Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2011, Vol. 5 Issue (3) : 311-321    https://doi.org/10.1007/s11706-011-0143-3
RESEARCH ARTICLE
Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals
Akimasa KOJI1,2, Javed IQBAL1, Rong-Hai YU1, Zheng-Jun ZHANG1()
1. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
 Download: PDF(687 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cobalt and cobalt oxide nanocrystals were synthesized on Si substrates from aqueous cobalt nitrate [Co(NO3)2·6H2O] powder via chemical vapor deposition method. Scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope observations show different morphologies, such as continuous films, nano-bars, nano-dices, and nano-strings, depending on the synthesis temperature. The crystal structure characterization was conducted using X-ray diffraction methods. Furthermore, the properties of the samples were characterized using Raman spectroscopic analysis and vibrating sample magnetometer. The morpholo- gy change was discussed in terms of synthesis environments and chemical interactions between cobalt, oxygen, and silicon.

Keywords cobalt oxide      nanostructure      temperature dependence      magnetic property     
Corresponding Author(s): ZHANG Zheng-Jun,Email:zjzhang@tsinghua.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Akimasa KOJI,Javed IQBAL,Rong-Hai YU, et al. Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals[J]. Front Mater Sci, 2011, 5(3): 311-321.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0143-3
https://academic.hep.com.cn/foms/EN/Y2011/V5/I3/311
Fig.1  SEM images of samples synthesized at high temperature for 6 h with 50 sccm N gas flow: CoO continuous film and CoO whiskers synthesized at 500°C; CoO nano-bars with CoO–Co clusters synthesized at 700°C; CoO–Co nano-dices synthesized at 900°C; Co nano-flakes, Si nano-strings, CoO, SiN, and CoSi, synthesized at 1100°C; Si nano-strings synthesized at 1100°C, grown on Si (100) substrate in N atmosphere.
Fig.2  FE-SEM cross-sectional images of Co nano-flakes, Si nano-strings, CoO, SiN, and CoSi, synthesized at 1100°C. TEM images of Co nano-flakes and Si nano-strings.
Fig.3  XRD profiles of the layers synthesized at 300°C, 500°C, 700°C, 900°C, and 1100°C.
Fig.4  GADDS pictures of the layers synthesized at 300°C, 500°C, 700°C, 900°C, and 1100°C. (Width: 16.7; Time: 300 s; 2: 36°; : 9.65°; psi: 0° [(a)(b)(c)(d)(e)], 89.2° [(f)])
Fig.5  Raman spectra (514.5 nm) measured at room temperature for different samples: CoO continuous film synthesized at 300°C; CoO whiskers synthesized at 500°C; CoO nano-bars and CoO–Co clusters synthesized at 700°C; CoO–Co nano-dices synthesized at 900°C; Co nano-flakes with Si nano-strings synthesized at 1100°C.
Fig.6  Hysteresis curves measured at room temperature for layers synthesized at 300°C, 500°C, 700°C, 900°C, and 1100°C.
1 Heli H, Yadegari H. Nanoflakes of the cobaltous oxide, CoO: Synthesis and characterization. Electrochimica Acta , 2010, 55(6): 2139-2148
doi: 10.1016/j.electacta.2009.11.047
2 Ganguly T A A, Ahmed J, Ganguli A K, . Arabian Journal of Chemistry, 2010
3 Wade T L, Wegrowe J-E. Template synthesis of nanomaterials. The European Physical Journal- Applied Physics , 2005, 29(1): 3-22
doi: 10.1051/epjap:2005001
4 Bréchignac C, Houdy P, Lahmani M,eds. Nanomaterials and Nanochemistry. Berlin: Springer-Verlag, Berlin Heidelberg, 2007
5 Weller H. Self-organized superlattices of nanoparticles. Angewandte Chemie International Edition in English , 1996, 35(10): 1079-1081
doi: 10.1002/anie.199610791
6 Rodríguez J A, Fernández-García M, eds. Part Introduction, in Synthesis, Properties, and Applications of Oxide Nanomaterials. Hoboken, NJ , USA: John Wiley & Sons, Inc.,2006
7 Shen G X, Chen Y C, Lin C J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films , 2005, 489(1-2): 130-136
doi: 10.1016/j.tsf.2005.05.016
8 Heli H, Jabbari A, Majdi S, . Electrooxidation and determination of some non-steroidal anti-inflammatory drugs on nanoparticles of Ni-curcumin-complex-modified electrode. Journal of Solid State Electrochemistry , 2009, 13(12): 1951-1958
doi: 10.1007/s10008-008-0758-1
9 Heli H, Jabbari A, Zarghan M, . Copper nanoparticles-carbon microparticles nanocomposite for electrooxidation and sensitive detection of sotalol. Sensors and Actuators B: Chemical , 2009, 140(1): 245-251
doi: 10.1016/j.snb.2009.04.021
10 Wronski Z S. Materials for rechargeable batteries and clean hydrogen energy sources. International Materials Reviews , 2001, 46(1): 1-49
doi: 10.1179/095066001101528394
11 Hosono E, Fujihara S, Honma I, . Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. Journal of Power Sources , 2006, 158(1): 779-783
doi: 10.1016/j.jpowsour.2005.09.052
12 Barrera E, González I, Viveros T. A new cobalt oxide electrodeposit bath for solar absorbers. Solar Energy Materials and Solar Cells , 1998, 51(1): 69-82
doi: 10.1016/S0927-0248(97)00209-2
13 Casella I G, Guascito M R. Electrochemical preparation of a composite gold-cobalt electrode and its electrocatalytic activity in alkaline medium. Electrochimica Acta , 1999, 45(7): 1113-1120
doi: 10.1016/S0013-4686(99)00315-1
14 Jyoko Y, Kashiwabara S, Hayashi Y. Preparation of giant magnetoresistance Co/Cu multilayers by electrodeposition. Journal of The Electrochemical Society , 1997, 144(1): L5-L8
doi: 10.1149/1.1837354
15 Phase D, Choudhary R J, Ganesan V, . Manipulation of magnetic nanostructures through low temperature metal-oxygen chemistry: Co/CoO exchange biased nanodonuts and Co nanotips. Solid State Communications , 2009, 149(7-8): 277-280
doi: 10.1016/j.ssc.2008.12.019
16 Kadam L D, Pawar S H, Patil P S. Studies on ionic intercalation properties of cobalt oxide thin films prepared by spray pyrolysis technique. Materials Chemistry and Physics , 2001, 68(1-3): 280-282
doi: 10.1016/S0254-0584(00)00365-5
17 Thokale R N, Patil P S, Dongare M B. Double-exposure holographic interferometry technique used for characterization of electrodeposited cobalt oxide thin films. Materials Chemistry and Physics , 2002, 74(2): 143-149
doi: 10.1016/S0254-0584(01)00470-9
18 Trasatti S. Physical electrochemistry of ceramic oxides. Electrochimica Acta , 1991, 36(2): 225-241
doi: 10.1016/0013-4686(91)85244-2
19 Schumacher L C, Holzhueter I B, Hill I R, . Semiconducting and electrocatalytic properties of sputtered cobalt oxide films. Electrochimica Acta , 1990, 35(6): 975-984
doi: 10.1016/0013-4686(90)90030-4
20 Barbero C, Planes G A, Miras M C. Redox coupled ion exchange in cobalt oxide films. Electrochemistry Communications , 2001, 3(3): 113-116
doi: 10.1016/S1388-2481(01)00107-2
21 Casella I G, Gatta M. Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. Journal of Electroanalytical Chemistry , 2002, 534(1): 31-38
doi: 10.1016/S0022-0728(02)01100-2
22 Casella I G. Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes. Journal of Electroanalytical Chemistry , 2002, 520(1-2): 119-125
doi: 10.1016/S0022-0728(02)00642-3
23 Buratti S, Brunetti B, Mannino S. Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system. Talanta , 2008, 76(2): 454-457
doi: 10.1016/j.talanta.2008.03.031
24 Jia W, Guo M, Zheng Z, . Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: Toward H2O2 detection. Journal of Electroanalytical Chemistry , 2009, 625(1): 27-32
doi: 10.1016/j.jelechem.2008.09.020
25 Houshmand M, Jabbari A, Heli H, . Electrocatalytic oxidation of aspirin and acetaminophen on a cobalt hydroxide nanoparticles modified glassy carbon electrode. Journal of Solid State Electrochemistry , 2008, 12(9): 1117-1128
doi: 10.1007/s10008-007-0454-6
26 Fan L F, Wu X Q, Guo M D, . Cobalt hydroxide film deposited on glassy carbon electrode for electrocatalytic oxidation of hydroquinone. Electrochimica Acta , 2007, 52(11): 3654-3659
doi: 10.1016/j.electacta.2006.10.027
27 Xu C, Tian Z, Shen P, . Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochimica Acta , 2008, 53(5): 2610-2618
doi: 10.1016/j.electacta.2007.10.036
28 Nkeng P, Koenig J-F, Gautier J L, . Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis. Journal of Electroanalytical Chemistry , 1996, 402(1): 81-89
doi: 10.1016/0022-0728(95)04254-7
29 Zhu Y, Li H, Koltypin Y, . Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication. Journal of Materials Chemistry , 2002, 12(3): 729-733
doi: 10.1039/b107750c
31 Da Silva L M, Boodts J F C, De Faria L A. Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution. Electrochimica Acta , 2001, 46(9): 1369-1375
doi: 10.1016/S0013-4686(00)00716-7
32 Jiang S P, Lin Z C, Tseung A C C. Homogeneous and heterogeneous catalytic reactions in cobalt oxide/graphite air electrodes. II. Homogeneous role of Cu(II) ions during oxygen reduction on Co3O4/graphite electrodes. Journal of The Electrochemical Society , 1990, 137(3): 764-769
doi: 10.1149/1.2086551
33 Ni Y, Ge X, Zhang Z, . A simple reduction-oxidation route to prepare Co3O4 nanocrystals. Materials Research Bulletin , 2001, 36(13-14): 2383-2387
34 ?vegl F, Orel B, Grabec-?vegl I, . Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route. Electrochimica Acta , 2000, 45(25-26): 4359-4371
35 Casella I G, Guascito M R. Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution. Journal of Electroanalytical Chemistry , 1999, 476(1): 54-63
doi: 10.1016/S0022-0728(99)00366-6
36 Schmid G, ed. Clusters and Colloids: From Theory to Applications. Weinheim: VCH, 1994
37 Poizot P, Laruelle S, Grugeon S, . Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature , 2000, 407(6803): 496-498
doi: 10.1038/35035045
38 Penn R L, Stone A T, Veblen D R. Defects and disorder: Probing the surface chemistry of heterogenite (CoOOH) by dissolution using hydroquinone and iminodiacetic acid. The Journal of Physical Chemistry B , 2001, 105(20): 4690-4697
doi: 10.1021/jp0039868
39 Pralong V, Delahaye-Vidal A, Beaudoin B, . Electrochemical behavior of cobalt hydroxide used as additive in the nickel hydroxide electrode. Journal of The Electrochemical Society , 2000, 147(4): 1306-1313
doi: 10.1149/1.1393355
40 Nemudry A, Rudolf P, Sch?llhorn R. Topotactic electrochemical redox reactions of the defect perovskite SrCoO2.5+x. Chemistry of Materials , 1996, 8(9): 2232-2238
doi: 10.1021/cm950504+
41 Yin S, Xue W, Ding X-L, . Formation, distribution, and structures of oxygen-rich iron and cobalt oxide clusters. International Journal of Mass Spectrometry , 2009, 281(1-2): 72-78
42 Torchio R, Meneghini C, Mobilio S, . Microstructure and magnetic properties of colloidal cobalt nano-clusters. Journal of Magnetism and Magnetic Materials , 2010, 322(21): 3565-3571
doi: 10.1016/j.jmmm.2010.07.008
43 Pal J, Chauhan P. Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Materials Characterization , 2010, 61(5): 575-579
doi: 10.1016/j.matchar.2010.02.017
44 Ahmed J, Ahmad T, Ramanujachary K V, . Development of a microemulsion-based process for synthesis of cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from submicrometer rods of cobalt oxalate. Journal of Colloid and Interface Science , 2008, 321(2): 434-441
doi: 10.1016/j.jcis.2008.01.052
45 Luo Z, Fang Y, Zhou X, . Synthesis of highly ordered Iron/Cobalt nanowire arrays in AAO templates and their structural properties. Materials Chemistry and Physics , 2008, 107(1): 91-95
doi: 10.1016/j.matchemphys.2007.06.047
46 Kandalkar S G, Gunjakar J L, Lokhande C D, . Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition. Journal of Alloys and Compounds , 2009, 478(1-2): 594-598
47 Vickers D, Archer L A, Floyd-Smith T. Synthesis and characterization of cubic cobalt oxide nanocomposite fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 348(1-3): 39-44
48 Xu R, Wang J W, Li Q Y, . Porous cobalt oxide (Co3O4) nanorods: Facile syntheses, optical property and application in lithium-ion batteries. Journal of Solid State Chemistry , 2009, 182(11): 3177-3182
doi: 10.1016/j.jssc.2009.08.033
49 Lou X D, Han J, Chu W F, . Synthesis and photocatalytic property of Co3O4 nanorods. Materials Science and Engineering B , 2007, 137(1-3): 268-271
50 Duan X, Lieber C M. General synthesis of compound semiconductor nanowires. Advanced Materials , 2000, 12(4): 298-302
doi: 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
51 Dai H, Wong E W, Lu Y Z, . Synthesis and characterization of carbide nanorods. Nature , 1995, 375(6534): 769-771
doi: 10.1038/375769a0
52 Li F J, Zhang S, Kong J H, . Study of silicon dioxide nanowires grown via rapid thermal annealing of sputtered amorphous carbon films doped with Si. Nanoscience and Nanotechnology Letters , 2011, 3(2): 240-245
53 Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters , 1964, 4(5): 89-90
doi: 10.1063/1.1753975
[1] Ge JU, Muhammad Arif KHAN, Huiwen ZHENG, Zhongxun AN, Mingxia WU, Hongbin ZHAO, Jiaqiang XU, Lei ZHANG, Salma BILAL, Jiujun ZHANG. Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 133-144.
[2] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
[3] Timur Sh. ATABAEV. Plasmon-enhanced solar water splitting with metal oxide nanostructures: A brief overview of recent trends[J]. Front. Mater. Sci., 2018, 12(3): 207-213.
[4] Xueyang LIU,Jian FANG,Yong LIU,Tong LIN. Progress in nanostructured photoanodes for dye-sensitized solar cells[J]. Front. Mater. Sci., 2016, 10(3): 225-237.
[5] Yi ZHANG,Cencen ZHANG,Lijie LIU,David L. KAPLAN,Hesun ZHU,Qiang LU. Hierarchical charge distribution controls self-assembly process of silk in vitro[J]. Front. Mater. Sci., 2015, 9(4): 382-391.
[6] Hui-Li DING,Tao ZHANG,Rui GAO,Xian-Ping WANG,Qian-Feng FANG,Chang-Song LIU,Jin-Ping SUO. Low-temperature mechanical and magnetic properties of the reduced activation martensitic steel[J]. Front. Mater. Sci., 2015, 9(3): 264-271.
[7] Yongze CAO,Qiang WANG,Guojian LI,Yonghui MA,Jiaojiao DU,Jicheng HE. Effects of different magnetic flux densities on microstructure and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe64Ni36 thin films[J]. Front. Mater. Sci., 2015, 9(2): 163-169.
[8] Eric ASHALLEY,Haiyuan CHEN,Xin TONG,Handong LI,Zhiming M. WANG. Bismuth telluride nanostructures: preparation, thermoelectric properties and topological insulating effect[J]. Front. Mater. Sci., 2015, 9(2): 103-125.
[9] M. JAMESH, T. S. N. SANKARA NARAYANAN, Paul K. CHU, Il Song PARK, Min Ho LEE. Effect of surface mechanical attrition treatment of titanium using alumina balls: surface roughness, contact angle and apatite forming ability[J]. Front Mater Sci, 2013, 7(3): 285-294.
[10] Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
[11] M. M. RAJATH HEGDE, A. O. SURENDRANATHAN. Synthesis, characterization and annealing of mechanically alloyed nanostructured FeAl powder[J]. Front Mater Sci Chin, 2009, 3(3): 310-318.
[12] SHI Ya, LI Zheng-cao, MIAO Wei, WANG Yu-quan, ZHANG Zheng-jun, XU Chun-hua. Magnetic and optical properties of polycarbonate/Fe nanocomposites[J]. Front. Mater. Sci., 2008, 2(1): 16-19.
[13] BIAN Xin-chao, HUO Chun-qing, ZHANG Yue-fei, CHEN Qiang. Preparation and photoluminescence of ZnO with nanostructure by hollow-cathode discharge[J]. Front. Mater. Sci., 2008, 2(1): 31-36.
[14] ALIOFKHAZRAEI Mahmood, ROUHAGHDAM Alireza SABOUR, ROOHZENDEH Mohsen. Study of bipolar pulsed plasma electrolytic carbonitriding on nanostructure of compound layer for a gamma Ti-Al alloy[J]. Front. Mater. Sci., 2008, 2(1): 48-54.
[15] JIANG Qi, QIAN Lan, YI Jing, ZHU Xiaotong, ZHAO Yong. Effects of boron-doping on the morphology and magnetic property of carbon nanotubes[J]. Front. Mater. Sci., 2007, 1(4): 379-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed