Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (4) : 43202    https://doi.org/10.1007/s11467-022-1176-z
TOPICAL REVIEW
Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties
Rui Yang, Jianuo Fan, Mengtao Sun()
School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
 Download: PDF(9457 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transition metal dichalcogenides (TMDCs) have suitable and adjustable band gaps, high carrier mobility and yield. Layered TMDCs have attracted great attention due to the structure diversity, stable existence in normal temperature environment and the band gap corresponding to wavelength between infrared and visible region. The ultra-thin, flat, almost defect-free surface, excellent mechanical flexibility and chemical stability provide convenient conditions for the construction of different types of TMDCs heterojunctions. The optoelectric properties of heterojunctions based on TMDCs materials are summarized in this review. Special electronic band structures of TMDCs heterojunctions lead to excellent optoelectric properties. The emitter, p-n diodes, photodetectors and photosensitive devices based on TMDCs heterojunction materials show excellent performance. These devices provide a prototype for the design and development of future high-performance optoelectric devices.

Keywords transition metal dichalcogenides (TMDCs)      heterostructures      optoelectric properties     
Corresponding Author(s): Mengtao Sun   
Issue Date: 12 July 2022
 Cite this article:   
Rui Yang,Jianuo Fan,Mengtao Sun. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties[J]. Front. Phys. , 2022, 17(4): 43202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1176-z
https://academic.hep.com.cn/fop/EN/Y2022/V17/I4/43202
Fig.1  Structure and energy bands of common two-dimensional materials (Graphene, BP, MoS2 and h-BN) [51].
Fig.2  Energy band characteristics of different types of heterojunctions.
Fig.3  (a) Bands and DOS of vdW and lateral MoS2/WS2 heterojunctions. (b, c) The dielectric function and absorption of vdW and lateral MoS2/WS2 heterojunctions, respectively. Reproduced from Ref. [56].
Fig.4  (a, b) Transmission spectra of coupling between Ag disks and vdW and lateral MoS2/WS2 heterojunctions, respectively. Reproduced from Ref. [56].
Fig.5  (a) Pressure-dependent direct and indirect band-gap. (b) Pressure-dependent effective mass of hole and electron. (c) Pressure-dependent intrinsic carrier concentration of indirect and direct band gap. (d) Pressure-dependent absorption spectra and the charge distribution. Reproduced from Ref. [57].
Fig.6  (a) Optical microscopy characterization of the WSe2. (b) The SEM image taken from WSe2/MoS2 heterojunction device. (c) The PL mapping results of the WSe2/MoS2 heterojunction. (d) The electrode structure diagram of the WSe2/MoS2 heterojunction. Reproduced from Ref. [41].
Fig.7  (a) PL spectra of ML WSe2, BL WSe2 and FL MoS2. (b) The IdsVds curves of MoS2 FET transistor. (c) The IdsVds curves of WSe2 FET transistor. (d) Gate-tunable output features of the WSe2/MoS2 heterojunction device [41].
Fig.8  (a) photocurrent intensity map of WSe2/MoS2 heterojunction with 514 nm laser irradiation (Vds and VBG = 0 V). (b) IdsVds curves of WSe2/MoS2 heterojunction in dark and 514 nm laser irradiation, respectively. (c) The EL spectra of ML-WSe2/MoS2 heterojunction with different current. (d) The EL spectra of BL-WSe2/MoS2 heterojunction with different current. (e) The current-dependent EL strength of ML and BL WSe2/MoS2 heterojunction. (f) The explanation of the physical mechanism. Reproduced from Ref. [41].
Fig.9  (a) The structure of the MoTe2/graphene phototransistor. (b) SEM figure of MoTe2/graphene heterostructure and electrodes. (c) The surface potential profile from graphene to MoTe2. (d) Band structure of MoTe2 and graphene and their heterojunction. (e) Transfer characteristics of the heterostructure in dark and at laser irradiation. (f) photocurrent mapping. (g) Photocurrents of MoTe2/graphene heterostructure and MoTe2. (h) Time-dependent photocurrent of the MoTe2/graphene heterostructure and MoTe2. (i) VG-dependent photocurrent with different laser power. (j) Relation of photocurrent and photoresponsivity to incident laser power at 980 nm. Reproduced from Ref. [47].
Fig.10  (a) Schematic figure of ReS2/graphene heterostructure optoelectronic device. (b) SEM image of the heterostructure. (c) Raman and (d) PL spectra of ReS2 and heterostructure. Reproduced from Ref. [62].
Fig.11  (a) Photocurrent intensities of the heterojunction with different incident laser power. (b) Responsivity of heterojunction device and ReS2 device. (c) The drain voltage dependent photocurrent of heterojunction device and ReS2 device. Reproduced from Ref. [62].
Fig.12  (a) KPFM image taken from graphene and the ReS2 on graphene. (b) The electronic band structure. (c) Transfer curves of the ReS2/graphene heterostructure under dark and illumination. Reproduced from Ref. [62].
Fig.13  (a) Photocurrent response time of ReS2 and ReS2/graphene heterostructure. (b) Photocurrent response time of ReS2/graphene heterostructure with high time resolution. (c) Photocurrent response of the ReS2 device. (d) Photocurrent taken from the heterojunction device at 110 or 330 K condition. Reproduced from Ref. [62].
Fig.14  (a) STEM image taken from PbI2/WS2 heterostructure. (b) STEM image taken from MAPbI3/WS2 heterostructure generated through inserting MAI. (c) PL spectra of heterostructure, separate perovskite and WS2 layers. (d) Schematic of type II band alignment. Reproduced from Ref. [71].
Fig.15  (a) The schematic and the optical micrograph of the structure. (b) I−V characteristics of the heterostructure photodetector in dark and different power laser conditions. (c) Vg-dependent photocurrent. (d) Time-resolved Idrain under dark and laser conditions. Reproduced from Ref. [71].
Fig.16  (a) The model of graphene/WSe2/h-BN/graphene heterostructure with an AFM tip. (b) The operating mechanism of the heterostructure device. (c, d) The optical microscope and AFM image taken from heterostructure, respectively. Reproduced from Ref. [78].
Fig.17  (a) EL intensity map of the heterostructure. (b) The VBais-dependent Current before and after strain. (c) EL spectra of sites 1−7. (d) The second-order correlation function g(2)( τ) of sites 1, 2, and 3. (e) VBias-dependent EL spectrum. (f) VBais-dependent EL peak intensity. (g) High-resolution EL spectrum. Reproduced from Ref. [78].
1 S. Novoselov K., K. Geim A., V. Morozov S., E. Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
https://doi.org/10.1126/science.1102896
2 Y. Li Y., Gao B., Han Y., K. Chen B., Y. Huo J.. Optoelectronic characteristics and application of black phosphorus and its analogs. Front. Phys. , 2021, 16( 4): 44301
https://doi.org/10.1007/s11467-021-1052-2
3 Li L., Yu Y., J. Ye G., Ge Q., Ou X., Wu H., Feng D., H. Chen X., Zhang Y.. Black phosphorus field-effect transistors. Nat. Nanotechnol. , 2014, 9( 5): 372
https://doi.org/10.1038/nnano.2014.35
4 Britnell L., M. Ribeiro R., Eckmann A., Jalil R., D. Belle B., Mishchenko A., J. Kim Y., V. Gorbachev R., Georgiou T., V. Morozov S., N. Grigorenko A., K. Geim A., Casiraghi C., H. C. Neto A., S. Novoselov K.. Strong light−matter interactions in heterostructures of atomically thin films. Science , 2013, 340( 6138): 1311
https://doi.org/10.1126/science.1235547
5 Q. Wang Z., Y. Lü T., Q. Wang H., P. Feng Y., C. Zheng J.. Review of borophene and its potential applications. Front. Phys. , 2019, 14( 3): 33403
https://doi.org/10.1007/s11467-019-0884-5
6 J. Mannix A., F. Zhou X., Kiraly B., D. Wood J., Alducin D., D. Myers B., Liu X., L. Fisher B., Santiago U., R. Guest J., J. Yacaman M., Ponce A., R. Oganov A., C. Hersam M., P. Guisinger N.. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science , 2015, 350( 6267): 1513
https://doi.org/10.1126/science.aad1080
7 S. Novoselov K., V. Andreeva D., Ren W., Shan G.. Graphene and other two-dimensional materials. Front. Phys. , 2019, 14( 1): 13301
https://doi.org/10.1007/s11467-018-0835-6
8 H. Han G. L. Duong D. H. Keum D. J. Yun S. H. Lee Y., van der Waals metallic transition metal dichalcogenides, Chem. Rev. 118(13), 6297 ( 2018)
9 U. Liyanage A., M. Lerner M.. Use of amine electride chemistry to prepare molybdenum disulfide intercalation compounds. RSC Adv. , 2014, 4( 87): 47121
https://doi.org/10.1039/C4RA07405J
10 Chhowalla M., S. Shin H., Eda G., J. Li L., P. Loh K., Zhang H.. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. , 2013, 5( 4): 263
https://doi.org/10.1038/nchem.1589
11 Zhao Q., Guo Y., Zhou Y., Xu X., Ren Z., Bai J., Xu X., Flexibleproperties of monolayer MX2 (M = Tc , anisotropic X = S . Se). J. Phys. Chem. C , 2017, 121( 42): 23744
https://doi.org/10.1021/acs.jpcc.7b07939
12 Abdulsalam M. P. Joubert D., Optical spectrum and excitons in bulk and monolayer MX2 (M = Zr, Hf; X = S, Se) , Phys. Status Solidi B 253(4), 705 ( 2016) (b)
13 Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A.. Single-layer MoS2 transistors. Nat. Nanotechnol. , 2011, 6( 3): 147
https://doi.org/10.1038/nnano.2010.279
14 Lopez-Sanchez O., Lembke D., Kayci M., Radenovic A., Kis A.. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. , 2013, 8( 7): 497
https://doi.org/10.1038/nnano.2013.100
15 Zeng H., Dai J., Yao W., Xiao D., Cui X.. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. , 2012, 7( 8): 490
https://doi.org/10.1038/nnano.2012.95
16 Zhang W., P. Chuu C., K. Huang J., H. Chen C., L. Tsai M., H. Chang Y., T. Liang C., Z. Chen Y., L. Chueh Y., H. He J., Y. Chou M., J. Li L.. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. , 2015, 4( 1): 3826
https://doi.org/10.1038/srep03826
17 Cong C., Shang J., Wu X., Cao B., Peimyoo N., Qiu C., Sun L., Yu T.. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. , 2014, 2( 2): 131
https://doi.org/10.1002/adom.201300428
18 LaMountain T., J. Lenferink E., J. Chen Y., K. Stanev T., P. Stern N.. Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys. , 2018, 13( 4): 138114
https://doi.org/10.1007/s11467-018-0795-x
19 Liu Y., Zhou Y., Zhang H., Ran F., Zhao W., Wang L., Pei C., Zhang J., Huang X., Li H.. Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy. Front. Phys. , 2019, 14( 1): 13607
https://doi.org/10.1007/s11467-018-0854-3
20 S. Lee H., W. Min S., G. Chang Y., K. Park M., Nam T., Kim H., H. Kim J., Ryu S., Im S.. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. , 2012, 12( 7): 3695
https://doi.org/10.1021/nl301485q
21 M. Furchi M., Pospischil A., Libisch F., Burgdörfer J., Mueller T.. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. , 2014, 14( 8): 4785
https://doi.org/10.1021/nl501962c
22 Du G., Guo Z., Wang S., Zeng R., Chen Z., Liu H.. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. , 2010, 46( 7): 1106
https://doi.org/10.1039/B920277C
23 Benameur M., Radisavljevic B., Héron J., Sahoo S., Berger H., Kis A.. Visibility of dichalcogenide nanolayers. Nanotechnology , 2011, 22( 12): 125706
https://doi.org/10.1088/0957-4484/22/12/125706
24 Ji Q., Zhang Y., Shi J., Sun J., Zhang Y., Liu Z.. Morphological Engineering of CVD-grown transition metal dichalcogenides for efficient electrochemical hydrogen evolution. Adv. Mater. , 2016, 28( 29): 6207
https://doi.org/10.1002/adma.201504762
25 Imani Yengejeh S., Wen W., Wang Y.. Mechanical properties of lateral transition metal dichalcogenide heterostructures. Front. Phys. , 2021, 16( 1): 13502
https://doi.org/10.1007/s11467-020-1001-5
26 Hong X., Kim J., F. Shi S., Zhang Y., Jin C., Sun Y., Tongay S., Wu J., Zhang Y., Wang F.. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. , 2014, 9( 9): 682
https://doi.org/10.1038/nnano.2014.167
27 L. Tsai M., H. Su S., K. Chang J., S. Tsai D., H. Chen C., I. Wu C., J. Li L., J. Chen L., H. He J.. Monolayer MoS2 heterojunction solar cells. ACS Nano , 2014, 8( 8): 8317
https://doi.org/10.1021/nn502776h
28 K. Geim A., V. Grigorieva I.. Van der Waals heterostructures. Nature , 2013, 499( 7459): 419
https://doi.org/10.1038/nature12385
29 Y. Wang Y., P. Li F., Wei W., B. Huang B., Dai Y.. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys. , 2021, 16( 1): 13501
https://doi.org/10.1007/s11467-020-0991-3
30 O. Özçelik V., G. Azadani J., Yang C., J. Koester S., Low T.. Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B , 2016, 94( 3): 035125
https://doi.org/10.1103/PhysRevB.94.035125
31 Zhou Z., Yuan S., Wang J.. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures. Front. Phys. , 2021, 16( 4): 43203
https://doi.org/10.1007/s11467-021-1054-0
32 Wijethunge D., Zhang L., Tang C., Du A.. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys. , 2020, 15( 6): 63504
https://doi.org/10.1007/s11467-020-0987-z
33 Wang T., Dong A., Zhang X., K. Hocking R., Sun C.. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys. , 2022, 17( 2): 23501
https://doi.org/10.1007/s11467-021-1115-4
34 K. Kanade C., Seok H., K. Kanade V., Aydin K., U. Kim H., B. Mitta S., J. Yoo W., Kim T.. Low-temperature and large-scale production of a transition metal sulfide vertical heterostructure and its application for photodetectors. ACS Appl. Mater. Interfaces , 2021, 13( 7): 8710
https://doi.org/10.1021/acsami.0c19666
35 I. J. Wang J., Yang Y., A. Chen Y., Watanabe K., Taniguchi T., O. Churchill H., Jarillo-Herrero P.. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Nano Lett. , 2015, 15( 3): 1898
https://doi.org/10.1021/nl504750f
36 Chen K., Wan X., Wen J., Xie W., Kang Z., Zeng X., Chen H., B. Xu J.. Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano , 2015, 9( 10): 9868
https://doi.org/10.1021/acsnano.5b03188
37 Dou L., M. Yang Y., You J., Hong Z., H. Chang W., Li G., Yang Y.. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. , 2014, 5( 1): 5404
https://doi.org/10.1038/ncomms6404
38 Yang Z., Deng Y., Zhang X., Wang S., Chen H., Yang S., Khurgin J., X. Fang N., Zhang X., Ma R.. High-performance single-crystalline perovskite thin-film photodetector. Adv. Mater. , 2018, 30( 8): 1704333
https://doi.org/10.1002/adma.201704333
39 Withers F., Del Pozo-Zamudio O., Mishchenko A., P. Rooney A., Gholinia A., Watanabe K., Taniguchi T., J. Haigh S., K. Geim A., I. Tartakovskii A., S. Novoselov K.. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. , 2015, 14( 3): 301
https://doi.org/10.1038/nmat4205
40 Georgiou T., Jalil R., D. Belle B., Britnell L., V. Gorbachev R., V. Morozov S., J. Kim Y., Gholinia A., J. Haigh S., Makarovsky O., Eaves L., A. Ponomarenko L., K. Geim A., S. Novoselov K., Mishchenko A.. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. , 2013, 8( 2): 100
https://doi.org/10.1038/nnano.2012.224
41 Cheng R., Li D., Zhou H., Wang C., Yin A., Jiang S., Liu Y., Chen Y., Huang Y., Duan X.. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. , 2014, 14( 10): 5590
https://doi.org/10.1021/nl502075n
42 Jariwala D., K. Sangwan V., J. Lauhon L., J. Marks T., C. Hersam M.. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano , 2014, 8( 2): 1102
https://doi.org/10.1021/nn500064s
43 Eda G., Yamaguchi H., Voiry D., Fujita T., Chen M., Chhowalla M.. Photoluminescence from chemically exfoliated MoS2. Nano Lett. , 2011, 11( 12): 5111
https://doi.org/10.1021/nl201874w
44 Ma Y., Dai Y., Guo M., Niu C., Huang B.. Graphene adhesion on MoS2 monolayer: An ab initio study. Nanoscale , 2011, 3( 9): 3883
https://doi.org/10.1039/c1nr10577a
45 Huang Z., He C., Qi X., Yang H., Liu W., Wei X., Peng X., Zhong J.. Band structure engineering of monolayer MoS2 on h-BN: First-principles calculations. J. Phys. D Appl. Phys. , 2014, 47( 7): 075301
https://doi.org/10.1088/0022-3727/47/7/075301
46 Huang Z., Qi X., Yang H., He C., Wei X., Peng X., Zhong J.. Band-gap engineering of the h-BN/MoS2/h-BN sandwich heterostructure under an external electric field. J. Phys. D Appl. Phys. , 2015, 48( 20): 205302
https://doi.org/10.1088/0022-3727/48/20/205302
47 Yu W., Li S., Zhang Y., Ma W., Sun T., Yuan J., Fu K., Bao Q.. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small , 2017, 13( 24): 1700268
https://doi.org/10.1002/smll.201700268
48 Zhao X., Huang T., S. Ping P., Wu X., Huang P., Pan J., Wu Y., Cheng Z.. Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors (Basel) , 2018, 18( 7): 2056
https://doi.org/10.3390/s18072056
49 Lv Q., Lv R.. Two-dimensional heterostructures based on graphene and transition metal dichalcogenides: synthesis, transfer and applications. Carbon , 2019, 145 : 240
https://doi.org/10.1016/j.carbon.2019.01.008
50 Nakamura S., Senoh M., Iwasa N., N. S. i. Nagahama S.. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn. J. Appl. Phys. , 1995, 34 : L797
https://doi.org/10.1143/JJAP.34.L797
51 A. Vu Q., J. Yu W.. Electronics and optoelectronics based on two-dimensional materials. J. Korean Phys. Soc. , 2018, 73( 1): 1
https://doi.org/10.3938/jkps.73.1
52 O. Koswatta S., J. Koester S., Haensch W.. On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Dev. , 2010, 57( 12): 3222
https://doi.org/10.1109/TED.2010.2079250
53 Zhang Y., Ma W., Cao Y., Huang J., Wei Y., Cui K., Shao J.. Long wavelength infrared InAs/GaSb superlattice photodetectors with InSb-like and mixed interfaces. IEEE J. Quantum Electron. , 2011, 47( 12): 1475
https://doi.org/10.1109/JQE.2011.2168947
54 Zhao Q., Guo Y., Si K., Ren Z., Bai J., Xu X., Elastic properties of bulk, electronic ZrS2. HfSe2 from van der Waals density-functional theory. physica status solidi (b) , 2017, 254 : 1700033
https://doi.org/10.1002/pssb.201700033
55 Zhao Q., Guo Y., Zhou Y., Yao Z., Ren Z., Bai J., Xu X., alignments Band, heterostructuresof monolayer transition metal trichalcogenides MX3 (M= Zr, Hf; X= S, Se)MX2(M= Tc, dichalcogenides X= S. Se) for solar applications. Nanoscale , 2018, 10( 7): 3547
https://doi.org/10.1039/C7NR08413G
56 Mu X., Sun M.. Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl. Phys. Lett. , 2020, 117( 9): 091601
https://doi.org/10.1063/5.0018854
57 Fan J., Song J., Cheng Y., Sun M.. Pressure-dependent interfacial charge transfer excitons in WSe2−MoSe2 heterostructures in near infrared region. Results Phys. , 2021, 24 : 104110
https://doi.org/10.1016/j.rinp.2021.104110
58 H. Li X., X. Guo Y., Ren Y., J. Peng J., S. Liu J., Wang C., Zhang H.. Narrow-bandgap materials for optoelectronics applications. Front. Phys. , 2022, 17( 1): 13304
https://doi.org/10.1007/s11467-021-1055-z
59 Z. Yan Z., H. Jiang Z., P. Lu J., H. Ni Z.. Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys. , 2018, 13( 4): 138115
https://doi.org/10.1007/s11467-018-0785-z
60 Zhang N., Wu J., Yu T., Lv J., Liu H., Xu X.. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys. , 2021, 16( 2): 23201
https://doi.org/10.1007/s11467-020-0992-2
61 Lan C., Li C., Wang S., He T., Zhou Z., Wei D., Guo H., Yang H., Liu Y.. Highly responsive and broadband photodetectors based on WS2–graphene van der Waals epitaxial heterostructures. J. Mater. Chem. C , 2017, 5( 6): 1494
https://doi.org/10.1039/C6TC05037A
62 Kang B., Kim Y., J. Yoo W., Lee C.. Ultrahigh photoresponsive device based on ReS2/graphene heterostructure. Small , 2018, 14( 45): 1802593
https://doi.org/10.1002/smll.201802593
63 Xu H., Wu J., Feng Q., Mao N., Wang C., Zhang J.. High responsivity and gate tunable grapheme-MoS2 hybrid phototransistor. Small , 2014, 10( 11): 2300
https://doi.org/10.1002/smll.201303670
64 Song X., Liu X., Yu D., Huo C., Ji J., Li X., Zhang S., Zou Y., Zhu G., Wang Y., Wu M., Xie A., Zeng H.. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces , 2018, 10( 3): 2801
https://doi.org/10.1021/acsami.7b14745
65 Huo C., Liu X., Wang Z., Song X., Zeng H.. High-performance low-voltage-driven phototransistors through CsPbBr3–2D crystal van der Waals heterojunctions. Adv. Opt. Mater. , 2018, 6( 16): 1800152
https://doi.org/10.1002/adom.201800152
66 D. Stranks S., J. Snaith H.. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. , 2015, 10( 5): 391
https://doi.org/10.1038/nnano.2015.90
67 S. Jung H., G. Park N.. Perovskite solar cells: From materials to devices. Small , 2015, 11( 1): 10
https://doi.org/10.1002/smll.201402767
68 Xing G., Mathews N., S. Lim S., Yantara N., Liu X., Sabba D., Grätzel M., Mhaisalkar S., C. Sum T.. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. , 2014, 13( 5): 476
https://doi.org/10.1038/nmat3911
69 Kim H., Zhao L., S. Price J., J. Grede A., Roh K., N. Brigeman A., Lopez M., P. Rand B., C. Giebink N.. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. , 2018, 9( 1): 4893
https://doi.org/10.1038/s41467-018-07383-8
70 Kumar S., Jagielski J., Kallikounis N., H. Kim Y., Wolf C., Jenny F., Tian T., J. Hofer C., C. Chiu Y., J. Stark W., W. Lee T., J. Shih C.. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: Achieving recommendation 2020 color coordinates. Nano Lett. , 2017, 17( 9): 5277
https://doi.org/10.1021/acs.nanolett.7b01544
71 Erkılıç U., Solís-Fernández P., G. Ji H., Shinokita K., C. Lin Y., Maruyama M., Suenaga K., Okada S., Matsuda K., Ago H.. Vapor phase selective growth of two-dimensional perovskite/WS2 heterostructures for optoelectronic applications. ACS Appl. Mater. Interfaces , 2019, 11( 43): 40503
https://doi.org/10.1021/acsami.9b13904
72 Palacios-Berraquero C., M. Kara D., R. P. Montblanch A., Barbone M., Latawiec P., Yoon D., K. Ott A., Loncar M., C. Ferrari A., Atatüre M.. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. , 2017, 8( 1): 15093
https://doi.org/10.1038/ncomms15093
73 D. Shepard G., Ajayi O., Li X., Zhu X.-Y., Hone J., Strauf S.. Nanobubble induced formation of quantum emitters in monolayer semiconductors. 2D Mater. , 2017, 4 : 021019
https://doi.org/10.1088/2053-1583/aa629d
74 Peyskens F., Chakraborty C., Muneeb M., Van Thourhout D., Englund D.. Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. , 2019, 10( 1): 4435
https://doi.org/10.1038/s41467-019-12421-0
75 Blauth M., Jürgensen M., Vest G., Hartwig O., Prechtl M., Cerne J., J. Finley J., Kaniber M.. Coupling single photons from discrete quantum emitters in WSe2 to lithographically defined plasmonic slot waveguides. Nano Lett. , 2018, 18( 11): 6812
https://doi.org/10.1021/acs.nanolett.8b02687
76 Luo Y., D. Shepard G., V. Ardelean J., A. Rhodes D., Kim B., Barmak K., C. Hone J., Strauf S.. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. , 2018, 13( 12): 1137
https://doi.org/10.1038/s41565-018-0275-z
77 Withers F., Del Pozo-Zamudio O., Schwarz S., Dufferwiel S., Walker P., Godde T., Rooney A., Gholinia A., Woods C., Blake P., J. Haigh S., Watanabe K., Taniguchi T., L. Aleiner I., K. Geim A., I. Fal’ko V., I. Tartakovskii A., S. Novoselov K.. WSe2 light-emitting tunneling transistors with enhanced brightness at room temperature. Nano Lett. , 2015, 15( 12): 8223
https://doi.org/10.1021/acs.nanolett.5b03740
78 P. So J., R. Kim H., Baek H., Y. Jeong K., C. Lee H., Huh W., S. Kim Y., Watanabe K., Taniguchi T., Kim J., H. Lee C., G. Park H.. Electrically driven strain-induced deterministic single-photon emitters in a van der Waals heterostructure. Sci. Adv. , 2021, 7( 43): eabj3176
https://doi.org/10.1126/sciadv.abj3176
[1] Zhaobo Zhou, Shijun Yuan, Jinlan Wang. Theoretical progress on direct Z-scheme photocatalysis of two-dimensional heterostructures[J]. Front. Phys. , 2021, 16(4): 43203-.
[2] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[3] Sadegh Imani Yengejeh, William Wen, Yun Wang. Mechanical properties of lateral transition metal dichalcogenide heterostructures[J]. Front. Phys. , 2021, 16(1): 13502-.
[4] Dimuthu Wijethunge, Lei Zhang, Cheng Tang, Aijun Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching[J]. Front. Phys. , 2020, 15(6): 63504-.
[5] Yue Liu (刘月), Yu Zhou (周煜), Hao Zhang (张昊), Feirong Ran (冉飞荣), Weihao Zhao (赵炜昊), Lin Wang (王琳), Chengjie Pei (裴成杰), Jindong Zhang (张锦东), Xiao Huang (黄晓), Hai Li (李海). Probing interlayer interactions in WSe2-graphene heterostructures by ultralow-frequency Raman spectroscopy[J]. Front. Phys. , 2019, 14(1): 13607-.
[6] Tataiana Latychevskaia, Seok-Kyun Son, Yaping Yang, Dale Chancellor, Michael Brown, Servet Ozdemir, Ivan Madan, Gabriele Berruto, Fabrizio Carbone, Artem Mishchenko, Kostya S. Novoselov. Stacking transition in rhombohedral graphite[J]. Front. Phys. , 2019, 14(1): 13608-.
[7] Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics[J]. Front. Phys. , 2018, 13(4): 138114-.
[8] Gang Luo, Zhuo-Zhi Zhang, Hai-Ou Li, Xiang-Xiang Song, Guang-Wei Deng, Gang Cao, Ming Xiao, Guo-Ping Guo. Quantum dot behavior in transition metal dichalcogenides nanostructures[J]. Front. Phys. , 2017, 12(4): 128502-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed