|
|
Recent developments in CVD growth and applications of 2D transition metal dichalcogenides |
Hui Zeng1, Yao Wen1, Lei Yin1, Ruiqing Cheng1, Hao Wang1, Chuansheng Liu1, Jun He1,2,3,4( ) |
1. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China 2. Wuhan Institute of Quantum Technology, Wuhan 430206, China 3. Hubei Luojia Laboratory, Wuhan 430079, China 4. Shanxi Normal University, Taiyuan 030031, China |
|
|
Abstract Two-dimensional (2D) transition metal dichalcogenides (TMDs) with fascinating electronic energy band structures, rich valley physical properties and strong spin–orbit coupling have attracted tremendous interest, and show great potential in electronic, optoelectronic, spintronic and valleytronic fields. Stacking 2D TMDs have provided unprecedented opportunities for constructing artificial functional structures. Due to the low cost, high yield and industrial compatibility, chemical vapor deposition (CVD) is regarded as one of the most promising growth strategies to obtain high-quality and large-area 2D TMDs and heterostructures. Here, state-of-the-art strategies for preparing TMDs details of growth control and related heterostructures construction via CVD method are reviewed and discussed, including wafer-scale synthesis, phase transition, doping, alloy and stacking engineering. Meanwhile, recent progress on the application of multi-functional devices is highlighted based on 2D TMDs. Finally, challenges and prospects are proposed for the practical device applications of 2D TMDs.
|
Keywords
two-dimensional (2D) semiconductor
transition metal dichalcogenides (TMDs)
chemical vapor deposition (CVD)
heterostructures
device applications
|
Corresponding Author(s):
Jun He
|
Issue Date: 12 May 2023
|
|
1 |
B. Desai S., R. Madhvapathy S., B. Sachid A., P. Llinas J., Wang Q., H. Ahn G., Pitner G., J. Kim M., Bokor J., Hu C., S. P. Wong H., Javey A.. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354(6308): 99
https://doi.org/10.1126/science.aah4698
|
2 |
S. Ross J., Klement P., M. Jones A., J. Ghimire N., Yan J., Mandrus D., Taniguchi T., Watanabe K., Kitamura K., Yao W., H. Cobden D., Xu X.. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol., 2014, 9(4): 268
https://doi.org/10.1038/nnano.2014.26
|
3 |
Zhang F., Zhang H., Krylyuk S., A. Milligan C., Zhu Y., Y. Zemlyanov D., A. Bendersky L., P. Burton B., V. Davydov A., Appenzeller J.. Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories. Nat. Mater., 2019, 18(1): 55
https://doi.org/10.1038/s41563-018-0234-y
|
4 |
Akamatsu T.Ideue T.Zhou L.Dong Y.Kitamura S. Yoshii M.Yang D.Onga M.Nakagawa Y.Watanabe K. Taniguchi T.Laurienzo J.Huang J.Ye Z.Morimoto T. Yuan H.Iwasa Y., A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
|
5 |
A. Benítez L., F. Sierra J., Savero Torres W., Arrighi A., Bonell F., V. Costache M., O. Valenzuela S.. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys., 2018, 14(3): 303
https://doi.org/10.1038/s41567-017-0019-2
|
6 |
F. Mak K., L. McGill K., Park J., L. McEuen P.. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489
https://doi.org/10.1126/science.1250140
|
7 |
Lu J., Zheliuk O., Leermakers I., F. Yuan N., Zeitler U., T. Law K., Ye J.. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science, 2015, 350(6266): 1353
https://doi.org/10.1126/science.aab2277
|
8 |
S. Novoselov K., K. Geim A., V. Morozov S., e. Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
|
9 |
Wang J., Xu X., Cheng T., Gu L., Qiao R., Liang Z., Ding D., Hong H., Zheng P., Zhang Z., Zhang Z., Zhang S., Cui G., Chang C., Huang C., Qi J., Liang J., Liu C., Zuo Y., Xue G., Fang X., Tian J., Wu M., Guo Y., Yao Z., Jiao Q., Liu L., Gao P., Li Q., Yang R., Zhang G., Tang Z., Yu D., Wang E., Lu J., Zhao Y., Wu S., Ding F., Liu K.. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol., 2022, 17(1): 33
https://doi.org/10.1038/s41565-021-01004-0
|
10 |
Xu X., Zhang Z., Qiu L., Zhuang J., Zhang L., Wang H., Liao C., Song H., Qiao R., Gao P., Hu Z., Liao L., Liao Z., Yu D., Wang E., Ding F., Peng H., Liu K.. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol., 2016, 11(11): 930
https://doi.org/10.1038/nnano.2016.132
|
11 |
Liu C., Xu X., Qiu L., Wu M., Qiao R., Wang L., Wang J., Niu J., Liang J., Zhou X., Zhang Z., Peng M., Gao P., Wang W., Bai X., Ma D., Jiang Y., Wu X., Yu D., Wang E., Xiong J., Ding F., Liu K.. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat. Chem., 2019, 11(8): 730
https://doi.org/10.1038/s41557-019-0290-1
|
12 |
U. Kim H., Kanade V., Kim M., S. Kim K., S. An B., Seok H., Yoo H., E. Chaney L., I. Kim S., W. Yang C., Y. Yeom G., Whang D., H. Lee J., Kim T.. Wafer-scale and low‐temperature growth of 1T‐WS2 film for efficient and stable hydrogen evolution reaction. Small, 2020, 16(6): 1905000
https://doi.org/10.1002/smll.201905000
|
13 |
C. Lin Y., H. Yeh C., C. Lin H., D. Siao M., Liu Z., Nakajima H., Okazaki T., Y. Chou M., Suenaga K., W. Chiu P.. Stable 1T tungsten disulfide monolayer and its junctions: Growth and atomic structures. ACS Nano, 2018, 12(12): 12080
https://doi.org/10.1021/acsnano.8b04979
|
14 |
Gao J., D. Kim Y., Liang L., C. Idrobo J., Chow P., Tan J., Li B., Li L., G. Sumpter B., M. Lu T., Meunier V., Hone J., Koratkar N.. Transition‐metal substitution doping in synthetic atomically thin semiconductors. Adv. Mater., 2016, 28(44): 9735
https://doi.org/10.1002/adma.201601104
|
15 |
Umrao S.Jeon J.M. Jeon S.J. Choi Y.Lee S., A homogeneous atomic layer MoS2(1−x) Se2x alloy prepared by low-pressure chemical vapor deposition, and its properties, Nanoscale 9(2), 594 (2017)
|
16 |
Yoo Y., P. Degregorio Z., E. Johns J.. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc., 2015, 137(45): 14281
https://doi.org/10.1021/jacs.5b06643
|
17 |
Gao Y., L. Hong Y., C. Yin L., Wu Z., Yang Z., L. Chen M., Liu Z., Ma T., M. Sun D., Ni Z., L. Ma X., M. Cheng H., Ren W.. Ultrafast growth of high‐quality monolayer WSe2 on Au. Adv. Mater., 2017, 29(29): 1700990
https://doi.org/10.1002/adma.201700990
|
18 |
Chen J., Zhao X., Grinblat G., Chen Z., J. Tan S., Fu W., Ding Z., Abdelwahab I., Li Y., Geng D., Liu Y., Leng K., Liu B., Liu W., Tang W., A. Maier S., J. Pennycook S., P. Loh K.. Homoepitaxial growth of large‐scale highly organized transition metal dichalcogenide patterns. Adv. Mater., 2018, 30(4): 1704674
https://doi.org/10.1002/adma.201704674
|
19 |
Y. Kim S., Kwak J., V. Ciobanu C., Y. Kwon S.. Recent developments in controlled vapor‐phase growth of 2D group 6 transition metal dichalcogenides. Adv. Mater., 2019, 31(20): 1804939
https://doi.org/10.1002/adma.201804939
|
20 |
Li H., Wang X., Zhu X., Duan X., Pan A.. Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chem. Soc. Rev., 2018, 47(20): 7504
https://doi.org/10.1039/C8CS00418H
|
21 |
L. Shang S., Lindwall G., Wang Y., M. Redwing J., Anderson T., K. Liu Z.. Lateral versus vertical growth of two-dimensional layered transition-metal dichalcogenides: Thermodynamic insight into MoS2. Nano Lett., 2016, 16(9): 5742
https://doi.org/10.1021/acs.nanolett.6b02443
|
22 |
Gong Y., Lin J., Wang X., Shi G., Lei S., Lin Z., Zou X., Ye G., Vajtai R., I. Yakobson B., Terrones H., Terrones M., K. Tay B., Lou J., T. Pantelides S., Liu Z., Zhou W., M. Ajayan P.. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater., 2014, 13(12): 1135
https://doi.org/10.1038/nmat4091
|
23 |
Yang P., Zou X., Zhang Z., Hong M., Shi J., Chen S., Shu J., Zhao L., Jiang S., Zhou X., Huan Y., Xie C., Gao P., Chen Q., Zhang Q., Liu Z., Zhang Y.. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun., 2018, 9(1): 979
https://doi.org/10.1038/s41467-018-03388-5
|
24 |
Yu L., El-Damak D., Radhakrishna U., Ling X., Zubair A., Lin Y., Zhang Y., H. Chuang M., H. Lee Y., Antoniadis D., Kong J., Chandrakasan A., Palacios T.. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett., 2016, 16(10): 6349
https://doi.org/10.1021/acs.nanolett.6b02739
|
25 |
Cheng R., Wang F., Yin L., Wang Z., Wen Y., A. Shifa T., He J.. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron., 2018, 1(6): 356
https://doi.org/10.1038/s41928-018-0086-0
|
26 |
Xue H., Dai Y., Kim W., Wang Y., Bai X., Qi M., Halonen K., Lipsanen H., Sun Z.. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure. Nanoscale, 2019, 11(7): 3240
https://doi.org/10.1039/C8NR09248F
|
27 |
Yin L., He P., Cheng R., Wang F., Wang F., Wang Z., Wen Y., He J.. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices. Nat. Commun., 2019, 10(1): 4133
https://doi.org/10.1038/s41467-019-12200-x
|
28 |
Si M., Y. Liao P., Qiu G., Duan Y., D. Ye P.. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano, 2018, 12(7): 6700
https://doi.org/10.1021/acsnano.8b01810
|
29 |
Wang Y., Bai X., Chu J., Wang H., Rao G., Pan X., Du X., Hu K., Wang X., Gong C., Yin C., Yang C., Yan C., Wu C., Shuai Y., Wang X., Liao M., Xiong J.. Record-low subthreshold-swing negative-capacitance 2D field‐effect transistors. Adv. Mater., 2020, 32(46): 2005353
https://doi.org/10.1002/adma.202005353
|
30 |
Zhou B., Li Z., Wang J., Niu X., Luan C.. Tunable valley splitting and an anomalous valley Hall effect in hole-doped WS2 by proximity coupling with a ferromagnetic MnO2 monolayer. Nanoscale, 2019, 11(28): 13567
https://doi.org/10.1039/C9NR03315G
|
31 |
Dankert A., P. Dash S.. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun., 2017, 8(1): 16093
https://doi.org/10.1038/ncomms16093
|
32 |
L. Sanchez O., Ovchinnikov D., Misra S., Allain A., Kis A.. Valley polarization by spin injection in a light-emitting van der Waals heterojunction. Nano Lett., 2016, 16(9): 5792
https://doi.org/10.1021/acs.nanolett.6b02527
|
33 |
Lee J., F. Mak K., Shan J.. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol., 2016, 11(5): 421
https://doi.org/10.1038/nnano.2015.337
|
34 |
Schmitt D., P. Bange J., Bennecke W., AlMutairi A., Meneghini G., Watanabe K., Taniguchi T., Steil D., R. Luke D., T. Weitz R., Steil S., S. M. Jansen G., Brem S., Malic E., Hofmann S., Reutzel M., Mathias S.. Formation of moiré interlayer excitons in space and time. Nature, 2022, 608(7923): 499
https://doi.org/10.1038/s41586-022-04977-7
|
35 |
Zhang Z., Chen P., Yang X., Liu Y., Ma H., Li J., Zhao B., Luo J., Duan X., Duan X.. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl. Sci. Rev., 2020, 7(4): 737
https://doi.org/10.1093/nsr/nwz223
|
36 |
C. Chang M., H. Ho P., F. Tseng M., Y. Lin F., H. Hou C., Lin I., Wang H., P. Huang P., H. Chiang C., C. Yang Y., T. Wang I., Y. Du H., Y. Wen C., J. Shyue J., W. Chen C., H. Chen K., W. Chiu P., C. Chen L.. Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method. Nat. Commun., 2020, 11(1): 3682
https://doi.org/10.1038/s41467-020-17517-6
|
37 |
Zhang Z., Yang X., Liu K., Wang R.. Epitaxy of 2D materials toward single crystals. Adv. Sci. (Weinh.), 2022, 9(8): 2105201
https://doi.org/10.1002/advs.202105201
|
38 |
Wu T., Zhang X., Yuan Q., Xue J., Lu G., Liu Z., Wang H., Wang H., Ding F., Yu Q., Xie X., Jiang M.. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys. Nat. Mater., 2016, 15(1): 43
https://doi.org/10.1038/nmat4477
|
39 |
Wang H., Xu X., Li J., Lin L., Sun L., Sun X., Zhao S., Tan C., Chen C., Dang W., Ren H., Zhang J., Deng B., L. Koh A., Liao L., Kang N., Chen Y., Xu H., Ding F., Liu K., Peng H., Liu Z.. Surface monocrystallization of copper foil for fast growth of large single‐crystal graphene under free molecular flow. Adv. Mater., 2016, 28(40): 8968
https://doi.org/10.1002/adma.201603579
|
40 |
Wang L., Xu X., Zhang L., Qiao R., Wu M., Wang Z., Zhang S., Liang J., Zhang Z., Zhang Z., Chen W., Xie X., Zong J., Shan Y., Guo Y., Willinger M., Wu H., Li Q., Wang W., Gao P., Wu S., Zhang Y., Jiang Y., Yu D., Wang E., Bai X., J. Wang Z., Ding F., Liu K.. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570(7759): 91
https://doi.org/10.1038/s41586-019-1226-z
|
41 |
S. Lee J., H. Choi S., J. Yun S., I. Kim Y., Boandoh S., H. Park J., G. Shin B., Ko H., H. Lee S., M. Kim Y., H. Lee Y., K. Kim K., M. Kim S.. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science, 2018, 362(6416): 817
https://doi.org/10.1126/science.aau2132
|
42 |
A. N. Duerloo K., Li Y., J. Reed E.. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun., 2014, 5(1): 4214
https://doi.org/10.1038/ncomms5214
|
43 |
Xu X., Chen S., Liu S., Cheng X., Xu W., Li P., Wan Y., Yang S., Gong W., Yuan K., Gao P., Ye Y., Dai L.. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. J. Am. Chem. Soc., 2019, 141(5): 2128
https://doi.org/10.1021/jacs.8b12230
|
44 |
Xu X., Pan Y., Liu S., Han B., Gu P., Li S., Xu W., Peng Y., Han Z., Chen J., Gao P., Ye Y.. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science, 2021, 372(6538): 195
https://doi.org/10.1126/science.abf5825
|
45 |
Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., K. Banerjee S., Colombo L.. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768
https://doi.org/10.1038/nnano.2014.207
|
46 |
M. Arden W.. The international technology roadmap for semiconductors — Perspectives and challenges for the next 15 years. Curr. Opin. Solid State Mater. Sci., 2002, 6(5): 371
https://doi.org/10.1016/S1359-0286(02)00116-X
|
47 |
Lin Z., Liu Y., Halim U., Ding M., Liu Y., Wang Y., Jia C., Chen P., Duan X., Wang C., Song F., Li M., Wan C., Huang Y., Duan X.. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562(7726): 254
https://doi.org/10.1038/s41586-018-0574-4
|
48 |
Kaasbjerg K., S. Thygesen K., W. Jacobsen K.. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B, 2012, 85(11): 115317
https://doi.org/10.1103/PhysRevB.85.115317
|
49 |
Li N., Wang Q., Shen C., Wei Z., Yu H., Zhao J., Lu X., Wang G., He C., Xie L., Zhu J., Du L., Yang R., Shi D., Zhang G.. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron., 2020, 3(11): 711
https://doi.org/10.1038/s41928-020-00475-8
|
50 |
Seol M., H. Lee M., Kim H., W. Shin K., Cho Y., Jeon I., Jeong M., I. Lee H., Park J., J. Shin H.. High‐throughput growth of Wafer-scale monolayer transition metal dichalcogenide via vertical ostwald ripening. Adv. Mater., 2020, 32(42): 2003542
https://doi.org/10.1002/adma.202003542
|
51 |
Cai Z., Liu B., Zou X., M. Cheng H.. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev., 2018, 118(13): 6091
https://doi.org/10.1021/acs.chemrev.7b00536
|
52 |
H. Zeng L., Wu D., H. Lin S., Xie C., Y. Yuan H., Lu W., P. Lau S., Chai Y., B. Luo L., J. Li Z., H. Tsang Y.. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater., 2019, 29(1): 1806878
https://doi.org/10.1002/adfm.201806878
|
53 |
Lv P., Zhang X., Zhang X., Deng W., Jie J.. High-sensitivity and fast-response graphene/crystalline silicon Schottky junction-based near-IR photodetectors. IEEE Electron Device Lett., 2013, 34(10): 1337
https://doi.org/10.1109/LED.2013.2275169
|
54 |
Zhang Y.Yu Y.Mi L.Wang H.Zhu Z. Wu Q.Zhang Y. Jiang Y., In situ fabrication of vertical multilayered MoS2/Si homotype heterojunction for high-speed visible-near-infrared photodetectors, Small 12(8), 1062 (2016)
|
55 |
Novoselov K.Mishchenko A.Carvalho A.H. Castro Neto A., 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
|
56 |
Shi J., Chen X., Zhao L., Gong Y., Hong M., Huan Y., Zhang Z., Yang P., Li Y., Zhang Q., Zhang Q., Gu L., Chen H., Wang J., Deng S., Xu N., Zhang Y.. Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater., 2018, 30(44): 1804616
https://doi.org/10.1002/adma.201804616
|
57 |
Xi X., Zhao L., Wang Z., Berger H., Forró L., Shan J., F. Mak K.. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol., 2015, 10(9): 765
https://doi.org/10.1038/nnano.2015.143
|
58 |
L. Duong D., Ryu G., Hoyer A., Lin C., Burghard M., Kern K.. Raman characterization of the charge density wave phase of 1T-TiSe2: From bulk to atomically thin layers. ACS Nano, 2017, 11(1): 1034
https://doi.org/10.1021/acsnano.6b07737
|
59 |
Xu X., Zhang Z., Dong J., Yi D., Niu J., Wu M., Lin L., Yin R., Li M., Zhou J., Wang S., Sun J., Duan X., Gao P., Jiang Y., Wu X., Peng H., S. Ruoff R., Liu Z., Yu D., Wang E., Ding F., Liu K.. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. (Beijing), 2017, 62(15): 1074
https://doi.org/10.1016/j.scib.2017.07.005
|
60 |
Wang P., Yang D., Pi X.. Toward wafer-scale production of 2D transition metal chalcogenides. Adv. Electron. Mater., 2021, 7(8): 2100278
https://doi.org/10.1002/aelm.202100278
|
61 |
Onsager L.. Crystal Statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev., 1944, 65: 3
https://doi.org/10.1103/PhysRev.65.117
|
62 |
C. Hohenberg P.. Existence of long-range order in one and two dimensions. Phys. Rev., 1967, 158(2): 383
https://doi.org/10.1103/PhysRev.158.383
|
63 |
D. Mermin N., Wagner H.. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17(22): 1133
https://doi.org/10.1103/PhysRevLett.17.1133
|
64 |
M. Kosterlitz J., Thouless D.. Long range order and metastability in two dimensional solids and superfluids (Application of dislocation theory). J. Phys. C, 1972, 5(11): L124
https://doi.org/10.1088/0022-3719/5/11/002
|
65 |
M. Kosterlitz J., J. Thouless D.. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C, 1973, 6(7): 1181
https://doi.org/10.1088/0022-3719/6/7/010
|
66 |
A. Wilson J., Yoffe A.. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys., 1969, 18(73): 193
https://doi.org/10.1080/00018736900101307
|
67 |
Li W., Qian X., Li J.. Phase transitions in 2D materials. Nat. Rev. Mater., 2021, 6(9): 829
https://doi.org/10.1038/s41578-021-00304-0
|
68 |
H. Keum D., Cho S., H. Kim J., H. Choe D., J. Sung H., Kan M., Kang H., Y. Hwang J., W. Kim S., Yang H., J. Chang K., H. Lee Y.. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys., 2015, 11(6): 482
https://doi.org/10.1038/nphys3314
|
69 |
Hou W., Azizimanesh A., Sewaket A., Peña T., Watson C., Liu M., Askari H., M. Wu S.. Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat. Nanotechnol., 2019, 14(7): 668
https://doi.org/10.1038/s41565-019-0466-2
|
70 |
Cho S., Kim S., H. Kim J., Zhao J., Seok J., H. Keum D., Baik J., H. Choe D., J. Chang K., Suenaga K., W. Kim S., H. Lee Y., Yang H.. Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349(6248): 625
https://doi.org/10.1126/science.aab3175
|
71 |
Wang Y., Xiao J., Zhu H., Li Y., Alsaid Y., Y. Fong K., Zhou Y., Wang S., Shi W., Wang Y., Zettl A., J. Reed E., Zhang X.. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550(7677): 487
https://doi.org/10.1038/nature24043
|
72 |
U. Kim H., Seok H., S. Kang W., Kim T.. The first progress of plasma-based transition metal dichalcogenide synthesis: A stable 1T phase and promising applications. Nanoscale Adv., 2022, 4(14): 2962
https://doi.org/10.1039/D1NA00882J
|
73 |
Q. Zhu J., C. Wang Z., Yu H., Li N., Zhang J., L. Meng J., Z. Liao M., Zhao J., B. Lu X., J. Du L., Yang R., Shi D., Jiang Y., Y. Zhang G.. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc., 2017, 139(30): 10216
https://doi.org/10.1021/jacs.7b05765
|
74 |
S. Sokolikova M., Mattevi C.. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev., 2020, 49(12): 3952
https://doi.org/10.1039/D0CS00143K
|
75 |
S. Choi M., Cheong B., H. Ra C., Lee S., H. Bae J., Lee S., D. Lee G., W. Yang C., Hone J., J. Yoo W.. Electrically driven reversible phase changes in layered In2Se3 crystalline film. Adv. Mater., 2017, 29(42): 1703568
https://doi.org/10.1002/adma.201703568
|
76 |
Zhang W., Wuttig M.. Phase change materials and superlattices for non-volatile memories. Phys. Status Solidi Rapid Res. Lett., 2019, 13(4): 1900130
https://doi.org/10.1002/pssr.201900130
|
77 |
Mori S., Hatayama S., Shuang Y., Ando D., Sutou Y.. Reversible displacive transformation in MnTe polymorphic semiconductor. Nat. Commun., 2020, 11(1): 85
https://doi.org/10.1038/s41467-019-13747-5
|
78 |
J. Lee S., Lin Z., Duan X., Huang Y.. Doping on demand in 2D devices. Nat. Electron., 2020, 3(2): 77
https://doi.org/10.1038/s41928-020-0376-1
|
79 |
Luo P., Zhuge F., Zhang Q., Chen Y., Lv L., Huang Y., Li H., Zhai T.. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz., 2019, 4(1): 26
https://doi.org/10.1039/C8NH00150B
|
80 |
Zhang K., M. Bersch B., Joshi J., Addou R., R. Cormier C., Zhang C., Xu K., C. Briggs N., Wang K., Subramanian S., Cho K., Fullerton-Shirey S., M. Wallace R., M. Vora P., A. Robinson J.. Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping. Adv. Funct. Mater., 2018, 28(16): 1706950
https://doi.org/10.1002/adfm.201706950
|
81 |
Nipane A., Karmakar D., Kaushik N., Karande S., Lodha S.. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano, 2016, 10(2): 2128
https://doi.org/10.1021/acsnano.5b06529
|
82 |
Tang B., G. Yu Z., Huang L., Chai J., L. Wong S., Deng J., Yang W., Gong H., Wang S., W. Ang K., W. Zhang Y., Chi D.. Direct n-to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano, 2018, 12(3): 2506
https://doi.org/10.1021/acsnano.7b08261
|
83 |
Tang X.Z. Kou L., 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 8 (2022)
|
84 |
Y. Lu A., Zhu H., Xiao J., P. Chuu C., Han Y., H. Chiu M., C. Cheng C., W. Yang C., H. Wei K., Yang Y., Wang Y., Sokaras D., Nordlund D., Yang P., A. Muller D., Y. Chou M., Zhang X., J. Li L.. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12(8): 744
https://doi.org/10.1038/nnano.2017.100
|
85 |
Zhang J., Jia S., Kholmanov I., Dong L., Er D., Chen W., Guo H., Jin Z., B. Shenoy V., Shi L., Lou J.. Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11(8): 8192
https://doi.org/10.1021/acsnano.7b03186
|
86 |
Hu T., Jia F., Zhao G., Wu J., Stroppa A., Ren W.. Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers. Phys. Rev. B, 2018, 97(23): 235404
https://doi.org/10.1103/PhysRevB.97.235404
|
87 |
Dong L., Lou J., B. Shenoy V.. Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano, 2017, 11(8): 8242
https://doi.org/10.1021/acsnano.7b03313
|
88 |
Liu C.Yan X.Song X.Ding S.W. Zhang D. Zhou P., A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications, Nat. Nanotechnol. 13(5), 404 (2018)
|
89 |
Shi W., Kahn S., Jiang L., Y. Wang S., Z. Tsai H., Wong D., Taniguchi T., Watanabe K., Wang F., F. Crommie M., Zettl A.. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures. Nat. Electron., 2020, 3(2): 99
https://doi.org/10.1038/s41928-019-0351-x
|
90 |
W. Chen J.T. Lo S.C. Ho S.S. Wong S.H. Y. Vu T. Q. Zhang X.D. Liu Y.Y. Chiou Y.X. Chen Y.C. Yang J., A gate-free monolayer WSe2 p-n diode, Nat. Commun. 9(1), 1 (2018)
|
91 |
Wu G., Tian B., Liu L., Lv W., Wu S., Wang X., Chen Y., Li J., Wang Z., Wu S., Shen H., Lin T., Zhou P., Liu Q., Duan C., Zhang S., Meng X., Wu S., Hu W., Wang X., Chu J., Wang J.. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron., 2020, 3(1): 43
https://doi.org/10.1038/s41928-019-0350-y
|
92 |
Ju L., Jr Velasco J., Huang E., Kahn S., Nosiglia C., Z. Tsai H., Yang W., Taniguchi T., Watanabe K., Zhang Y., Zhang G., Crommie M., Zettl A., Wang F.. Photoinduced doping in heterostructures of graphene and boron nitride. Nat. Nanotechnol., 2014, 9(5): 348
https://doi.org/10.1038/nnano.2014.60
|
93 |
Xiang D., Liu T., Xu J., Y. Tan J., Hu Z., Lei B., Zheng Y., Wu J., Neto A., Liu L., Chen W.. Two-dimensional multibit optoelectronic memory with broadband spectrum distinction. Nat. Commun., 2018, 9(1): 2966
https://doi.org/10.1038/s41467-018-05397-w
|
94 |
K. Liu W., M. Whitaker K., R. Kittilstved K., R. Gamelin D.. Stable photogenerated carriers in magnetic semiconductor nanocrystals. J. Am. Chem. Soc., 2006, 128(12): 3910
https://doi.org/10.1021/ja060488p
|
95 |
Wang J., Wang L., Yu S., Ding T., Xiang D., Wu K.. Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots. Nat. Commun., 2021, 12(1): 550
https://doi.org/10.1038/s41467-020-20835-4
|
96 |
Li H., Liu H., Zhou L., Wu X., Pan Y., Ji W., Zheng B., Zhang Q., Zhuang X., Zhu X., Wang X., Duan X., Pan A.. Strain-tuning atomic substitution in two-dimensional atomic crystals. ACS Nano, 2018, 12(5): 4853
https://doi.org/10.1021/acsnano.8b01646
|
97 |
Liu X., Wu J., Yu W., Chen L., Huang Z., Jiang H., He J., Liu Q., Lu Y., Zhu D., Liu W., Cao P., Han S., Xiong X., Xu W., P. Ao J., W. Ang K., He Z.. Monolayer WxMo1−xS2 grown by atmospheric pressure chemical vapor deposition: Bandgap engineering and field effect transistors. Adv. Funct. Mater., 2017, 27(13): 1606469
https://doi.org/10.1002/adfm.201606469
|
98 |
Zhou J., Lin J., Sims H., Jiang C., Cong C., A. Brehm J., Zhang Z., Niu L., Chen Y., Zhou Y., Wang Y., Liu F., Zhu C., Yu T., Suenaga K., Mishra R., T. Pantelides S., G. Zhu Z., Gao W., Liu Z., Zhou W.. Synthesis of co‐doped MoS2 monolayers with enhanced valley splitting. Adv. Mater., 2020, 32(11): 1906536
https://doi.org/10.1002/adma.201906536
|
99 |
Wang S., Rong Y., Fan Y., Pacios M., Bhaskaran H., He K., H. Warner J.. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater., 2014, 26(22): 6371
https://doi.org/10.1021/cm5025662
|
100 |
Huang H., Zha J., Li S., Tan C.. Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications. Chin. Chem. Lett., 2022, 33(1): 163
https://doi.org/10.1016/j.cclet.2021.06.004
|
101 |
Duan X., Wang C., Fan Z., Hao G., Kou L., Halim U., Li H., Wu X., Wang Y., Jiang J., Pan A., Huang Y., Yu R., Duan X.. Synthesis of WS2xSe2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett., 2016, 16(1): 264
https://doi.org/10.1021/acs.nanolett.5b03662
|
102 |
Lai Z., He Q., H. Tran T., Repaka D., D. Zhou D., Sun Y., Xi S., Li Y., Chaturvedi A., Tan C., Chen B., H. Nam G., Li B., Ling C., Zhai W., Shi Z., Hu D., Sharma V., Hu Z., Chen Y., Zhang Z., Yu Y., Renshaw Wang X., V. Ramanujan R., Ma Y., Hippalgaonkar K., Zhang H.. Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nat. Mater., 2021, 20(8): 1113
https://doi.org/10.1038/s41563-021-00971-y
|
103 |
Wen W., Zhu Y., Liu X., P. Hsu H., Fei Z., Chen Y., Wang X., Zhang M., H. Lin K., S. Huang F., P. Wang Y., S. Huang Y., H. Ho C., H. Tan P., Jin C., Xie L.. Anisotropic spectroscopy and electrical properties of 2D ReS2(1–x)Se2x alloys with distorted 1T structure. Small, 2017, 13(12): 1603788
https://doi.org/10.1002/smll.201603788
|
104 |
Wang D., Zhang X., Guo G., Gao S., Li X., Meng J., Yin Z., Liu H., Gao M., Cheng L., You J., Wang R.. Large‐area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater., 2018, 30(44): 1803285
https://doi.org/10.1002/adma.201803285
|
105 |
Susarla S., Kutana A., A. Hachtel J., Kochat V., Apte A., Vajtai R., C. Idrobo J., I. Yakobson B., S. Tiwary C., M. Ajayan P.. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater., 2017, 29(35): 1702457
https://doi.org/10.1002/adma.201702457
|
106 |
Susarla S., A. Hachtel J., Yang X., Kutana A., Apte A., Jin Z., Vajtai R., C. Idrobo J., Lou J., I. Yakobson B., S. Tiwary C., M. Ajayan P.. Thermally induced 2D alloy-heterostructure transformation in quaternary alloys. Adv. Mater., 2018, 30(45): 1804218
https://doi.org/10.1002/adma.201804218
|
107 |
Zhang X., Nan H., Xiao S., Wan X., Gu X., Du A., Ni Z., K. Ostrikov K.. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nat. Commun., 2019, 10(1): 598
https://doi.org/10.1038/s41467-019-08468-8
|
108 |
Shi Y.Zhou W.Y. Lu A.Fang W.H. Lee Y. L. Hsu A.M. Kim S.K. Kim K.Y. Yang H.J. Li L. C. Idrobo J.Kong J., van der Waals epitaxy of MoS2 layers using graphene as growth templates, Nano Lett. 12(6), 2784 (2012)
|
109 |
Li M., Zhu Y., Li T., Lin Y., Cai H., Li S., Ding H., Pan N., Wang X.. One-step CVD fabrication and optoelectronic properties of SnS2/SnS vertical heterostructures. Inorg. Chem. Front., 2018, 5(8): 1828
https://doi.org/10.1039/C8QI00251G
|
110 |
Fu Q., Wang X., Zhou J., Xia J., Zeng Q., Lv D., Zhu C., Wang X., Shen Y., Li X., Hua Y., Liu F., Shen Z., Jin C., Liu Z.. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater., 2018, 30(12): 4001
https://doi.org/10.1021/acs.chemmater.7b05117
|
111 |
Zhao L., Jia J., Yang Z., Yu J., Wang A., Sang Y., Zhou W., Liu H.. One-step synthesis of CdS nanoparticles/MoS2 nanosheets heterostructure on porous molybdenum sheet for enhanced photocatalytic H2 evolution. Appl. Catal. B, 2017, 210: 290
https://doi.org/10.1016/j.apcatb.2017.04.003
|
112 |
Ai R., Guan X., Li J., Yao K., Chen P., Zhang Z., Duan X., Duan X., Growth of single-crystalline cadmium iodide nanoplates, CdI2/MoS2 (WS2. WSe2) van der Waals heterostructures, and patterned arrays. ACS Nano, 2017, 11(3): 3413
https://doi.org/10.1021/acsnano.7b01507
|
113 |
Shimazaki Y., Schwartz I., Watanabe K., Taniguchi T., Kroner M., Imamoğlu A.. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 2020, 580(7804): 472
https://doi.org/10.1038/s41586-020-2191-2
|
114 |
Cao Y., Fatemi V., Demir A., Fang S., L. Tomarken S., Y. Luo J., D. Sanchez-Yamagishi J., Watanabe K., Taniguchi T., Kaxiras E., C. Ashoori R., Jarillo-Herrero P.. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
https://doi.org/10.1038/nature26154
|
115 |
Cao Y., Fatemi V., Fang S., Watanabe K., Taniguchi T., Kaxiras E., Jarillo-Herrero P.. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
|
116 |
Chen G., Jiang L., Wu S., Lyu B., Li H., L. Chittari B., Watanabe K., Taniguchi T., Shi Z., Jung J., Zhang Y., Wang F.. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys., 2019, 15(3): 237
https://doi.org/10.1038/s41567-018-0387-2
|
117 |
Chen G., L. Sharpe A., Gallagher P., T. Rosen I., J. Fox E., Jiang L., Lyu B., Li H., Watanabe K., Taniguchi T., Jung J., Shi Z., Goldhaber-Gordon D., Zhang Y., Wang F.. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature, 2019, 572(7768): 215
https://doi.org/10.1038/s41586-019-1393-y
|
118 |
C. Regan E., Wang D., Jin C., I. Bakti Utama M., Gao B., Wei X., Zhao S., Zhao W., Zhang Z., Yumigeta K., Blei M., D. Carlström J., Watanabe K., Taniguchi T., Tongay S., Crommie M., Zettl A., Wang F.. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 359
https://doi.org/10.1038/s41586-020-2092-4
|
119 |
S. Arora H., Polski R., Zhang Y., Thomson A., Choi Y., Kim H., Lin Z., Z. Wilson I., Xu X., H. Chu J., Watanabe K., Taniguchi T., Alicea J., Nadj-Perge S.. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature, 2020, 583(7816): 379
https://doi.org/10.1038/s41586-020-2473-8
|
120 |
Jin C., C. Regan E., Yan A., Iqbal Bakti Utama M., Wang D., Zhao S., Qin Y., Yang S., Zheng Z., Shi S., Watanabe K., Taniguchi T., Tongay S., Zettl A., Wang F.. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567(7746): 76
https://doi.org/10.1038/s41586-019-0976-y
|
121 |
Tang Y., Li L., Li T., Xu Y., Liu S., Barmak K., Watanabe K., Taniguchi T., H. MacDonald A., Shan J., F. Mak K.. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 2020, 579(7799): 353
https://doi.org/10.1038/s41586-020-2085-3
|
122 |
Wu F., Lovorn T., Tutuc E., H. MacDonald A.. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett., 2018, 121(2): 026402
https://doi.org/10.1103/PhysRevLett.121.026402
|
123 |
Q. Zhang X., H. Lin C., W. Tseng Y., H. Huang K., H. Lee Y.. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett., 2015, 15(1): 410
https://doi.org/10.1021/nl503744f
|
124 |
Goossens S., Navickaite G., Monasterio C., Gupta S., J. Piqueras J., Pérez R., Burwell G., Nikitskiy I., Lasanta T., Galán T., Puma E., Centeno A., Pesquera A., Zurutuza A., Konstantatos G., Koppens F.. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics, 2017, 11(6): 366
https://doi.org/10.1038/nphoton.2017.75
|
125 |
Duan X., Wang C., C. Shaw J., Cheng R., Chen Y., Li H., Wu X., Tang Y., Zhang Q., Pan A., Jiang J., Yu R., Huang Y., Duan X.. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol., 2014, 9(12): 1024
https://doi.org/10.1038/nnano.2014.222
|
126 |
Shao G., Lu Y., Hong J., X. Xue X., Huang J., Xu Z., Lu X., Jin Y., Liu X., Li H., Hu S., Suenaga K., Han Z., Jiang Y., Li S., Feng Y., Pan A., C. Lin Y., Cao Y., Liu S.. Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. (Weinh.), 2020, 7(24): 2002172
https://doi.org/10.1002/advs.202002172
|
127 |
Zhang X., Jin Z., Wang L., A. Hachtel J., Villarreal E., Wang Z., Ha T., Nakanishi Y., S. Tiwary C., Lai J., Dong L., Yang J., Vajtai R., Ringe E., C. Idrobo J., I. Yakobson B., Lou J., Gambin V., Koltun R., M. Ajayan P.. Low contact barrier in 2H/1T′ MoTe2 in-plane heterostructure synthesized by chemical vapor deposition. ACS Appl. Mater. Interfaces, 2019, 11(13): 12777
https://doi.org/10.1021/acsami.9b00306
|
128 |
Ye K., X. Liu L., J. Liu Y., M. Nie A., Zhai K., Y. Xiang J., C. Wang B., S. Wen F., P. Mu C., S. Zhao Z., J. Gong Y., Y. Liu Z., J. Tian Y.. Lateral bilayer MoS2-WS2 heterostructure photodetectors with high responsivity and detectivity. Adv. Opt. Mater., 2019, 7(20): 1900815
https://doi.org/10.1002/adom.201900815
|
129 |
D. Yoo Y., P. Degregorio Z., E. Johns J.. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc., 2015, 137(45): 14281
https://doi.org/10.1021/jacs.5b06643
|
130 |
Zhang Z., Huang Z., Li J., Wang D., Lin Y., Yang X., Liu H., Liu S., Wang Y., Li B., Duan X., Duan X.. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol., 2022, 17(5): 493
https://doi.org/10.1038/s41565-022-01106-3
|
131 |
Bogaert K., Liu S., Chesin J., Titow D., Gradecak S., Garaj S.. Diffusion-mediated synthesis of MoS2/WS2 lateral heterostructures. Nano Lett., 2016, 16(8): 5129
https://doi.org/10.1021/acs.nanolett.6b02057
|
132 |
L. Li H., P. Wu X., J. Liu H., Y. Zheng B., L. Zhang Q., L. Zhu X., We Z., J. Zhuang X., Zhou H., X. Tang W., F. Duan X., L. Pan A.. Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano, 2017, 11(1): 961
https://doi.org/10.1021/acsnano.6b07580
|
133 |
F. Li X., W. Lin M., H. Lin J., Huang B., A. Puretzky A., Ma C., Wang K., Zhou W., T. Pantelides S., F. Chi M., Kravchenko I., Fowlkes J., M. Rouleau C., B. Geohegan D., Xiao K.. Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy. Sci. Adv., 2016, 2(4): e1501882
https://doi.org/10.1126/sciadv.1501882
|
134 |
L. Shao G., Z. Lu Y., H. Hong J., X. Xue X., Q. Huang J., Y. Xu Z., C. Lu X., Y. Jin Y., Liu X., M. Li H., Hu S., Suenaga K., Han Z., Jiang Y., S. Li S., X. Feng Y., L. Pan A., C. Lin Y., Cao Y., Liu S.. Seamlessly splicing metallic SnxMo1−xS2 at MoS2 edge for enhanced photoelectrocatalytic performance in microreactor. Adv. Sci. (Weinh.), 2020, 7(24): 2002172
https://doi.org/10.1002/advs.202002172
|
135 |
L. Tsai M., Y. Li M., R. D. Retamal J., T. Lam K., C. Lin Y., Suenaga K., J. Chen L., Liang G., J. Li L., H. He J.. Single atomically sharp lateral monolayer p−n heterojunction solar cells with extraordinarily high power conversion efficiency. Adv. Mater., 2017, 29(32): 1701168
https://doi.org/10.1002/adma.201701168
|
136 |
K. Sahoo P., Memaran S., Xin Y., Balicas L., R. Gutiérrez H.. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature, 2018, 553(7686): 63
https://doi.org/10.1038/nature25155
|
137 |
Zhou Z., Zhang Y., Zhang X., Niu X., Wu G., Wang J.. Suppressing photoexcited electron–hole recombination in MoSe2/WSe2 lateral heterostructures via interface-coupled state engineering: A time-domain ab initio study. J. Mater. Chem. A, 2020, 8(39): 20621
https://doi.org/10.1039/D0TA06626E
|
138 |
Liu Y., Duan X., J. Shin H., Park S., Huang Y., Duan X.. Promises and prospects of two-dimensional transistors. Nature, 2021, 591(7848): 43
https://doi.org/10.1038/s41586-021-03339-z
|
139 |
Cheng L., Liu Y.. What limits the intrinsic mobility of electrons and holes in two dimensional metal dichalcogenides. J. Am. Chem. Soc., 2018, 140(51): 17895
https://doi.org/10.1021/jacs.8b07871
|
140 |
K. Pandey S., Alsalman H., G. Azadani J., Izquierdo N., Low T., A. Campbell S.. Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown by chemical vapor deposition. Nanoscale, 2018, 10(45): 21374
https://doi.org/10.1039/C8NR07070A
|
141 |
S. Han S., H. Kim J., Noh C., H. Kim J., Ji E., Kwon J., M. Yu S., J. Ko T., Okogbue E., H. Oh K., S. Chung H., J. Jung Y., H. Lee G., Jung Y.. Horizontal-to-vertical transition of 2D layer orientation in low-temperature chemical vapor deposition-grown PtSe2 and its influences on electrical properties and device applications. ACS Appl. Mater. Interfaces, 2019, 11(14): 13598
https://doi.org/10.1021/acsami.9b01078
|
142 |
Gu Y., Cai H., Dong J., Yu Y., N. Hoffman A., Liu C., D. Oyedele A., C. Lin Y., Ge Z., A. Puretzky A., Duscher G., F. Chisholm M., D. Rack P., M. Rouleau C., Gai Z., Meng X., Ding F., B. Geohegan D., Xiao K.. Two‐dimensional palladium diselenide with strong in‐plane optical anisotropy and high mobility grown by chemical vapor deposition. Adv. Mater., 2020, 32(19): 1906238
https://doi.org/10.1002/adma.201906238
|
143 |
Wu J., Qiu C., Fu H., Chen S., Zhang C., Dou Z., Tan C., Tu T., Li T., Zhang Y., Zhang Z., M. Peng L., Gao P., Yan B., Peng H.. Low residual carrier concentration and high mobility in 2D semiconducting Bi2O2Se. Nano Lett., 2019, 19(1): 197
https://doi.org/10.1021/acs.nanolett.8b03696
|
144 |
Kang P., Michaud-Rioux V., Kong X., Yu G., Guo H.. Calculated carrier mobility of h-BN/γ-InSe/h-BN van der Waals heterostructures. 2D Mater., 2017, 4(4): 045014
https://doi.org/10.1088/2053-1583/aa8763/meta
|
145 |
Xie L., Liao M., Wang S., Yu H., Du L., Tang J., Zhao J., Zhang J., Chen P., Lu X., Wang G., Xie G., Yang R., Shi D., Zhang G.. Graphene‐contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater., 2017, 29(37): 1702522
https://doi.org/10.1002/adma.201702522
|
146 |
Nourbakhsh A., Zubair A., N. Sajjad R., Tavakkoli K. G A., Chen W., Fang S., Ling X., Kong J., S. Dresselhaus M., Kaxiras E., K. Berggren K., Antoniadis D., Palacios T.. MoS2 field-effect transistor with sub-10 nm channel length. Nano Lett., 2016, 16(12): 7798
https://doi.org/10.1021/acs.nanolett.6b03999
|
147 |
Zou X., Liu L., Xu J., Wang H., M. Tang W.. Few-layered MoS2 field-effect transistors with a vertical channel of sub-10 nm. ACS Appl. Mater. Interfaces, 2020, 12(29): 32943
https://doi.org/10.1021/acsami.0c09060
|
148 |
Zhang H., Shi B., Xu L., Yan J., Zhao W., Zhang Z., Zhang Z., Lu J.. Sub-5 nm monolayer MoS2 transistors toward low-power devices. ACS Appl. Electron. Mater., 2021, 3(4): 1560
https://doi.org/10.1021/acsaelm.0c00840
|
149 |
Wu F., Tian H., Shen Y., Hou Z., Ren J., Gou G., Sun Y., Yang Y., L. Ren T.. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022, 603(7900): 259
https://doi.org/10.1038/s41586-021-04323-3
|
150 |
Daus A., Vaziri S., Chen V., Köroğlu Ç., W. Grady R., S. Bailey C., R. Lee H., Schauble K., Brenner K., Pop E.. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron., 2021, 4(7): 495
https://doi.org/10.1038/s41928-021-00598-6
|
151 |
Zhang Q., F. Wang X., H. Shen S., Lu Q., Liu X., Li H., Zheng J., P. Yu C., Zhong X., Gu L., L. Ren T., Jiao L.. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron., 2019, 2(4): 164
https://doi.org/10.1038/s41928-019-0233-2
|
152 |
Q. Fan Z., W. Jiang X., Chen J., W. Luo J.. Improving performances of in-plane transition-metal dichalcogenide Schottky barrier field-effect transistors. ACS Appl. Mater. Interfaces, 2018, 10(22): 19271
https://doi.org/10.1021/acsami.8b04860
|
153 |
H. Chiu M., L. Tang H., C. Tseng C., Han Y., Aljarb A., K. Huang J., Wan Y., H. Fu J., Zhang X., H. Chang W., A. Muller D., Takenobu T., Tung V., J. Li L.. Metal‐guided selective growth of 2D materials: Demonstration of a bottom‐up CMOS inverter. Adv. Mater., 2019, 31(18): 1900861
https://doi.org/10.1002/adma.201900861
|
154 |
P. H. Hu V., W. Su C., W. Lee Y., Y. Ho T., C. Cheng C., C. Chen T., Y. T. Hung T., F. Li J., G. Chen Y., J. Li L.. Energy-efficient monolithic 3-D SRAM cell with BEOL MoS2 FETs for SoC scaling. IEEE Trans. Electron Dev., 2020, 67(10): 4216
https://doi.org/10.1109/TED.2020.3018099
|
155 |
P. H. Hu V.W. Su C.C. Yu C.J. Liu C.Y. Weng C., in: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 1–5 (IEEE)
|
156 |
S. Pang C.Thakuria N.K. Gupta S.Chen Z., in: 2018 IEEE International Electron Devices Meeting (IEDM), 22.22. 21−22.22. 24 (IEEE)
|
157 |
Navarro C., Karg S., Marquez C., Navarro S., Convertino C., Zota C., Czornomaz L., Gamiz F.. Capacitor-less dynamic random access memory based on a III–V transistor with a gate length of 14 nm. Nat. Electron., 2019, 2(9): 412
https://doi.org/10.1038/s41928-019-0282-6
|
158 |
Sebastian A., Le Gallo M., Khaddam-Aljameh R., Eleftheriou E.. Memory devices and applications for in-memory computing. Nat. Nanotechnol., 2020, 15(7): 529
https://doi.org/10.1038/s41565-020-0655-z
|
159 |
Wang Y., Tang H., Xie Y., Chen X., Ma S., Sun Z., Sun Q., Chen L., Zhu H., Wan J., Xu Z., W. Zhang D., Zhou P., Bao W.. An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun., 2021, 12(1): 3347
https://doi.org/10.1038/s41467-021-23719-3
|
160 |
Wang S.Liu X.Zhou P., The road for 2D semiconductors in the silicon age, Adv. Mater. 34(48), 2106886 (2021)
|
161 |
Yoshida E.Tanaka T., A capacitorless 1T-DRAM technology using gate-induced drain-leakage (GIDL) current for low-power and high-speed embedded memory, IEEE Trans. Electron Dev. 53(4), 692 (2006)
|
162 |
Migliato Marega G., Zhao Y., Avsar A., Wang Z., Tripathi M., Radenovic A., Kis A.. Logic-in-memory based on an atomically thin semiconductor. Nature, 2020, 587(7832): 72
https://doi.org/10.1038/s41586-020-2861-0
|
163 |
Di Bartolomeo A., Genovese L., Giubileo F., Iemmo L., Luongo G., Foller T., Schleberger M.. Hysteresis in the transfer characteristics of MoS2 transistors. 2D Mater., 2017, 5(1): 015014
https://doi.org/10.1088/2053-1583/aa91a7
|
164 |
Liu T., Xiang D., Zheng Y., Wang Y., Wang X., Wang L., He J., Liu L., Chen W.. Nonvolatile and programmable photodoping in MoTe2 for photoresist‐free complementary electronic devices. Adv. Mater., 2018, 30(52): 1804470
https://doi.org/10.1002/adma.201804470
|
165 |
Tang K., Wang Y., Gong C., Yin C., Zhang M., Wang X., Xiong J.. Electronic and photoelectronic memristors based on 2D materials. Adv. Electron. Mater., 2022, 8(4): 2101099
https://doi.org/10.1002/aelm.202101099
|
166 |
G. Sarwat S., Kersting B., Moraitis T., P. Jonnalagadda V., Sebastian A.. Phase-change memtransistive synapses for mixed-plasticity neural computations. Nat. Nanotechnol., 2022, 17(5): 507
https://doi.org/10.1038/s41565-022-01095-3
|
167 |
K. Sangwan V., S. Lee H., Bergeron H., Balla I., E. Beck M., S. Chen K., C. Hersam M.. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 2018, 554(7693): 500
https://doi.org/10.1038/nature25747
|
168 |
Xu R., Jang H., H. Lee M., Amanov D., Cho Y., Kim H., Park S., Shin H., Ham D.. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett., 2019, 19(4): 2411
https://doi.org/10.1021/acs.nanolett.8b05140
|
169 |
Karmakar A., Al-Mahboob A., E. Petoukhoff C., Kravchyna O., S. Chan N., Taniguchi T., Watanabe K., M. Dani K.. Dominating interlayer resonant energy transfer in type-II 2D heterostructure. ACS Nano, 2022, 16(3): 3861
https://doi.org/10.1021/acsnano.1c08798
|
170 |
A. Zhang K., N. Zhang T., H. Cheng G., X. Li T., X. Wang S., Wei W., H. Zhou X., W. Yu W., Sun Y., Wang P., Zhang D., G. Zeng C., J. Wang X., D. Hu W., J. Fan H., Z. Shen G., Chen X., F. Duan X., Chang K., Dai N.. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano, 2016, 10(3): 3852
https://doi.org/10.1021/acsnano.6b00980
|
171 |
Xue H., Y. Dai Y., Kim W., D. Wang Y., Y. Bai X., Qi M., Halonen K., Lipsanen H., P. Sun Z.. High photoresponsivity and broadband photodetection with a band-engineered WSe2/SnSe2 heterostructure. Nanoscale, 2019, 11(7): 3240
https://doi.org/10.1039/C8NR09248F
|
172 |
J. Zhou C., Raju S., Li B., Chan M., Chai Y., Y. Yang C.. Self-driven metal−semiconductor−metal WSe2 photodetector with asymmetric contact geometries. Adv. Funct. Mater., 2018, 28(45): 1802954
https://doi.org/10.1002/adfm.201802954
|
173 |
Yuan J., Sun T., X. Hu Z., Z. Yu W., L. Ma W., Zhang K., Q. Sun B., P. Lau S., L. Bao Q., H. Lin S., J. Li S.. Wafer-scale fabrication of two-dimensional PtS2/PtSe2 heterojunctions for efficient and broad band photodetection. ACS Appl. Mater. Interfaces, 2018, 10(47): 40614
https://doi.org/10.1021/acsami.8b13620
|
174 |
Wu D., E. Wang Y., H. Zeng L., Jia C., P. Wu E., T. Xu T., F. Shi Z., T. Tian Y., J. Li X., H. Tsang Y.. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics, 2018, 5(9): 3820
https://doi.org/10.1021/acsphotonics.8b00853
|
175 |
Li Y., Fu J., Y. Mao X., Chen C., Liu H., Gong M., L. Zeng H.. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
https://doi.org/10.1038/s41467-021-26200-3
|
176 |
M. Fridkin V.. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep., 2001, 46(4): 654
https://doi.org/10.1134/1.1387133
|
177 |
M. Cook A., M. Fregoso B., de Juan F., Coh S., E. Moore J.. Design principles for shift current photovoltaics. Nat. Commun., 2017, 8(1): 14176
https://doi.org/10.1038/ncomms14176
|
178 |
J. Zhang Y., Ideue T., Onga M., Qin F., Suzuki R., Zak A., Tenne R., H. Smet J., Iwasa Y.. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature, 2019, 570(7761): 349
https://doi.org/10.1038/s41586-019-1303-3
|
179 |
Akamatsu T.Ideue T.Zhou L.Dong Y.Kitamura S. Yoshii M.Y. Yang D.Onga M.Nakagawa Y.Watanabe K. Taniguchi T.Laurienzo J.W. Huang J.L. Ye Z.Morimoto T. T. Yuan H.Iwasa Y., A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
|
180 |
Jiang J., Z. Chen Z., Hu Y., Xiang Y., F. Zhang L., P. Wang Y., C. Wang G., Shi J.. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol., 2021, 16(8): 894
https://doi.org/10.1038/s41565-021-00919-y
|
181 |
S. Wang Q., Wen Y., M. Cai K., Q. Cheng R., Yin L., Zhang Y., Li J., X. Wang Z., Wang F., M. Wang F., A. Shifa T., Jiang C., Yang H., He J.. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv., 2018, 4(4): eaap7916
https://doi.org/10.1126/sciadv.aap7916
|
182 |
Yin L., He P., Q. Cheng R., Wang F., M. Wang F., X. Wang Z., Wen Y., He J.. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices. Nat. Commun., 2019, 10(1): 4133
https://doi.org/10.1038/s41467-019-12200-x
|
183 |
O’Neil M., Marohn J., McLendon G.. Dynamics of electron-hole pair recombination in semiconductor clusters. J. Phys. Chem., 1990, 94(10): 4356
https://doi.org/10.1021/j100373a089
|
184 |
C. Jiang Y., P. He A., Zhao R., Chen Y., Z. Liu G., Lu H., L. Zhang J., Zhang Q., Wang Z., Zhao C., S. Long M., D. Hu W., Wang L., P. Qi Y., Gao J., Y. Wu Q., T. Ge X., Q. Ning J., T. S. Wee A., W. Qiu C.. Coexistence of photoelectric conversion and storage in van der Waals heterojunctions. Phys. Rev. Lett., 2021, 127(21): 217401
https://doi.org/10.1103/PhysRevLett.127.217401
|
185 |
Junquera J., Ghosez P.. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931): 506
https://doi.org/10.1038/nature01501
|
186 |
D. Fong D., B. Stephenson G., K. Streiffer S., A. Eastman J., Auciello O., H. Fuoss P., Thompson C.. Ferroelectricity in ultrathin perovskite films. Science, 2004, 304(5677): 1650
https://doi.org/10.1126/science.1098252
|
187 |
N. Shirodkar S., V. Waghmare U.. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett., 2014, 112(15): 157601
https://doi.org/10.1103/PhysRevLett.112.157601
|
188 |
G. Yuan S., Luo X., L. Chan H., C. Xiao C., W. Dai Y., H. Xie M., H. Hao J.. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
https://doi.org/10.1038/s41467-019-09669-x
|
189 |
Y. Fei Z., J. Zhao W., A. Palomaki T., S. Sun B., K. Miller M., Y. Zhao Z., Q. Yan J., D. Xu X., H. Cobden D.. Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560(7718): 336
https://doi.org/10.1038/s41586-018-0336-3
|
190 |
H. Huang W., Wang F., Yin L., Q. Cheng R., X. Wang Z., G. Sendeku M., J. Wang J., N. Li N., Y. Yao Y., He J.. Gate-coupling-enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater., 2020, 32(14): 1908040
https://doi.org/10.1002/adma.201908040
|
191 |
Zhang Q., Xiong H., F. Wang Q., P. Xu L., H. Deng M., Z. Zhang J., Fuchs D., W. Li W., Y. Shang L., W. Li Y., G. Hu Z., H. Chu J.. Tunable multi-bit nonvolatile memory based on ferroelectric field-effect transistors. Adv. Electron. Mater., 2022, 8(5): 2101189
https://doi.org/10.1002/aelm.202101189
|
192 |
Jo J., Shin C.. Negative capacitance field effect transistor with hysteresis-free sub-60-mV/decade switching. IEEE Electron Device Lett., 2016, 37(3): 245
https://doi.org/10.1109/LED.2016.2523681
|
193 |
Q. Liu X., R. Liang R., Y. Gao G., F. Pan C., S. Jiang C., Xu Q., Luo J., M. Zou X., Y. Yang Z., Liao L., L. Wang Z.. MoS2 negative-capacitance field-effect transistors with subthreshold swing below the physics limit. Adv. Mater., 2018, 30(28): 1800932
https://doi.org/10.1002/adma.201800932
|
194 |
Wang F., Liu J., H. Huang W., Q. Cheng R., Yin L., J. Wang J., G. Sendeku M., Zhang Y., Y. Zhan X., X. Shan C., X. Wang Z., He J.. Subthermionic field-effect transistors with sub-5 nm gate lengths based on van der Waals ferroelectric heterostructures. Sci. Bull. (Beijing), 2020, 65(17): 1444
https://doi.org/10.1016/j.scib.2020.04.019
|
195 |
Wang Y., Y. Bai X., W. Chu J., B. Wang H., F. Rao G., Q. Pan X., C. Du X., Hu K., P. Wang X., H. Gong C., J. Yin C., Yang C., Y. Yan C., Y. Wu C., Shuai Y., F. Wang X., Liao M., Xiong J.. Record-low Subthreshold-Swing negative-capacitance 2D field-effect transistors. Adv. Mater., 2020, 32(46): 2005353
https://doi.org/10.1002/adma.202005353
|
196 |
G. Qiu C., Liu F., Xu L., Deng B., M. Xiao M., Si J., Lin L., Y. Zhang Z., Wang J., Guo H., L. Peng H., M. Peng L.. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 2018, 361(6400): 387
https://doi.org/10.1126/science.aap9195
|
197 |
Weston A., G. Castanon E., Enaldiev V., Ferreira F., Bhattacharjee S., G. Xu S., Corte-Leon H., F. Wu Z., Clark N., Summerfield A., Hashimoto T., Z. Gao Y., D. Wang W., Hamer M., Read H., Fumagalli L., V. Kretinin A., J. Haigh S., Kazakova O., K. Geim A., I. Fal’ko V., Gorbachev R.. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol., 2022, 17(4): 390
https://doi.org/10.1038/s41565-022-01072-w
|
198 |
Wen Z., Li C., Wu D., D. Li A., B. Ming N.. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater., 2013, 12(7): 617
https://doi.org/10.1038/nmat3649
|
199 |
Li T., Sharma P., Lipatov A., Lee H., W. Lee J., Y. Zhuravlev M., R. Paudel T., A. Genenko Y., B. Eom C., Y. Tsymbal E., Sinitskii A., Gruverman A.. Polarization-mediated modulation of electronic and transport properties of hybrid MoS2−BaTiO3−SrRuO3 tunnel junctions. Nano Lett., 2017, 17(2): 922
https://doi.org/10.1021/acs.nanolett.6b04247
|
200 |
Chaudhary P., Buragohain P., Kozodaev M., Zarubin S., Mikheev V., Chouprik A., Lipatov A., Sinitskii A., Zenkevich A., Gruverman A.. Electroresistance effect in MoS2−Hf0.5Zr0.5O2 heterojunctions. Appl. Phys. Lett., 2021, 118(8): 083106
https://doi.org/10.1063/5.0035306
|
201 |
H. Park M., H. Lee Y., J. Kim H., J. Kim Y., Moon T., D. Kim K., Muller J., Kersch A., Schroeder U., Mikolajick T., S. Hwang C.. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater., 2015, 27(11): 1811
https://doi.org/10.1002/adma.201404531
|
202 |
Chernikova A., Kozodaev M., Markeev A., Negrov D., Spiridonov M., Zarubin S., Bak O., Buragohain P., Lu H., Suvorova E., Gruverman A., Zenkevich A.. Ultrathin Hf0.5Zr0.5O2 ferroelectric films on Si. ACS Appl. Mater. Interfaces, 2016, 8(11): 7232
https://doi.org/10.1021/acsami.5b11653
|
203 |
Ambriz-Vargas F.Kolhatkar G.Broyer M. Hadj-Youssef A.Nouar R.Sarkissian A.Thomas R.Gomez-Yanez C.A. Gauthier M.Ruediger A., A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction, ACS Appl. Mater. Interfaces 9(15), 13262 (2017)
|
204 |
Chouprik A., Chernikova A., Markeev A., Mikheev V., Negrov D., Spiridonov M., Zarubin S., Zenkevich A.. Electron transport across ultrathin ferroelectric Hf0.5Zr0.5O2 films on Si. Microelectron. Eng., 2017, 178: 250
https://doi.org/10.1016/j.mee.2017.05.028
|
205 |
Ryu H., N. Wu H., B. Rao F., J. Zhu W.. Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing. Sci. Rep., 2019, 9(1): 20383
https://doi.org/10.1038/s41598-019-56816-x
|
206 |
Xiao J., Wang Y., Wang H., D. Pemmaraju C., Q. Wang S., Muscher P., J. Sie E., M. Nyby C., P. Devereaux T., F. Qian X., Zhang X., M. Lindenberg A.. Berry curvature memory through electrically driven stacking transitions. Nat. Phys., 2020, 16(10): 1028
https://doi.org/10.1038/s41567-020-0947-0
|
207 |
R. Wang X., Yasuda K., Zhang Y., Liu S., Watanabe K., Taniguchi T., Hone J., Fu L., Jarillo-Herrero P.. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol., 2022, 17(4): 367
https://doi.org/10.1038/s41565-021-01059-z
|
208 |
Datta S., Das B.. Electronic analog of the electrooptic modulator. Appl. Phys. Lett., 1990, 56(7): 665
https://doi.org/10.1063/1.102730
|
209 |
Hossain M., Qin B., Li B., D. Duan X.. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today, 2022, 42: 101338
https://doi.org/10.1016/j.nantod.2021.101338
|
210 |
Dankert A., P. Dash S.. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun., 2017, 8(1): 16093
https://doi.org/10.1038/ncomms16093
|
211 |
A. Benítez L., F. Sierra J., Savero Torres W., Arrighi A., Bonell F., V. Costache M., O. Valenzuela S.. Strongly anisotropic spin relaxation in graphene-transition metal dichalcogenide heterostructures at room temperature. Nat. Phys., 2018, 14(3): 303
https://doi.org/10.1038/s41567-017-0019-2
|
212 |
J. Jedema F., T. Filip A., J. van Wees B.. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature, 2001, 410(6826): 345
https://doi.org/10.1038/35066533
|
213 |
O. Valenzuela S.. Nonlocal electronic spin detection, spin accumulation and the spin Hall effect. Int. J. Mod. Phys. B, 2009, 23(11): 2413
https://doi.org/10.1142/S021797920905290X
|
214 |
Raes B., W. Cummings A., Bonell F., V. Costache M., F. Sierra J., Roche S., O. Valenzuela S.. Spin precession in anisotropic media. Phys. Rev. B, 2017, 95(8): 085403
https://doi.org/10.1103/PhysRevB.95.085403
|
215 |
W. Jiang S., Z. Li L., F. Wang Z., Shan J., F. Mak K.. Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electron., 2019, 2(4): 159
https://doi.org/10.1038/s41928-019-0232-3
|
216 |
L. Lin H., G. Yan F., Hu C., S. Lv Q., K. Zhu W., A. Wang Z., M. Wei Z., Chang K., Y. Wang K.. Spin-valve effect in Fe3GeTe2/MoS2/Fe3GeTe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces, 2020, 12(39): 43921
https://doi.org/10.1021/acsami.0c12483
|
217 |
Yang W., Cao Y., C. Han J., Y. Lin X., H. Wang X., D. Wei G., Lv C., Bournel A., S. Zhao W.. Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions. Nanoscale, 2021, 13(2): 862
https://doi.org/10.1039/D0NR07290G
|
218 |
Zollner K., D. Petrovic M., Dolui K., Plechac P., K. Nikolic B., Fabian J.. Scattering-induced and highly tunable by gate damping-like spin−orbit torque in graphene doubly proximitized by two-dimensional magnet Cr2Ge2Te6 and monolayer WS2. Phys. Rev. Res., 2020, 2(4): 043057
https://doi.org/10.1103/PhysRevResearch.2.043057
|
219 |
Fiederling R., Keim M., Reuscher G., Ossau W., Schmidt G., Waag A., W. Molenkamp L.. Injection and detection of a spin-polarized current in a light-emitting diode. Nature, 1999, 402(6763): 787
https://doi.org/10.1038/45502
|
220 |
Ye Y., Xiao J., L. Wang H., L. Ye Z., Y. Zhu H., Zhao M., Wang Y., H. Zhao J., B. Yin X., Zhang X.. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol., 2016, 11(7): 598
https://doi.org/10.1038/nnano.2016.49
|
221 |
Zhong D., L. Seyler K., Y. Linpeng X., P. Wilson N., Taniguchi T., Watanabe K., A. McGuire M., M. C. Fu K., Xiao D., Yao W., D. Xu X.. Layer-resolved magnetic proximity effect in van der Waals heterostructures. Nat. Nanotechnol., 2020, 15(3): 187
https://doi.org/10.1038/s41565-019-0629-1
|
222 |
Pu J., Takenobu T.. Monolayer transition metal dichalcogenides as light sources. Adv. Mater., 2018, 30(33): 1707627
https://doi.org/10.1002/adma.201707627
|
223 |
J. Zhang Y., Oka T., Suzuki R., T. Ye J., Iwasa Y.. Electrically switchable chiral light-emitting transistor. Science, 2014, 344(6185): 725
https://doi.org/10.1126/science.1251329
|
224 |
Lee J., F. Wang Z., C. Xie H., F. Mak K., Shan J.. Valley magnetoelectricity in single-layer MoS2. Nat. Mater., 2017, 16(9): 887
https://doi.org/10.1038/nmat4931
|
225 |
Son J., H. Kim K., H. Ahn Y., W. Lee H., Lee J.. Strain engineering of the Berry curvature dipole and valley magnetization in monolayer MoS2. Phys. Rev. Lett., 2019, 123(3): 036806
https://doi.org/10.1103/PhysRevLett.123.036806
|
226 |
Y. Chen Y., Q. Ma J., Y. Liu Z., Z. Li J., F. Duan X., H. Li D.. Manipulation of valley pseudospin by selective spin injection in chiral two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano, 2020, 14(11): 15154
https://doi.org/10.1021/acsnano.0c05343
|
227 |
Pu J., J. Zhang W., Matsuoka H., Kobayashi Y., Takaguchi Y., Miyata Y., Matsuda K., Miyauchi Y., Takenobu T.. Room-temperature chiral light-emitting diode based on strained monolayer semiconductors. Adv. Mater., 2021, 33(36): 2100601
https://doi.org/10.1002/adma.202100601
|
228 |
R. Schaibley J., Y. Yu H., Clark G., Rivera P., S. Ross J., L. Seyler K., Yao W., D. Xu X.. Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
https://doi.org/10.1038/natrevmats.2016.55
|
229 |
Rycerz A., Tworzydlo J., W. J. Beenakker C.. Valley filter and valley valve in graphene. Nat. Phys., 2007, 3(3): 172
https://doi.org/10.1038/nphys547
|
230 |
Lee J., F. Mak K., Shan J.. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol., 2016, 11(5): 421
https://doi.org/10.1038/nnano.2015.337
|
231 |
H. Jin C., Kim J., I. B. Utama M., C. Regan E., Kleemann H., Cai H., X. Shen Y., J. Shinner M., Sengupta A., Watanabe K., Taniguchi T., Tongay S., Zettl A., Wang F.. Imaging of pure spin-valley diffusion current in WS2−WSe2 heterostructures. Science, 2018, 360(6391): 893
https://doi.org/10.1126/science.aao3503
|
232 |
Unuchek D., Ciarrocchi A., Avsar A., Sun Z., Watanabe K., Taniguchi T., Kis A.. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol., 2019, 14(12): 1104
https://doi.org/10.1038/s41565-019-0559-y
|
233 |
F. Li L., Shao L., W. Liu X., Y. Gao A., Wang H., J. Zheng B., Z. Hou G., Shehzad K., W. Yu L., Miao F., Shi Y., Xu Y., M. Wang X.. Room-temperature valleytronic transistor. Nat. Nanotechnol., 2020, 15(9): 743
https://doi.org/10.1038/s41565-020-0727-0
|
234 |
Y. Jiang C.Rasmita A.Ma H.H. Tan Q.W. Zhang Z. M. Huang Z.Lai S.Z. Wang N.Liu S.Liu X. Yu T.H. Xiong Q. B. Gao W., A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures, Nat. Electron. 5(1), 23 (2021)
|
235 |
Ingla-Aynés J., Herling F., Fabian J., E. Hueso L., Casanova F.. Electrical control of valley-Zeeman spin-orbit-coupling-induced spin precession at room temperature. Phys. Rev. Lett., 2021, 127(4): 047202
https://doi.org/10.1103/PhysRevLett.127.047202
|
236 |
S. Hossain M., K. Ma M., A. Villegas-Rosales K., J. Chung Y., N. Pfeiffer L., W. West K., W. Baldwin K., Shayegan M.. Spontaneous valley polarization of itinerant electrons. Phys. Rev. Lett., 2021, 127(11): 116601
https://doi.org/10.1103/PhysRevLett.127.116601
|
237 |
Huang B., A. McGuire M., F. May A., Xiao D., Jarillo-Herrero P., D. Xu X.. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater., 2020, 19(12): 1276
https://doi.org/10.1038/s41563-020-0791-8
|
238 |
Lee J., Heo W., Cha M., Watanabe K., Taniguchi T., Kim J., Cha S., Kim D., H. Jo M., Choi H.. Ultrafast non-excitonic valley Hall effect in MoS2/WTe2 heterobilayers. Nat. Commun., 2021, 12(1): 1635
https://doi.org/10.1038/s41467-021-21013-w
|
239 |
K. Luo Y., S. Xu J., C. Zhu T., Z. Wu G., J. McCormick E., B. Zhan W., R. Neupane M., K. Kawakami R.. Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano Lett., 2017, 17(6): 3877
https://doi.org/10.1021/acs.nanolett.7b01393
|
240 |
Cha S., Noh M., Kim J., Son J., Bae H., Lee D., Kim H., Lee J., S. Shin H., Sim S., Yang S., Lee S., Shim W., H. Lee C., H. Jo M., S. Kim J., Kim D., Choi H.. Generation, transport and detection of valley-locked spin photocurrent in WSe2-graphene-Bi2Se3 heterostructures. Nat. Nanotechnol., 2018, 13(10): 910
https://doi.org/10.1038/s41565-018-0195-y
|
241 |
T. Yuan H., Q. Wang X., Lian B., J. Zhang H., F. Fang X., Shen B., Xu G., Xu Y., C. Zhang S., Y. Hwang H., Cui Y.. Generation and electric control of spin−valley-coupled circular photogalvanic current in WSe2. Nat. Nanotechnol., 2014, 9(10): 851
https://doi.org/10.1038/nnano.2014.183
|
242 |
Rasmita A., Y. Jiang C., Ma H., R. Ji Z., Agarwal R., B. Gao W.. Tunable geometric photocurrent in van der Waals heterostructure. Optica, 2020, 7(9): 1204
https://doi.org/10.1364/OPTICA.393381
|
243 |
Sattari F., Mirershadi S.. Effect of the strain on spin-valley transport properties in MoS2 superlattice. Sci. Rep., 2021, 11(1): 17617
https://doi.org/10.1038/s41598-021-97189-4
|
244 |
N. Miao S., M. Wang T., Huang X., X. Chen D., Lian Z., Wang C., Blei M., Taniguchi T., Watanabe K., Tongay S., H. Wang Z., Xiao D., T. Cui Y., F. Shi S.. Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moire superlattice. Nat. Commun., 2021, 12(1): 3608
https://doi.org/10.1038/s41467-021-23732-6
|
245 |
Huang D., Choi J., K. Shih C., Q. Li X.. Excitons in semiconductor moire superlattices. Nat. Nanotechnol., 2022, 17(3): 227
https://doi.org/10.1038/s41565-021-01068-y
|
246 |
H. Bao C., Z. Tang P., Sun D., Y. Zhou S.. Light-induced emergent phenomena in 2D materials and topological materials. Nat. Rev. Phys., 2021, 4(1): 33
https://doi.org/10.1038/s42254-021-00388-1
|
247 |
P. Wilson N., Yao W., Shan J., D. Xu X.. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature, 2021, 599(7885): 383
https://doi.org/10.1038/s41586-021-03979-1
|
248 |
Y. Wang Y., P. Li F., Wei W., B. Huang B., Dai Y.. Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
https://doi.org/10.1007/s11467-020-0991-3
|
249 |
Klimmer S., Ghaebi O., Y. Gan Z., George A., Turchanin A., Cerullo G., Soavi G.. All-optical polarization and amplitude modulation of second-harmonic generation in atomically thin semiconductors. Nat. Photonics, 2021, 15(11): 837
https://doi.org/10.1038/s41566-021-00859-y
|
250 |
Wijethunge D., Zhang L., Tang C., Du A.. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
https://doi.org/10.1007/s11467-020-0987-z
|
251 |
Yun Q., Li L., Hu Z., Lu Q., Chen B., Zhang H.. Layered transition metal dichalcogenide‐based nanomaterials for electrochemical energy storage. Adv. Mater., 2020, 32(1): 1903826
https://doi.org/10.1002/adma.201903826
|
252 |
Cha E., D. Patel M., Park J., Hwang J., Prasad V., Cho K.. MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat. Nanotechnol., 2018, 13(4): 337
https://doi.org/10.1038/s41565-018-0061-y
|
253 |
Yang J., R. Mohmad A., Wang Y., Fullon R., Song X., Zhao F., Bozkurt I., Augustin M., J. Santos E., S. Shin H., Zhang W., Voiry D., Y. Jeong H., Chhowalla M.. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater., 2019, 18(12): 1309
https://doi.org/10.1038/s41563-019-0463-8
|
254 |
Ouyang Y., Ling C., Chen Q., Wang Z., Shi L., Wang J.. Activating inert basal planes of MoS2 for hydrogen evolution reaction through the formation of different intrinsic defects. Chem. Mater., 2016, 28(12): 4390
https://doi.org/10.1021/acs.chemmater.6b01395
|
255 |
He Y., Tang P., Hu Z., He Q., Zhu C., Wang L., Zeng Q., Golani P., Gao G., Fu W., Huang Z., Gao C., Xia J., Wang X., Wang X., Zhu C., M. Ramasse Q., Zhang A., An B., Zhang Y., Martí-Sánchez S., R. Morante J., Wang L., K. Tay B., I. Yakobson B., Trampert A., Zhang H., Wu M., J. Wang Q., Arbiol J., Liu Z.. Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat. Commun., 2020, 11(1): 57
https://doi.org/10.1038/s41467-019-13631-2
|
256 |
Y. Chen W., Jiang X., N. Lai S., Peroulis D., Stanciu L.. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun., 2020, 11(1): 1302
https://doi.org/10.1038/s41467-020-15092-4
|
257 |
Su W., Zhang S., Liu C., Tian Q., Liu X., Li K., Lv Y., Liao L., Zou X.. Interlayer transition induced infrared response in ReS2/2D Perovskite van der Waals heterostructure photodetector. Nano Lett., 2022, 22(24): 10192
https://doi.org/10.1021/acs.nanolett.2c04328
|
258 |
Wen Y., He P., Yao Y., Zhang Y., Cheng R., Yin L., Li N., Li J., Wang J., Wang Z., Liu C., Fang X., Jiang C., Wei Z., He J.. Bridging the van der Waals interface for advanced optoelectronic devices. Adv. Mater., 2020, 32(7): 1906874
https://doi.org/10.1002/adma.201906874
|
259 |
Wen Y., He P., Wang Q., Yao Y., Zhang Y., Hussain S., Wang Z., Cheng R., Yin L., Getaye Sendeku M., Wang F., Jiang C., He J.. Gapless van der Waals heterostructures for infrared optoelectronic devices. ACS Nano, 2019, 13(12): 14519
https://doi.org/10.1021/acsnano.9b08375
|
260 |
Wen Y., Yin L., He P., Wang Z., Zhang X., Wang Q., A. Shifa T., Xu K., Wang F., Zhan X., Wang F., Jiang C., He J.. Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS–MoS2 heterostructures with edge contacts. Nano Lett., 2016, 16(10): 6437
https://doi.org/10.1021/acs.nanolett.6b02881
|
261 |
Wang Z., Xia H., Wang P., Zhou X., Liu C., Zhang Q., Wang F., Huang M., Chen S., Wu P., Chen Y., Ye J., Huang S., Yan H., Gu L., Miao J., Li T., Chen X., Lu W., Zhou P., Hu W.. Controllable doping in 2D layered materials. Adv. Mater., 2021, 33(48): 2104942
https://doi.org/10.1002/adma.202104942
|
262 |
Zhang X., Liu B., Gao L., Yu H., Liu X., Du J., Xiao J., Liu Y., Gu L., Liao Q., Kang Z., Zhang Z., Zhang Y.. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun., 2021, 12(1): 1522
https://doi.org/10.1038/s41467-021-21861-6
|
263 |
Wen Y., Liu Z., Zhang Y., Xia C., Zhai B., Zhang X., Zhai G., Shen C., He P., Cheng R., Yin L., Yao Y., Getaye Sendeku M., Wang Z., Ye X., Liu C., Jiang C., Shan C., Long Y., He J.. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett., 2020, 20(5): 3130
https://doi.org/10.1021/acs.nanolett.9b05128
|
264 |
Guo Z., Wang L., Han M., Zhao E., Zhu L., Guo W., Tan J., Liu B., Q. Chen X., Lin J.. One-step growth of bilayer 2H–1T′ MoTe2 van der Waals heterostructures with interlayer-coupled resonant phonon vibration. ACS Nano, 2022, 16(7): 11268
https://doi.org/10.1021/acsnano.2c04664
|
265 |
Bian M., Zhu L., Wang X., Choi J., V. Chopdekar R., Wei S., Wu L., Huai C., Marga A., Yang Q., C. Li Y., Yao F., Yu T., A. Crooker S., M. Cheng X., F. Sabirianov R., Zhang S., Lin J., Hou Y., Zeng H.. Dative epitaxy of commensurate monocrystalline covalent van der Waals moiré supercrystal. Adv. Mater., 2022, 34(17): 2200117
https://doi.org/10.1002/adma.202200117
|
266 |
Zhang L., Wang G., Zhang Y., Cao Z., Wang Y., Cao T., Wang C., Cheng B., Zhang W., Wan X., Lin J., J. Liang S., Miao F.. Tuning electrical conductance in bilayer MoS2 through defect-mediated interlayer chemical bonding. ACS Nano, 2020, 14(8): 10265
https://doi.org/10.1021/acsnano.0c03665
|
267 |
Tang L., Xu R., Tan J., Luo Y., Zou J., Zhang Z., Zhang R., Zhao Y., Lin J., Zou X., Liu B., M. Cheng H.. Modulating electronic structure of monolayer transition metal dichalcogenides by substitutional Nb‐doping. Adv. Funct. Mater., 2021, 31(5): 2006941
https://doi.org/10.1002/adfm.202006941
|
268 |
Zou J., Cai Z., Lai Y., Tan J., Zhang R., Feng S., Wang G., Lin J., Liu B., M. Cheng H.. Doping concentration modulation in vanadium-doped monolayer molybdenum disulfide for synaptic transistors. ACS Nano, 2021, 15(4): 7340
https://doi.org/10.1021/acsnano.1c00596
|
269 |
Lv Q., Tan J., Wang Z., Yu L., Liu B., Lin J., Li J., H. Huang Z., Kang F., Lv R.. Femtomolar-level molecular sensing of monolayer tungsten diselenide induced by heteroatom doping with long-term stability. Adv. Funct. Mater., 2022, 32(34): 2200273
https://doi.org/10.1002/adfm.202200273
|
270 |
Lin J., Zhou J., Zuluaga S., Yu P., Gu M., Liu Z., T. Pantelides S., Suenaga K.. Anisotropic ordering in 1T′ molybdenum and tungsten ditelluride layers alloyed with sulfur and selenium. ACS Nano, 2018, 12(1): 894
https://doi.org/10.1021/acsnano.7b08782
|
271 |
Yu P., Lin J., Sun L., L. Le Q., Yu X., Gao G., H. Hsu C., Wu D., R. Chang T., Zeng Q., Liu F., J. Wang Q., T. Jeng H., Lin H., Trampert A., Shen Z., Suenaga K., Liu Z.. Metal-semiconductor phase-transition in WSe2(1−x)Te2x monolayer. Adv. Mater., 2017, 29(4): 1603991
https://doi.org/10.1002/adma.201603991
|
272 |
Gong Y., Liu Z., R. Lupini A., Shi G., Lin J., Najmaei S., Lin Z., L. Elías A., Berkdemir A., You G., Terrones H., Terrones M., Vajtai R., T. Pantelides S., J. Pennycook S., Lou J., Zhou W., M. Ajayan P.. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett., 2014, 14(2): 442
https://doi.org/10.1021/nl4032296
|
273 |
Cheng M., Yang J., Li X., Li H., Du R., Shi J., He J.. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
https://doi.org/10.1007/s11467-022-1190-1
|
274 |
Luo P., Liu C., Lin J., Duan X., Zhang W., Ma C., Lv Y., Zou X., Liu Y., Schwierz F., Qin W., Liao L., He J., Liu X.. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron., 2022, 5(12): 849
https://doi.org/10.1038/s41928-022-00877-w
|
275 |
Zhang X., Yu H., Tang W., Wei X., Gao L., Hong M., Liao Q., Kang Z., Zhang Z., Zhang Y.. All‐van‐der-Waals barrier-free contacts for high-mobility transistors. Adv. Mater., 2022, 34(34): 2109521
https://doi.org/10.1002/adma.202109521
|
276 |
Zhang X., Kang Z., Gao L., Liu B., Yu H., Liao Q., Zhang Z., Zhang Y.. Molecule-upgraded van der waals contacts for Schottky‐barrier-free electronics. Adv. Mater., 2021, 33(45): 2104935
https://doi.org/10.1002/adma.202104935
|
277 |
Huang W., Wang F., Yin L., Cheng R., Wang Z., G. Sendeku M., Wang J., Li N., Yao Y., He J.. Gate‐coupling‐enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions. Adv. Mater., 2020, 32(14): 1908040
https://doi.org/10.1002/adma.201908040
|
278 |
Yang Z., Liao L., Gong F., Wang F., Wang Z., Liu X., Xiao X., Hu W., He J., Duan X.. WSe2/GeSe heterojunction photodiode with giant gate tunability. Nano Energy, 2018, 49: 103
https://doi.org/10.1016/j.nanoen.2018.04.034
|
279 |
Cao J., Wang Z., Zhan X., Wang Q., Safdar M., Wang Y., He J.. Vertical SnSe nanorod arrays: From controlled synthesis and growth mechanism to thermistor and photoresistor. Nanotechnology, 2014, 25(10): 105705
https://doi.org/10.1088/0957-4484/25/10/105705
|
280 |
Mirza M., Wang J., Wang L., He J., Jiang C.. Response enhancement mechanism of NO2 gas sensing in ultrathin pentacene field-effect transistors. Org. Electron., 2015, 24: 96
https://doi.org/10.1016/j.orgel.2015.05.022
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|