Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 53305    https://doi.org/10.1007/s11467-023-1304-4
RESEARCH ARTICLE
Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding
Fang Li1, Jun Fu2, Mingzhu Xue3, You Li1, Hualing Zeng2, Erjun Kan1, Ting Hu1(), Yi Wan1,3()
1. MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
2. International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
3. State Key Laboratory for Artificial Microstructure & Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
 Download: PDF(5330 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

One variety of ferroelectricity that results from lateral relative movements between the adjacent atomic layers is referred to as sliding ferroelectricity, which generates an interfacial charge transfer and hence a polarization reversal. The mechanism of sliding ferroelectricity existent in van der Waals crystals is quite distinct from the conventional ferroelectric switching mechanisms mediated by ion displacement. It creates new possibilities for the design of two-dimensional (2D) ferroelectrics since it can be achieved even in non-polar systems. Before 2D ferroelectrics can be widely employed for practical implementations, however, there is still significant work to be done on several fronts, such as exploring ferroelectricity possibly in more potential 2D systems. Here, we report the experimental observation of room-temperature robust vertical ferroelectricity in layered semiconducting rhenium diselenide (ReSe2), a representative member of the transition metal dichalcogenides material family, based on a combined research of nanoscale piezoresponse and second harmonic generation measurements. While no such ferroelectric behavior was seen in 1L ReSe2, 2L ReSe2 exhibits vertical ferroelectricity at ambient environment. Based on density-functional theory calculations, we deduce that the microscopic origin of ferroelectricity for ReSe2 is uncompensated vertical charge transfer that is dependent on in-plane translation and switchable upon interlayer sliding. Our findings have important ramifications for the ongoing development of sliding ferroelectricity since the semiconducting properties and low switching barrier of ReSe2 open up the fascinating potential for functional nanoelectronics applications.

Keywords rhenium diselenide      transition metal dichalcogenides      vertical ferroelectricity      sliding ferroelectricity     
Corresponding Author(s): Ting Hu,Yi Wan   
Issue Date: 07 June 2023
 Cite this article:   
Fang Li,Jun Fu,Mingzhu Xue, et al. Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding[J]. Front. Phys. , 2023, 18(5): 53305.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1304-4
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/53305
Fig.1  (a) Top and side views of 1T′-ReSe2, where the “diamond” chains of Re4 clusters have been highlighted in red. (b) XRD pattern of the prepared ReSe2 sample and the standard card of triclinic ReSe2 (JCPDS No. 50-0537). Inset: The ReSe2 bulk-form crystals prepared by the CVT method in the sealed ampoule. (c) High-resolution XPS spectra collected from the prepared ReSe2 sample.
Fig.2  (a) Optical microscopy image of a mechanically exfoliated ReSe2 supported atop SiO2/Si wafer. (b, c) TEM images of ReSe2. (d) SAED patterns of ReSe2. (e, f) A series of Raman spectra obtained from a ReSe2 sample, recorded as a function of the angle between the linearly polarized excitation and the Re chains at the excitation wavelength of 532 nm (e) and 633 nm (f) under the parallel configuration. The raw spectra are collected from a few-layer ReSe2 region as marked by a red cross-shaped star in (a) and vertically offset for clarity.
Fig.3  (a) Optical microscopy image of the ultrathin ReSe2 samples with 1L and 2L regions on PDMS. (b) Contrast distribution and gray value of the red dotted line shown in the inset of (b). Inset: The green channel image of (a) obtained by the ImageJ software.
Fig.4  (a) Optical microscopy image of a ReSe2 flake, transferred onto Pt/Ni/SiO2/Si substrate. (b) AFM image for the region denoted by a white dashed square in (a). (c, d) Butterfly-shaped amplitude-voltage loops (c) and phase-voltage hysteretic curves (d) for 1L (region I) and 2L (region II) ReSe2, obtained by the switching spectroscopic PFM technique. (e, f) AFM images of the areas before (e) and after (f) ferroelectric switching. No obvious morphology damage occurred. (g) PFM amplitude image for a 2L ReSe2 with a written box-in-box pattern obtained under reverse DC voltages. (h) PFM phase image corresponding to (g).
Fig.5  (a) Room-temperature SHG intensity obtained from 2L ReSe2 as a function of the linear excitation polarization angle, along the horizontal (I//) and vertical (I) directions in laboratory coordinates. (b) Temperature dependence of SHG intensity for 2L and bulk-form ReSe2.
Fig.6  (a) The polarization value contour plot of 2L ReS2 as a function of sliding distance (la, lb). The states A and A′ are marked. The white line represents the path for ferroelectric transition. (b) Side view of the crystal structure of the two energy-degenerate ferroelectric states (A and A′) of 2L ReSe2. The red arrows denote the direction of electric polarization. (c) The energy pathway for ferroelectric transition.
1 W. Martin L. , M. Rappe A. . Thin-film ferroelectric materials and their applications. Nat. Rev. Mater., 2016, 2(2): 16087
https://doi.org/10.1038/natrevmats.2016.87
2 Wu M., 100 years of ferroelectricity, Nat. Rev. Phys. 3, 726 (2021)
3 Guan Z. , Hu H. , Shen X. , Xiang P. , Zhong N. , Chu J. , Duan C. . Recent progress in two‐dimensional ferroelectric materials. Adv. Electron. Mater., 2020, 6(1): 1900818
https://doi.org/10.1002/aelm.201900818
4 Wang C. , You L. , Cobden D. , Wang J. . Towards two-dimensional van der Waals ferroelectrics. Nat. Mater., 2023, 22(5): 542
https://doi.org/10.1038/s41563-022-01422-y
5 Liu F. , You L. , L. Seyler K. , Li X. , Yu P. , Lin J. , Wang X. , Zhou J. , Wang H. , He H. , T. Pantelides S. , Zhou W. , Sharma P. , Xu X. , M. Ajayan P. , Wang J. , Liu Z. . Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun., 2016, 7(1): 12357
https://doi.org/10.1038/ncomms12357
6 Li Y. , Fu J. , Mao X. , Chen C. , Liu H. , Gong M. , Zeng H. . Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
https://doi.org/10.1038/s41467-021-26200-3
7 Zhou S. , You L. , Zhou H. , Pu Y. , Gui Z. , Wang J. . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
https://doi.org/10.1007/s11467-020-0986-0
8 Cui C. , J. Hu W. , Yan X. , Addiego C. , Gao W. , Wang Y. , Wang Z. , Li L. , Cheng Y. , Li P. , Zhang X. , N. Alshareef H. , Wu T. , Zhu W. , Pan X. , J. Li L. . Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett., 2018, 18(2): 1253
https://doi.org/10.1021/acs.nanolett.7b04852
9 Wan S. , Li Y. , Li W. , Mao X. , Wang C. , Chen C. , Dong J. , Nie A. , Xiang J. , Liu Z. , Zhu W. , Zeng H. . Nonvolatile ferroelectric memory effect in ultrathin α‐In2Se3. Adv. Funct. Mater., 2019, 29(20): 1808606
https://doi.org/10.1002/adfm.201808606
10 Cai Y.Yang J.Wang F.Li S.Wang Y.Zhan X.Wang F.Cheng R.Wang Z.He J., Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors, Front. Phys. 18(3), 33308 (2023)
11 Li L. , Wu M. . Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano, 2017, 11(6): 6382
https://doi.org/10.1021/acsnano.7b02756
12 Wu M. , Li J. . Sliding ferroelectricity in 2D van der Waals materials: Related physics and future opportunities. Proc. Natl. Acad. Sci. USA, 2021, 118(50): e2115703118
https://doi.org/10.1073/pnas.2115703118
13 Fei Z. , Zhao W. , A. Palomaki T. , Sun B. , K. Miller M. , Zhao Z. , Yan J. , Xu X. , H. Cobden D. . Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560(7718): 336
https://doi.org/10.1038/s41586-018-0336-3
14 Yang Q. , Wu M. , Li J. . Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett., 2018, 9(24): 7160
https://doi.org/10.1021/acs.jpclett.8b03654
15 Sharma P.X. Xiang F.F. Shao D.Zhang D.Y. Tsymbal E.R. Hamilton A.Seidel J., A room-temperature ferroelectric semimetal, Sci. Adv. 5(7), eaax5080 (2019)
16 Yasuda K. , Wang X. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. . Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372(6549): 1458
https://doi.org/10.1126/science.abd3230
17 V. Stern M. , Waschitz Y. , Cao W. , Nevo I. , Watanabe K. , Taniguchi T. , Sela E. , Urbakh M. , Hod O. , B. Shalom M. . Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372(6549): 1462
https://doi.org/10.1126/science.abe8177
18 R. Woods C. , Ares P. , Nevison-Andrews H. , J. Holwill M. , Fabregas R. , Guinea F. , K. Geim A. , S. Novoselov K. , R. Walet N. , Fumagalli L. . Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun., 2021, 12(1): 347
https://doi.org/10.1038/s41467-020-20667-2
19 Wang Y. , Jiang S. , Xiao J. , Cai X. , Zhang D. , Wang P. , Ma G. , Han Y. , Huang J. , Watanabe K. , Taniguchi T. , Guo Y. , Wang L. , S. Mayorov A. , Yu G. . Ferroelectricity in hBN intercalated double-layer graphene. Front. Phys., 2022, 17(4): 43504
https://doi.org/10.1007/s11467-022-1175-0
20 Hu H. , Wang H. , Sun Y. , Li J. , Wei J. , Xie D. , Zhu H. . Out-of-plane and in-plane ferroelectricity of atom-thick two-dimensional InSe. Nanotechnology, 2021, 32(38): 385202
https://doi.org/10.1088/1361-6528/ac0ac5
21 Sui F. , Jin M. , Zhang Y. , Qi R. , N. Wu Y. , Huang R. , Yue F. , Chu J. . Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor. Nat. Commun., 2023, 14(1): 36
https://doi.org/10.1038/s41467-022-35490-0
22 Rogée L. , Wang L. , Zhang Y. , Cai S. , Wang P. , Chhowalla M. , Ji W. , P. Lau S. . Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science, 2022, 376(6596): 973
https://doi.org/10.1126/science.abm5734
23 Wan Y. , Hu T. , Mao X. , Fu J. , Yuan K. , Song Y. , Gan X. , Xu X. , Xue M. , Cheng X. , Huang C. , Yang J. , Dai L. , Zeng H. , Kan E. . Room-temperature ferroelectricity in 1T′-ReS2 multilayers. Phys. Rev. Lett., 2022, 128(6): 067601
https://doi.org/10.1103/PhysRevLett.128.067601
24 P. Miao L. , Ding N. , Wang N. , Shi C. , Y. Ye H. , Li L. , F. Yao Y. , Dong S. , Zhang Y. . Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal. Nat. Mater., 2022, 21(10): 1158
https://doi.org/10.1038/s41563-022-01322-1
25 Jariwala B. , Voiry D. , Jindal A. , A. Chalke B. , Bapat R. , Thamizhavel A. , Chhowalla M. , Deshmukh M. , Bhattacharya A. . Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater., 2016, 28(10): 3352
https://doi.org/10.1021/acs.chemmater.6b00364
26 Ran J.Chen L.Wang D.Talebian-Kiakalaieh A.Jiao Y.Adel Hamza M.Qu Y.Jing L.Davey K.Z. Qiao S., Atomic‐level regulated two‐dimensional ReSe2: A universal platform boosting photocatalysis, Adv. Mater. 2023, 2210164 (2023)
27 Xing L. , Yan X. , Zheng J. , Xu G. , Lu Z. , Liu L. , Wang J. , Wang P. , Pan X. , Jiao L. . Highly crystalline ReSe2 atomic layers synthesized by chemical vapor transport. InfoMat, 2019, 1(4): 552
https://doi.org/10.1002/inf2.12041
28 S. Rosyadi A. , H. Y. Chan A. , X. Li J. , H. Liu C. , H. Ho C. . Formation of van der Waals stacked pn homojunction optoelectronic device of multilayered ReSe2 by Cr doping. Adv. Opt. Mater., 2022, 10(13): 2200392
https://doi.org/10.1002/adom.202200392
29 Hafeez M. , Gan L. , Li H. , Ma Y. , Zhai T. . Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater., 2016, 28(37): 8296
https://doi.org/10.1002/adma.201601977
30 Blake P. , W. Hill E. , H. Castro Neto A. , S. Novoselov K. , Jiang D. , Yang R. , J. Booth T. , K. Geim A. . Making graphene visible. Appl. Phys. Lett., 2007, 91(6): 063124
https://doi.org/10.1063/1.2768624
31 Li H. , Lu G. , Yin Z. , He Q. , Li H. , Zhang Q. , Zhang H. . Optical identification of single‐and few‐layer MoS2 sheets. Small, 2012, 8(5): 682
https://doi.org/10.1002/smll.201101958
32 Y. Wang Y. , D. Zhou J. , Jiang J. , T. Yin T. , X. Yin Z. , Liu Z. , X. Shen Z. . In-plane optical anisotropy in ReS2 flakes determined by angle-resolved polarized optical contrast spectroscopy. Nanoscale, 2019, 11(42): 20199
https://doi.org/10.1039/C9NR07502J
33 Kresse G.Hafner J., Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
34 Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
35 Kresse G. , Joubert D. . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
36 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
[1] fop-21304-OF-wanyi_suppl_1 Download
[1] Hui Zeng, Yao Wen, Lei Yin, Ruiqing Cheng, Hao Wang, Chuansheng Liu, Jun He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides[J]. Front. Phys. , 2023, 18(5): 53603-.
[2] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[3] Mo Cheng, Junbo Yang, Xiaohui Li, Hui Li, Ruofan Du, Jianping Shi, Jun He. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies[J]. Front. Phys. , 2022, 17(6): 63601-.
[4] Rui Yang, Jianuo Fan, Mengtao Sun. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties[J]. Front. Phys. , 2022, 17(4): 43202-.
[5] Yuan-Yuan Wang, Feng-Ping Li, Wei Wei, Bai-Biao Huang, Ying Dai. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides[J]. Front. Phys. , 2021, 16(1): 13501-.
[6] Yuan Gan, Jiyuan Liang, Chang-woo Cho, Si Li, Yanping Guo, Xiaoming Ma, Xuefeng Wu, Jinsheng Wen, Xu Du, Mingquan He, Chang Liu, Shengyuan A. Yang, Kedong Wang, Liyuan Zhang. Bandgap opening in MoTe2 thin flakes induced by surface oxidation[J]. Front. Phys. , 2020, 15(3): 33602-.
[7] Zi-Wu Wang, Run-Ze Li, Xi-Ying Dong, Yao Xiao, Zhi-Qing Li. Temperature dependence of the excitonic spectra of monolayer transition metal dichalcogenides[J]. Front. Phys. , 2018, 13(4): 137305-.
[8] Trevor LaMountain, Erik J. Lenferink, Yen-Jung Chen, Teodor K. Stanev, Nathaniel P. Stern. Environmental engineering of transition metal dichalcogenide optoelectronics[J]. Front. Phys. , 2018, 13(4): 138114-.
[9] Gang Luo, Zhuo-Zhi Zhang, Hai-Ou Li, Xiang-Xiang Song, Guang-Wei Deng, Gang Cao, Ming Xiao, Guo-Ping Guo. Quantum dot behavior in transition metal dichalcogenides nanostructures[J]. Front. Phys. , 2017, 12(4): 128502-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed