Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 53502    https://doi.org/10.1007/s11467-021-1148-8
RESEARCH ARTICLE
Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region
Bo Fang1, Dantian Feng2,3, Peng Chen1, Lijiang Shi4, Jinhui Cai1, Jianmin Li5, Chenxia Li2(), Zhi Hong3, Xufeng Jing2,3()
1. College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
2. Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
3. Centre for THz Research, China Jiliang University, Hangzhou 310018, China
4. Hangzhou Hangxin Qihui Technology Co., Ltd, Hangzhou 310026, China
5. University of Shanghai for Science and Technology, No. 516 Jung Gong Road, Shanghai 200093, China
 Download: PDF(1391 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In view of the fact that most invisibility devices focus on linear polarization cloaking and that the characteristics of mid-infrared cloaking are rarely studied, we propose a cross-circularly polarized invisibility carpet cloaking device in the mid-infrared band. Based on the Pancharatnam–Berry phase principle, the unit cells with the cross-circular polarization gradient phase were carefully designed and constructed into a metasurface. In order to achieve tunable cross-circular polarization carpet cloaks, a phase change material is introduced into the design of the unit structure. When the phase change material is in amorphous and crystalline states, the proposed metasurface unit cells can achieve high-efficiency cross-polarization conversion, and reflection intensity can be tuned. According to the phase compensation principle of carpet cloaking, we construct a metasurface cloaking device with a phase gradient using the designed unit structure. From the near- and far-field distributions, the cross-circular polarization cloaking property is confirmed in the broadband wavelength range of 9.3–11.4 µm. The proposed cloaking device can effectively resist detection of cross-circular polarization.

Keywords metamaterial      metasurface      cloaking     
Corresponding Author(s): Chenxia Li,Xufeng Jing   
Issue Date: 28 March 2022
 Cite this article:   
Bo Fang,Dantian Feng,Peng Chen, et al. Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region[J]. Front. Phys. , 2022, 17(5): 53502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1148-8
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/53502
1 X. Jing, C. Chu, C. Li, H. Gan, Y. He, X. Gui, and Z. Hong, Enhancement of bandwidth and angle response of metasurface cloaking through adding antireflective motheye-like microstructure, Opt. Express 27(15), 21766 (2019)
https://doi.org/10.1364/OE.27.021766
2 L. Jiang, C. Chu, B. Fang, M. Zhang, H. Gan, C. Li, X. Jing, and Z. Hong, Multi-wavelength carpet cloaking based on an ultrathin single layer metamaterial microstructure, Laser Phys. Lett. 17(6), 066202 (2020)
https://doi.org/10.1088/1612-202X/ab88d6
3 J. Yang, H. Huang, X. Wu, B. Sun, and X. Luo, Dualwavelength carpet cloak using ultrathin metasurface, Adv. Opt. Mater. 6(14), 1800073 (2018)
https://doi.org/10.1002/adom.201800073
4 J. Yang, S. Qu, H. Ma, J. Wang, S. Sui, Q. Zheng, H. Chen, and Y. Pang, Ultra-broadband co-polarization anomalous reflection metasurface, Appl. Phys. A 123(8), 537 (2017)
https://doi.org/10.1007/s00339-017-1162-4
5 J. Li, Y. Yuan, Q. Wu, S. N. Burokur, and K. Zhang, Dualband independent phase control based on high efficiency metasurface, Chin. Opt. Lett. 19, 100501 (2021)
https://doi.org/10.3788/COL202119.100501
6 S. Teng, Q. Zhang, H. Wang, L. Liu, and H. Lv, Conversion between polarization states based on metasurface, Photon. Res. 7(3), 246 (2019)
https://doi.org/10.1364/PRJ.7.000246
7 M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection, Adv. Mater. 32(12), 1907308 (2020)
https://doi.org/10.1002/adma.201907308
8 J. Zhang, X. Wei, I. Rukhlenko, H. Chen, and W. Zhu, Electrically tunable metasurface with independent frequency and amplitude modulations, ACS Photonics 7(1), 265 (2020)
https://doi.org/10.1021/acsphotonics.9b01532
9 H. Wang, Z. Zhang, K. Zhao, W. Liu, P. Wang, and Y. Lu, Independent phase manipulation of co- and cross-polarizations with all-dielectric metasurface, Chin. Opt. Lett. 19, 053601 (2021)
https://doi.org/10.3788/COL202119.053601
10 B. Fang, Z. Cai, Y. Peng, C. Li, Z. Hong, and X. Jing, Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials, J. Electromagn. Waves Appl. 33(11), 1375 (2019)
https://doi.org/10.1080/09205071.2019.1608868
11 B. Fang, B. Li, Y. Peng, C. Li, Z. Hong, and X. Jing, Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure, Microw. Opt. Technol. Lett. 61(10), 2385 (2019)
https://doi.org/10.1002/mop.31890
12 W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure, Opt. Appl. 47(2), 183 (2017)
13 L. Jiang, B. Fang, Z. Yan, C. Li, J. Fu, H. Gan, Z. Hong, and X. Jing, Improvement of unidirectional scattering characteristics based on multiple nanospheres array, Microw. Opt. Technol. Lett. 62(6), 2405 (2020)
https://doi.org/10.1002/mop.32328
14 Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, H. Cheng, T. Ma, and Y. Lu, Ultrafast control of slow light in THz electromagnetically induced transparency metasurfaces, Chin. Opt. Lett. 19(7), 073602 (2021)
https://doi.org/10.3788/COL202119.073602
15 X. Xie, Y. Deng, and S. L. Johnson, Compact and robust supercontinuum generation and post-compression using multiple thin plates, High Power Laser Sci. Eng. 9(4), 04000e66 (2021)
https://doi.org/10.1017/hpl.2021.53
16 A. Du, Y. Ma, M. Liu, Z. Zhang, G. Cao, H. Li, L. Wang, P. Si, J. Shen, and B. Zhou, Morphology analysis of tracks in the aerogels impacted by hypervelocity irregular particles, High Power Laser Sci. Eng. 9(2), 02000e14 (2021)
https://doi.org/10.1017/hpl.2020.54
17 T. Ebert, R. Heber, T. Abel, J. Bieker, G. Schaumann, and M. Roth, Targets with cone-shaped microstructures from various materials for enhanced high-intensity laser–matter interaction, High Power Laser Sci. Eng. 9(2), 02000e24 (2021)
https://doi.org/10.1017/hpl.2021.10
18 H. S. Khaliq, I. Kim, A. Zahid, J. Kim, T. Lee, T. Badloe, Y. Kim, M. Zubair, K. Riaz, M. Q. Mehmood, and J. Rho, Giant chiro-optical responses in multipolar-resonances- based single-layer dielectric metasurfaces, Photon. Res. 9(9), 1667 (2021)
https://doi.org/10.1364/PRJ.424477
19 M. Parry, A. Mazzanti, A. Poddubny, G. D. Valle, D. N. Neshev, and A. A. Sukhorukov, Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces, Adv. Photonics 3(05), 055001 (2021)
https://doi.org/10.1117/1.AP.3.5.055001
20 J. Zhang, H. Zhang, W. Yang, K. Chen, X. Wei, Y. Feng, R. Jin, and W. Zhu, Dynamic scattering steering with graphene-based coding meta-mirror, Adv. Opt. Mater. 8(19), 2000683 (2020)
https://doi.org/10.1002/adom.202000683
21 X. Bai, F. Kong, Y. Sun, F. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, High-efficiency trans-missive programable metasurface for multi-mode OAM generations, Adv. Opt. Mater. 8(17), 2000570 (2020)
https://doi.org/10.1002/adom.202000570
22 X. Jing, X. Gui, P. Zhou, and Z. Hong, Physical explanation of Fabry–Pérot cavity for broadband bilayer meta-materials polarization converter, J. Lightwave Technol. 36(12), 2322 (2018)
https://doi.org/10.1109/JLT.2018.2808339
23 R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Opt. Mater. Express 7(3), 977 (2017)
https://doi.org/10.1364/OME.7.000977
24 M. Akram, M. Mehmood, X. Bai, R. Jin, M. Premaratne, and W. Zhu, High efficiency ultra-thin transmissive metasurfaces, Adv. Opt. Mater. 7(11), 1801628 (2019)
https://doi.org/10.1002/adom.201801628
25 M. Akram, X. Bai, R. Jin, G. Vandenbosch, M. Premaratne, and W. Zhu, Photon spin Hall effect based ultrathin transmissive metasurface for efficient generation of OAM waves, IEEE Trans. Antenn. Propag. 67(7), 4650 (2019)
https://doi.org/10.1109/TAP.2019.2905777
26 J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region, Opt. Laser Technol. 95, 56 (2017)
https://doi.org/10.1016/j.optlastec.2017.04.001
27 Y. Tian, X. Jing, H. Gan, X. Li, and Z. Hong, Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces, Front. Phys. 15(6), 62502 (2020)
https://doi.org/10.1007/s11467-020-1013-1
28 C. Zhou, Z. Mou, R. Bao, Z. Li, and S. Teng, Compound plasmonic vortex generation based on spiral nanoslits, Front. Phys. 16(3), 33503 (2021)
https://doi.org/10.1007/s11467-020-1032-y
29 G. Dai, Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics, Front. Phys. 16(5), 53301 (2021)
https://doi.org/10.1007/s11467-021-1048-y
30 J. Li, R. Jin, J. Geng, X. Liang, K. Wang, M. Premaratne, and W. Zhu, Design of a broadband metasurface Luneburg lens for full-angle operation, IEEE Trans. Antenn. Propag. 67(4), 2442 (2019)
https://doi.org/10.1109/TAP.2018.2889006
31 X. Lu, X. Zeng, H. Lv, Y. Han, Z. Mou, C. Liu, S. Wang, and S. Teng, Polarization controllable plasmonic focusing based on nanometer holes, Nanotechnology 31(13), 135201 (2020)
https://doi.org/10.1088/1361-6528/ab62d0
32 H. Lv, X. Lu, Y. Han, Z. Mou, C. Zhou, S. Wang, and S. Teng, Metasurface cylindrical vector light generators based on nanometer holes, New J. Phys. 21(12), 123047 (2019)
https://doi.org/10.1088/1367-2630/ab5f44
33 H. Lv, X. Lu, Y. Han, Z. Mou, and S. Teng, Multifocal metalens with a controllable intensity ratio, Opt. Lett. 44(10), 2518 (2019)
https://doi.org/10.1364/OL.44.002518
34 H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 317 (2019)
https://doi.org/10.1515/nanoph-2018-0214
35 X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, Analysis of the sinusoidal nanopatterning grating structure, Opt. Laser Technol. 48, 160 (2013)
https://doi.org/10.1016/j.optlastec.2012.10.008
36 X. Jing, Y. Xu, H. Gan, Y. He, and Z. Hong, High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region, IEEE Access. 7, 144945 (2019)
https://doi.org/10.1109/ACCESS.2019.2945119
37 L. Jiang, B. Fang, Z. Yan, J. Fan, C. Qi, J. Liu, Y. He, C. Li, X. Jing, H. Gan, and Z. Hong, Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure, Opt. Laser Technol. 123, 105949 (2020)
https://doi.org/10.1016/j.optlastec.2019.105949
38 X. He, Tunable terahertz graphene metamaterials, Carbon 82, 229 (2015)
https://doi.org/10.1016/j.carbon.2014.10.066
39 X. He, X. Zhong, F. Lin, and W. Shi, Investigation of graphene assisted tunable terahertz metamaterials absorber, Opt. Mater. Express 6(2), 331 (2016)
https://doi.org/10.1364/OME.6.000331
40 J. Pendry, D. Schurig, and D. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
https://doi.org/10.1126/science.1125907
41 U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)
https://doi.org/10.1126/science.1126493
42 D. Deslandes and K. Wu, Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide, IEEE T. Microw. Theory 54(6), 2516 (2006)
https://doi.org/10.1109/TMTT.2006.875807
43 A. Rajput and K. Srivastava, Dual-band cloak using microstrip patch with embedded U-shaped slot, IEEE Antennas Wirel. Propag. Lett. 16, 2848 (2017)
https://doi.org/10.1109/LAWP.2017.2749507
44 Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, A metasurface carpet cloak for electromagnetic acoustic and water waves, Sci. Rep. 6(1), 20219 (2016)
https://doi.org/10.1038/srep20219
45 J. Zhang, Z. L. Mei, W. R. Zhang, F. Yang, and T. J. Cui, An ultrathin directional carpet cloak based on generalized Snell’s law, Appl. Phys. Lett. 103(15), 151115 (2013)
https://doi.org/10.1063/1.4824898
46 S. Islam, M. Faruque, and M. Islam, A near zero refractive index metamaterial for electromagnetic invisibility cloaking operation, Materials (Basel) 8(8), 4790 (2015)
https://doi.org/10.3390/ma8084790
47 S. Fan, S. Zhao, L. Cao, Y. Zhu, A. L. Chen, Y. F. Wang, K. Donda, Y. S. Wang, and B. Assouar, Reconfigurable curved metasurface for acoustic cloaking and illusion, Phys. Rev. B 101(2), 024104 (2020)
https://doi.org/10.1103/PhysRevB.101.024104
48 L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization, Appl. Phys. Lett. 103(12), 121113 (2013)
https://doi.org/10.1063/1.4821951
49 M. Selvanayagam and G. Eleftheriades, Experimental demonstration of active electromagnetic cloaking, Phys. Rev. X 3(4), 041011 (2013)
https://doi.org/10.1103/PhysRevX.3.041011
50 C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, Deep-learning-enabled self-adaptive microwave cloak without human intervention, Nat. Photonics 14(6), 383 (2020)
https://doi.org/10.1038/s41566-020-0604-2
51 X. He, F. Liu, F. Lin, and W. Shi, Tunable 3D Diracsemimetals supported mid-IR hybrid plasmonic waveguides, Opt. Lett. 46(3), 472 (2021)
https://doi.org/10.1364/OL.415187
52 X. He, F. Liu, F. Lin, and W. Shi, Tunable terahertz Dirac semimetal metamaterials, J. Phys. D 54(23), 235103 (2021)
https://doi.org/10.1088/1361-6463/abe898
53 J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, H. Zhang, and W. Shi, Investigation of graphene supported terahertz elliptical metamaterials, Physica E 124, 114309 (2020)
https://doi.org/10.1016/j.physe.2020.114309
54 A. Karvounis, B. Gholipour, K. MacDonald, and N. Zheludev, All-dielectric phase-change reconfigurable metasurface, Appl. Phys. Lett. 109(5), 051103 (2016)
https://doi.org/10.1063/1.4959272
55 M. Dicken, K. Aydin, I. Pryce, L. Sweatlock, E. Boyd, S. Walavalkar, J. Ma, and H. Atwater, Frequency tunable near-infrared metamaterials based on VO2 phase transition, Opt. Express 17(20), 18330 (2009)
https://doi.org/10.1364/OE.17.018330
56 M. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M. Nine, A. Dinovitser, C. Cordeiro, B. Ng, and D. Abbott, Tunable localized surface Plasmon grapheme metasurface for multiband superabsorption and terahertz sensing, Carbon 158, 559 (2020)
https://doi.org/10.1016/j.carbon.2019.11.026
57 E. Hasman, V. Kleiner, G. Biener, and A. Niv, Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics, Appl. Phys. Lett. 82(3), 328 (2003)
https://doi.org/10.1063/1.1539300
58 S. J. Li, B. L. Yun, L. Zhang, J. L. Zhang, W. H. Bo, Q. L. Rui, Y. C. Xiang, Q. Cheng, and J. C. Tie, Programmable controls to scattering properties of a radiation array, Laser Photonics Rev. 15(2), 2000449 (2021)
https://doi.org/10.1002/lpor.202000449
59 S. J. Li, B. L. Yun, H. Li, X. W. Zheng, C. Zhang, X. G. Ze, Q. L. Rui, Y. C. Xiang, Q. Cheng, and J. C. Tie, A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously, Ann. Phys. (Berlin) 532(5), 2000020 (2020)
https://doi.org/10.1002/andp.202000020
60 H. Chu, H. Zhang, Y. Zhang, R. Peng, M. Wang, Y. Hao, and Y. Lai, Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces, Nat. Commun. 12(1), 4523 (2021)
https://doi.org/10.1038/s41467-021-24763-9
61 S. W. Fan, S. D. Zhao, L. Cao, Y. Zhu, A. L. Chen, Y. F. Wang, K. Donda, Y. S. Wang, and B. Assouar, Reconfigurable curved metasurface for acoustic cloaking and illusion, Phys. Rev. B 101(2), 024104 (2020)
https://doi.org/10.1103/PhysRevB.101.024104
62 C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, Deep-learning-enabled self-adaptive microwave cloak without human intervention, Nat. Photonics 14(6), 383 (2020)
https://doi.org/10.1038/s41566-020-0604-2
63 L. Hsu, A. Ndao, and B. Kanté, Broadband and linear polarization metasurface carpet cloak in the visible, Opt. Lett. 44(12), 2978 (2019)
https://doi.org/10.1038/s41566-020-0604-2
64 Y. Huang, M. Pu, F. Zhang, J. Luo, X. Li, X. Ma, and X. Luo, Broadband functional metasurfaces: Achieving nonlinear phase generation toward achromatic surface cloaking and lensing, Adv. Opt. Mater. 7(7), 1801480 (2019)
https://doi.org/10.1002/adom.201801480
65 M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, and X. Luo, Plasmonic metasurfaces or switchable photonic spin-orbit interactions based on phase change materials, Adv. Sci. 5(10), 1800835 (2018)
https://doi.org/10.1002/advs.201800835
[1] Hairong He, Hui Yang, Zhenwei Xie, Xiaocong Yuan. Dynamic polarization rotation and vector field steering based on phase change metasurface[J]. Front. Phys. , 2023, 18(1): 12303-.
[2] Si Jia Li, Zhuo Yue Li, Guo Shai Huang, Xiao Bin Liu, Rui Qi Li, Xiang Yu Cao. Digital coding transmissive metasurface for multi-OAM-beam[J]. Front. Phys. , 2022, 17(6): 62501-.
[3] Aviv Karnieli, Yongyao Li, Ady Arie. The geometric phase in nonlinear frequency conversion[J]. Front. Phys. , 2022, 17(1): 12301-.
[4] Gao-Le Dai. Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics[J]. Front. Phys. , 2021, 16(5): 53301-.
[5] Chang-Da Zhou, Zhen Mou, Rui Bao, Zhong Li, Shu-Yun Teng. Compound plasmonic vortex generation based on spiral nanoslits[J]. Front. Phys. , 2021, 16(3): 33503-.
[6] Ying Tian, Xufeng Jing, Haiyong Gan, Chenxia Li, Zhi Hong. Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces[J]. Front. Phys. , 2020, 15(6): 62502-.
[7] Zhao-Yang Shen, He-Lin Yang, Xuan Liu, Xiao-Jun Huang, Tian-Yu Xiang, Jiong Wu, Wei Chen. Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response[J]. Front. Phys. , 2020, 15(1): 12601-.
[8] Zheng-Yong Song, Qiong-Qiong Chu, Xiao-Peng Shen, Qing Huo Liu. Wideband high-efficient linear polarization rotators[J]. Front. Phys. , 2018, 13(5): 137803-.
[9] Yang-Yang Fu, Ya-Dong Xu, Huan-Yang Chen. Negative refraction based on purely imaginary metamaterials[J]. Front. Phys. , 2018, 13(4): 134206-.
[10] Yun-Xia Dong,Jing-Jiang You. Propagation of polarized photons through a cavity with an anisotropic metamaterial[J]. Front. Phys. , 2016, 11(6): 114208-.
[11] Ting-Hua Li (李廷华),Dong-Lai Zhu(朱东来),Fu-Chun Mao(毛福春),Ming Huang(黄铭),Jing-Jing Yang(杨晶晶),Shou-Bo Li. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials[J]. Front. Phys. , 2016, 11(5): 110503-.
[12] Yizhuo He, Junxue Fu, Yiping Zhao. Oblique angle deposition and its applications in plasmonics[J]. Front. Phys. , 2014, 9(1): 47-59.
[13] Mohammad Mehdi Sadeghi, Hamid Nadgaran, Huanyang Chen. Perfect field concentrator using zero index metamaterials and perfect electric conductors[J]. Front. Phys. , 2014, 9(1): 90-93.
[14] Kun Ding, Shi-Yi Xiao, Lei Zhou. New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces[J]. Front. Phys. , 2013, 8(4): 386-393.
[15] Zhi-Yuan Li. Nanophotonics in China: Overviews and highlights[J]. Front. Phys. , 2012, 7(6): 601-631.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed