Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (1) : 12501    https://doi.org/10.1007/s11467-020-0995-z
RESEARCH ARTICLE
Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation
Cheng-Bing Qin1,2(), Xi-Long Liang1,2, Shuang-Ping Han1,2, Guo-Feng Zhang1,2, Rui-Yun Chen1,2, Jian-Yong Hu1,2, Lian-Tuan Xiao1,2(), Suo-Tang Jia1,2
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 Download: PDF(1744 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Monolayer transition metal dichalcogenides have emerged as promising materials for optoelectronic and nanophotonic devices. However, the low photoluminescence (PL) quantum yield (QY) hinders their various potential applications. Here we engineer and enhance the PL intensity of monolayer WS2 by femtosecond laser irradiation. More than two orders of magnitude enhancement of PL intensity as compared to the as-prepared sample is determined. Furthermore, the engineering time is shortened by three orders of magnitude as compared to the improvement of PL intensity by continuous-wave laser irradiation. Based on the evolution of PL spectra, we attribute the giant PL enhancement to the conversion from trion emission to exciton, as well as the improvement of the QY when exciton and trion are localized to the new-formed defects. We have created microstructures on the monolayer WS2 based on the enhancement of PL intensity, where the engineered structures can be stably stored for more than three years. This flexible approach with the feature of excellent long-term storage stability is promising for applications in information storage, display technology, and optoelectronic devices.

Keywords monolayers      WS2      giant enhancement      photoluminescence      femtosecond laser irradiation      micropatterning      exciton      trion      quantum yield     
Corresponding Author(s): Cheng-Bing Qin,Lian-Tuan Xiao   
Just Accepted Date: 08 September 2020   Issue Date: 16 October 2020
 Cite this article:   
Cheng-Bing Qin,Xi-Long Liang,Shuang-Ping Han, et al. Giant enhancement of photoluminescence emission in monolayer WS2 by femtosecond laser irradiation[J]. Front. Phys. , 2021, 16(1): 12501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0995-z
https://academic.hep.com.cn/fop/EN/Y2021/V16/I1/12501
1 H. Zeng and X. Cui, An optical spectroscopic study on two-dimensional group-VI transition metal dichalco- genides, Chem. Soc. Rev. 44(9), 2629 (2015)
https://doi.org/10.1039/C4CS00265B
2 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
3 X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10(5), 343 (2014)
https://doi.org/10.1038/nphys2942
4 C. Qin, Y. Gao, Z. Qiao, L. Xiao, and S. Jia, Atomiclayered MoS2 as a tunable optical platform, Adv. Opt. Mater. 4(10), 1429 (2016)
https://doi.org/10.1002/adom.201600323
5 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
6 D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Optical spectrum of MoS2: Many-body effects and diversity of exciton states, Phys. Rev. Lett. 111(21), 216805 (2013)
https://doi.org/10.1103/PhysRevLett.111.216805
7 K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS2, Nat. Mater. 12(3), 207 (2013)
https://doi.org/10.1038/nmat3505
8 H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS2 monolayers by optical pumping, Nat. Nanotechnol. 7(8), 490 (2012)
https://doi.org/10.1038/nnano.2012.95
9 D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
https://doi.org/10.1103/PhysRevLett.108.196802
10 H. Kim, D. H. Lien, M. Amani, J. W. Ager, and A. Javey, Highly stable near-unity photoluminescence yield in monolayer MoS2 by fluoropolymer encapsulation and superacid treatment, ACS Nano 11(5), 5179 (2017)
https://doi.org/10.1021/acsnano.7b02521
11 G. Cheng, B. Li, C. Zhao, Z. Jin, H. Li, K. M. Lau, and J. Wang, Exciton aggregation induced photoluminescence enhancement of monolayer WS2, Appl. Phys. Lett. 114(23), 232101 (2019)
https://doi.org/10.1063/1.5096206
12 H. Yao, L. Liu, Z. Wang, H. Li, L. Chen, M. E. Pam, W. Chen, H. Y. Yang, W. Zhang, and Y. Shi, Significant photoluminescence enhancement in WS2 monolayers through Na2S treatment, Nanoscale 10(13), 6105 (2018)
https://doi.org/10.1039/C8NR00530C
13 A. O. A. Tanoh, J. Alexander-Webber, J. Xiao, G. Delport, C. A. Williams, H. Bretscher, N. Gauriot, J. Allardice, R. Pandya, Y. Fan, Z. Li, S. Vignolini, S. D. Stranks, S. Hofmann, and A. Rao, Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands, Nano Lett. 19(9), 6299 (2019)
https://doi.org/10.1021/acs.nanolett.9b02431
14 C. Zou, M. Chen, X. Luo, H. Zhou, T. Yu, and C. Yuan, Enhanced photoluminescence of WS2/WO3 heterostructural QDs, J. Alloys Compd. 834, 155066 (2020)
https://doi.org/10.1016/j.jallcom.2020.155066
15 A. Yang, J. C. Blancon, W. Jiang, H. Zhang, J. Wong, E. Yan, Y. R. Lin, J. Crochet, M. G. Kanatzidis, D. Jariwala, T. Low, A. D. Mohite, and H. A. Atwater, Giant enhancement of photoluminescence emission in WS2- two-dimensional perovskite heterostructures, Nano Lett. 19(8), 4852 (2019)
https://doi.org/10.1021/acs.nanolett.8b05105
16 Y. Liu, H. Li, X. Zheng, X. Cheng, and T. Jiang, Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots, Opt. Mater. Express 7(4), 1327 (2017)
https://doi.org/10.1364/OME.7.001327
17 F. Cheng, A. D. Johnson, Y. Tsai, P. H. Su, S. Hu, J. G. Ekerdt, and C. K. Shih, Enhanced photoluminescence of monolayer WS2 on Ag films and nanowire–WS2–film composites, ACS Photon. 4(6), 1421 (2017)
https://doi.org/10.1021/acsphotonics.7b00152
18 J. Wang, H. Li, Y. Ma, M. Zhao, W. Liu, B. Wang, S. Wu, X. Liu, L. Shi, T. Jiang, and J. Zi, Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs, Light Sci. Appl. 9(1), 148 (2020)
https://doi.org/10.1038/s41377-020-00387-4
19 H. Li, J. Wang, Y. Ma, J. Chu, X. Cheng, L. Shi, and T. Jiang, Enhanced directional emission of monolayer tungsten disulfide (WS2) with robust linear polarization via one-dimensional photonic crystal (PhC) slab, Nanophotonics 9(14), 4337 (2020)
https://doi.org/10.1515/nanoph-2020-0294
20 M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, Near-unity photoluminescence quantum yield in MoS2, Science 350(6264), 1065 (2015)
https://doi.org/10.1126/science.aad2114
21 C. Yang, Y. Gao, C. Qin, X. Liang, S. Han, G. Zhang, R. Chen, J. Hu, L. Xiao, and S. Jia, All-optical reversible manipulation of exciton and trion emissions in monolayer WS2, Nanomaterials 10(1), 23 (2019)
https://doi.org/10.3390/nano10010023
22 D. Zhou, H. Shu, C. Hu, L. Jiang, P. Liang, and X. Chen, Unveiling the growth mechanism of MoS2 with chemical vapor deposition: From 2D planar nucleation to selfseeding nucleation, Cryst. Growth Des. 18(2), 1012 (2018)
https://doi.org/10.1021/acs.cgd.7b01486
23 W. He, C. Qin, Z. Qiao, G. Zhang, L. Xiao, and S. Jia, Two fluorescence lifetime components reveal the photoreduction dynamics of monolayer graphene oxide, Carbon 109, 264 (2016)
https://doi.org/10.1016/j.carbon.2016.08.016
24 Z. Qiao, C. Qin, W. He, Y. Gong, G. Zhang, R. Chen, Y. Gao, L. Xiao, and S. Jia, Versatile and scalable micropatterns on graphene oxide films based on laser induced fluorescence quenching effect, Opt. Express 25(25), 31025 (2017)
https://doi.org/10.1364/OE.25.031025
25 H. Ardekani, R. Younts, Y. Yu, L. Cao, and K. Gundogdu, Reversible photoluminescence tuning by defect passivation via laser irradiation on aged monolayer MoS2, ACS Appl. Mater. Interfaces 11(41), 38240 (2019)
https://doi.org/10.1021/acsami.9b10688
26 H. M. Oh, G. H. Han, H. Kim, J. J. Bae, M. S. Jeong, and Y. H. Lee, Photochemical reaction in monolayer MoS2 via correlated photoluminescence, Raman spectroscopy, and atomic force microscopy, ACS Nano 10(5), 5230 (2016)
https://doi.org/10.1021/acsnano.6b00895
27 P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. M. Lu, B. Yu, H. Terrones, and N. Koratkar, Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides, ACS Nano 9(2), 1520 (2015)
https://doi.org/10.1021/nn5073495
28 C. Qin, Y. Gao, L. Zhang, X. Liang, W. He, G. Zhang, R. Chen, J. Hu, L. Xiao, and S. Jia, Flexible engineering of light emission in monolayer MoS2 via direct laser writing for multimode optical recording, AIP Adv. 10(4), 045230 (2020)
https://doi.org/10.1063/1.5143611
29 Y. Lee, S. J. Yun, Y. Kim, M. S. Kim, G. H. Han, A. K. Sood, and J. Kim, Near-field spectral mapping of individual exciton complexes of monolayer WS2 correlated with local defects and charge population, Nanoscale 9(6), 2272 (2017)
https://doi.org/10.1039/C6NR08813A
30 V. Carozo, Y. X. Wang, K. Fujisawa, B. R. Carvalho, A. McCreary, S. M. Feng, Z. Lin, C. J. Zhou, N. Perea-Lopez, A. L. Elias, B. Kabius, V. H. Crespi, and M. Terrones, Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide, Sci. Adv. 3(4), e1602813 (2017)
https://doi.org/10.1126/sciadv.1602813
31 Y. Lee, G. Ghimire, S. Roy, Y. Kim, C. Seo, A. K. Sood, J. I. Jang, and J. Kim, Impeding exciton–exciton annihilation in monolayer WS2 by laser irradiation, ACS Photon. 5(7), 2904 (2018)
https://doi.org/10.1021/acsphotonics.8b00249
32 J. Hong, M. Wang, J. Jiang, P. Zheng, H. Zheng, L. Zheng, D. Huo, Z. Wu, Z. Ni, and Y. Zhang, Optoelectronic performance of multilayer WSe2 transistors enhanced by defect engineering, Appl. Phys. Express 13(6), 061004 (2020)
https://doi.org/10.35848/1882-0786/ab8f13
33 Y. Lee, S. Park, H. Kim, G. H. Han, Y. H. Lee, and J. Kim, Characterization of the structural defects in CVDgrown monolayered MoS2 using near-field photoluminescence imaging, Nanoscale 7(28), 11909 (2015)
https://doi.org/10.1039/C5NR02897C
34 S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons, Sci. Rep. 3(1), 2657 (2013)
https://doi.org/10.1038/srep02657
35 H. J. Kim, Y. J. Yun, S. N. Yi, S. K. Chang, and D. H. Ha, Changes in the photoluminescence of monolayer and bilayer molybdenum disulfide during laser irradiation, ACS Omega 5(14), 7903 (2020)
https://doi.org/10.1021/acsomega.9b04202
36 H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding, ACS Nano 8(6), 5738 (2014)
https://doi.org/10.1021/nn500532f
[1] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[2] Guo-Feng Zhang, Chang-Gang Yang, Yong Ge, Yong-Gang Peng, Rui-Yun Chen, Cheng-Bing Qin, Yan Gao, Lei Zhang, Hai-Zheng Zhong, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Influence of surface charges on the emission polarization properties of single CdSe/CdS dot-in-rods[J]. Front. Phys. , 2019, 14(6): 63601-.
[3] Zi-Wu Wang, Run-Ze Li, Xi-Ying Dong, Yao Xiao, Zhi-Qing Li. Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides[J]. Front. Phys. , 2018, 13(4): 137305-.
[4] Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics[J]. Front. Phys. , 2018, 13(4): 138114-.
[5] Zhinan Ma (马志楠), Jibin Zhuang (庄吉彬), Xu Zhang (张旭), Zhen Zhou (周震). SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts[J]. Front. Phys. , 2018, 13(3): 138104-.
[6] Xue-Wen Fu, Qiang Fu, Liang-Zhi Kou, Xin-Li Zhu, Rui Zhu, Jun Xu, Zhi-Min Liao, Qing Zhao, Wan-Lin Guo, Da-Peng Yu. Modifying optical properties of ZnO nanowires via strain-gradient[J]. Front. Phys. , 2013, 8(5): 509-515.
[7] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[8] PANG Xiao-feng. Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules (II)[J]. Front. Phys. , 2008, 3(4): 457-488.
[9] HUANG Rao, MA Li-bo, WANG Yong-qian, CAO Ze-xian, YE Jian-ping. Synthesis and photoluminescence studies of silicon nanoparticles embedded in silicon compound films[J]. Front. Phys. , 2008, 3(2): 173-180.
[10] PANG Xiao-feng. Theory of bio-energy transport in protein molecules and its experimental evidences as well as applications ( I )[J]. Front. Phys. , 2007, 2(4): 469-493.
[11] SHAN Guang-cun, BAO Shu-ying, HUANG Wei. Another model for a multiexcitonic quantum dot in an optical microcavity[J]. Front. Phys. , 2007, 2(1): 63-67.
[12] HUANG Wei-qi, LIU Shi-rong, QIN Chao-jian, CAI Shao-hong, XU Li, WU Ke-yue. Optical properties of low-dimensional structures formed by irradiation of laser[J]. Front. Phys. , 2007, 2(1): 72-75.
[13] LIU Can-de, LIU Wen, SU Xi-yu, LI Feng-ling, WU Da-peng. Dynamical behaviors of an exciton in an asymmetric double coupled quantum dot[J]. Front. Phys. , 2006, 1(2): 238-242.
[14] ZHANG Yue, HUANG Yun-hua, HE Jian, DAI Ying, ZHANG Xiao-mei, LIU Juan, LIAO Qing-Liang. Quasi One-dimensional ZnO Nanostructures Fabricated without Catalyst at Lower Temperature[J]. Front. Phys. , 2006, 1(1): 72-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed