00173F pmid: 33885486
19 F, Bi Z, Zhao Y, Yang et al.. Chlorine-coordinated Pd single atom enhanced the chlorine resistance for volatile organic compound degradation: mechanism study.Environmental Science & Technology, 2022, 56(23): 17321–17330
https://doi.org/10.1021/acs.est.2c06886 pmid: 36332104
20 X, Zhang F, Bi Z, Zhao et al.. Boosting toluene oxidation by the regulation of Pd species on UiO-66: synergistic effect of Pd species.Journal of Catalysis, 2022, 413: 59–75
https://doi.org/10.1016/j.jcat.2022.06.015
21 F, Bi Z, Zhao Y, Yang et al.. Efficient degradation of toluene over ultra-low Pd supported on UiO-66 and its functional materials: reaction mechanism, water-resistance, and influence of SO2.Environmental Functional Materials, 2022, 1(2): 166–181
https://doi.org/10.1016/j.efmat.2022.07.002
22 H, Xu Z, Zhang J, Liu et al.. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports.Nature Communications, 2020, 11(1): 3908
https://doi.org/10.1038/s41467-020-17738-9 pmid: 32764539
23 X, Sun Y Li . Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles.Angewandte Chemie International Edition, 2004, 43(5): 597–601
https://doi.org/10.1002/anie.200352386 pmid: 14743414
24 S, Chen S, Fu Y, Lang et al.. Submicronic spherical inclusion black pigment by double-shell reaction sintering.Journal of the American Ceramic Society, 2020, 103(3): 1520–1526
https://doi.org/10.1111/jace.16911
25 E, Hong C, Kim D H, Lim et al.. Catalytic methane combustion over Pd/ZrO2 catalysts: effects of crystalline structure and textural properties.Applied Catalysis B: Environmental, 2018, 232: 544–552
https://doi.org/10.1016/j.apcatb.2018.03.101
26 Y, Wu J, Chen W, Hu et al.. Phase transformation and oxygen vacancies in Pd/ZrO2 for complete methane oxidation under lean conditions.Journal of Catalysis, 2019, 377: 565–576
https://doi.org/10.1016/j.jcat.2019.04.047
27 Y, Wang C, Zhang H He . Insight into the role of Pd state on Pd-based catalysts in o-xylene oxidation at low temperature.ChemCatChem, 2018, 10(5): 998–1004
https://doi.org/10.1002/cctc.201701547
28 P, Li C, He J, Cheng et al.. Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: effects of preparation methods.Applied Catalysis B: Environmental, 2011, 101(3–4): 570–579
https://doi.org/10.1016/j.apcatb.2010.10.030
29 J H, Park J H, Cho Y J, Kim et al.. Hydrothermal stability of Pd/ZrO2 catalysts for high temperature methane combustion.Applied Catalysis B: Environmental, 2014, 160–161: 135–143
https://doi.org/10.1016/j.apcatb.2014.05.013
30 K N, Patil D, Prasad J T, Bhanushali et al.. Chemoselective hydrogenation of cinnamaldehyde over a tailored oxygen-vacancy-rich Pd@ZrO2 catalyst.New Journal of Chemistry, 2021, 45(12): 5659–5681
https://doi.org/10.1039/D0NJ05595F
31 A A, Vedyagin A M, Volodin R M, Kenzhin et al.. CO oxidation over Pd/ZrO2 catalysts: role of support’s donor sites.Molecules, 2016, 21(10): 1289
https://doi.org/10.3390/molecules21101289 pmid: 27689972
32 S, Zhao Y, Yang F, Bi et al.. Oxygen vacancies in the catalyst: efficient degradation of gaseous pollutants.Chemical Engineering Journal, 2023, 454(3): 140376
https://doi.org/10.1016/j.cej.2022.140376
33 R, Rao S, Ma B, Gao et al.. Recent advances of metal-organic framework-based and derivative materials in the heterogeneous catalytic removal of volatile organic compounds.Journal of Colloid and Interface Science, 2023, 636: 55–72
https://doi.org/10.1016/j.jcis.2022.12.167 pmid: 36621129
34 X, Zhang H, Li X, Lv et al.. Facile synthesis of highly efficient amorphous Mn-MIL-100 catalysts: formation mechanism and structure changes during application in CO oxidation.Chemistry, 2018, 24(35): 8822–8832
https://doi.org/10.1002/chem.201800773 pmid: 29654604
35 X, Zhang F, Hou Y, Yang et al.. A facile synthesis for cauliflower like CeO2 catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation.Applied Surface Science, 2017, 423: 771–779
https://doi.org/10.1016/j.apsusc.2017.06.235
36 Y, Suchorski S M, Kozlov I, Bespalov et al.. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation.Nature Materials, 2018, 17(6): 519–522
https://doi.org/10.1038/s41563-018-0080-y pmid: 29760509
37 L Y, Jin R H, Ma J J, Lin et al.. Bifunctional Pd/Cr2O3–ZrO2 catalyst for the oxidation of volatile organic compounds.Industrial & Engineering Chemistry Research, 2011, 50(18): 10878–10882
https://doi.org/10.1021/ie200599v
38 Z, Zhang L, Zhang M J, Hülsey et al.. Zirconia phase effect in Pd/ZrO2 catalyzed CO2 hydrogenation into formate.Molecular Catalysis, 2019, 475: 110461
https://doi.org/10.1016/j.mcat.2019.110461
39 X, Yang X, Ma X, Yu et al.. Exploration of strong metal–support interaction in zirconia supported catalysts for toluene oxidation.Applied Catalysis B: Environmental, 2020, 263: 118355
https://doi.org/10.1016/j.apcatb.2019.118355
40 F, Bi X, Zhang S, Xiang et al.. Effect of Pd loading on ZrO2 support resulting from pyrolysis of UiO-66: application to CO oxidation.Journal of Colloid and Interface Science, 2020, 573: 11–20
https://doi.org/10.1016/j.jcis.2020.03.120 pmid: 32272298
[1] FMS-23649-OF-Ltl_suppl_1 Download
[1] He Xiao, Shoufeng Xue, Zimei Fu, Man Zhao, Li Zhang, Junming Zhang, Haishun Wu, Jianfeng Jia, Nianjun Yang. Revealing component synergy of Ni‒Fe/black phosphorous composites synthesized by self-designed electrochemical method for enhancing photoelectrocatalytic oxygen evolution reaction[J]. Front. Mater. Sci., 2023, 17(2): 230646-.
[2] Wenxin WANG, Yang CHEN, Ning WANG, Zhiqiang DU, Martin JENSEN, Zihan AN, Xianfeng LI. Multifunction ZnO/carbon hybrid nanofiber mats for organic dyes treatment via photocatalysis with enhanced solar-driven evaporation[J]. Front. Mater. Sci., 2022, 16(4): 220623-.
[3] Shemeena MULLAKKATTUTHODI, Vijayasree HARIDAS, Sankaran SUGUNAN, Binitha N. NARAYANAN. Z-scheme mechanism for methylene blue degradation over Fe2O3/g-C3N4 nanocomposite prepared via one-pot exfoliation and magnetization of g-C3N4[J]. Front. Mater. Sci., 2022, 16(3): 220612-.
[4] Tingting MA, Zhen LI, Wen LIU, Jiaxu CHEN, Moucui WU, Zhenghua WANG. Microwave hydrothermal synthesis of WO3(H2O)0.333/CdS nanocomposites for efficient visible-light photocatalytic hydrogen evolution[J]. Front. Mater. Sci., 2021, 15(4): 589-600.
[5] Bharat BARUAH, Christopher KELLEY, Grace B. DJOKOTO, Kelly M. HARTNETT. Polymer-capped gold nanoparticles and ZnO nanorods form binary photocatalyst on cotton fabrics: Catalytic breakdown of dye[J]. Front. Mater. Sci., 2021, 15(3): 431-447.
[6] Yaping WANG, Songyue CHENG, Wei HU, Xue LIN, Cong CAO, Shufen ZOU, Zaizai TONG, Guohua JIANG, Xiangdong KONG. Polymer-grafted hollow mesoporous silica nanoparticles integrated with microneedle patches for glucose-responsive drug delivery[J]. Front. Mater. Sci., 2021, 15(1): 98-112.
[7] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[8] Tanya NANDA, Ankita RATHORE, Deepika SHARMA. Biomineralized and chemically synthesized magnetic nanoparticles: A contrast[J]. Front. Mater. Sci., 2020, 14(4): 387-401.
[9] Yimin ZHOU, Qingni XU, Chaohua LI, Yuqi CHEN, Yueli ZHANG, Bo LU. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: A review[J]. Front. Mater. Sci., 2020, 14(4): 373-386.
[10] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[11] Qizhi TIAN, Yajun JI, Yiyi QIAN, Abulikemu ABULIZI. Synthesis of defect-rich hierarchical sponge-like TiO2 nanoparticles and their improved photocatalytic and photoelectrochemical performance[J]. Front. Mater. Sci., 2020, 14(3): 286-295.
[12] Xin LIU, Xiangling REN, Longfei TAN, Wenna GUO, Zhongbing HUANG, Xianwei MENG. Preparation and enhanced properties of ZrMOF@CdTe nanoparticles with high-density quantum dots[J]. Front. Mater. Sci., 2020, 14(2): 155-162.
[13] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[14] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[15] Weiwei FAN, Jilu WANG, Jiajun FENG, Yong WANG. Facile preparation of acid/CO2 stimuli-responsive sheddable nanoparticles based on carboxymethylated chitosan[J]. Front. Mater. Sci., 2019, 13(3): 296-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed