Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (6) : 62302    https://doi.org/10.1007/s11467-023-1316-0
RESEARCH ARTICLE
Structure and dynamics of binary Bose−Einstein condensates with vortex phase imprinting
Jianchong Xing1, Wenkai Bai1, Bo Xiong2, Jun-Hui Zheng1,3, Tao Yang1,3()
1. Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi’an 710127, China
2. School of Science, Wuhan University of Technology, Wuhan 430070, China
3. Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China
 Download: PDF(5121 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The combination of multi-component Bose−Einstein condensates (BECs) and phase imprinting techniques provides an ideal platform for exploring nonlinear dynamics and investigating the quantum transport properties of superfluids. In this paper, we study abundant density structures and corresponding dynamics of phase-separated binary Bose−Einstein condensates with phase-imprinted single vortex or vortex dipole. By adjusting the ratio between the interspecies and intraspecies interactions, and the locations of the phase singularities, the typical density profiles such as ball-shell structures, crescent-gibbous structures, Matryoshka-like structures, sector-sector structures and sandwich-type structures appear, and the phase diagrams are obtained. The dynamics of these structures exhibit diverse properties, including the penetration of vortex dipoles, emergence of half-vortex dipoles, co-rotation of sectors, and oscillation between sectors. The pinning effects induced by a potential defect are also discussed, which is useful for controlling and manipulating individual quantum states.

Keywords Bose−Einstein condensates      phase separation      angular momentum      energy competition     
Corresponding Author(s): Tao Yang   
About author:

* These authors contributed equally to this work.

Issue Date: 06 July 2023
 Cite this article:   
Jianchong Xing,Wenkai Bai,Bo Xiong, et al. Structure and dynamics of binary Bose−Einstein condensates with vortex phase imprinting[J]. Front. Phys. , 2023, 18(6): 62302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1316-0
https://academic.hep.com.cn/fop/EN/Y2023/V18/I6/62302
Fig.1  Density profiles of binary condensates with single vortex phase imprinting in component-1. (a, b) The typical ball-shell structures of the density profiles with respect to different λ. The vortex phase singularity is in the trap center [b=0, see the inset between (a) and (b)]. (c, d) Crescent-gibbous density profiles are realized when an off-center phase imprinting [b0, see the inset between (c) and (d)] is applied. The corresponding velocity fields for component-1 are indicated by the white arrows in the top row. Here, we set g12/g22=1.5.
Fig.2  (a) Angular momentum variation dependents on the off-center-distance of vortex for fixing g12/g22=1.5. The inset shows the value of red dot-line minus blue dot-line. (b) Density profiles of component-1 along x axis. (c) Schematic illustration of component-1 of BEC to analyze the angular momentum of the system. Point o and s represent the center of the trap and vortex singularity, respectively. In (b) and (c), the red solid line and blue dashed line correspond to the parameter λ=1.1 and 0.9, respectively.
Fig.3  Dynamical evolution of the density profiles after imprinting a vortex phase at position (x0,0) of component-1 and applying a weak inverted Gauss potential VG for component-2. The white (red) curved arrow indicates that the condensate rotates counterclockwise (clockwise), while the case without the arrow indicates that the condensate is hardly rotating. Here, the parameters used are λ=1.1 and g12/g22=1.5.
Fig.4  (a) Variation of angular momentum with time after the trap adding the Gaussian potential under the parameter λ=1.1. Here, g12/g22=1.5. (b) A typical density profile of condensates when it interacts with the Gaussian defect in dynamics. (c, d) The center-of-mass trajectories of component-1 with the blue dot start point for A=?3.6 and A=?4.4, respectively. (e) The amplitude of the change of the total angular momentum ΔLz within the first half period with respect to the amplitude A of the Gaussian defect.
Fig.5  (a) Schematic illustration of the phase imprinting in component-1 while the phase of component-2 is uniform. The singularity point of the negative vortex phase is located in (?d/2,0) and the positive one is located in (d/2,0). (b) Six kinds of density profiles of the condensates are realized by adjusting the value of d and g12/g22 for λ=0.9 via using the vortex phase imprinting of (a). The insets in (b) indicates the total density of the two components. The phase diagrams of the density profile of the two-component BECs with vortex dipole phase imprinting with respect to g12/g22 and d for (c) λ=0.9 and (d) λ=1.1. The inset in (d) indicates the density distribution VII.
Fig.6  (a) The dynamical evolution of the Matryoshka-like density profile [see Fig.5(b)(I)] for λ=0.9 and g12/g22=3.0 with the initial vortex spacing being d=1.2x0. The insets in the red solid oblongs magnify the corresponding regions of the density profiles.(b) The dynamical evolution of the Matryoshka-like with component-2 being the bull’s eye profile [see Fig.5(b)(II)] while the initial vortex spacing is d=1.7x0 for λ=0.9 and g12/g22=3.0. The insets for t=13t0 and t=49.5t0 are the total density of the two components and the phase distribution of the region surround by the white oval circle in the density distribution, respectively. For both (a) and (b), the first row is for component-1 and the other one is for component-2.
Fig.7  Dynamics of the transposed sandwiched density profile [see Fig.5(b)(V)] while the initial vortex spacing is d=6.5x0 for λ=0.9 and g12/g22=3.0. The first row is for the component-1 and the other one is for the component-2. The insets in the red solid oblongs magnify the corresponding regions of the density profiles.
Fig.8  (a) Dynamics of the sector?sector density profile [see Fig.5(b)(III)] while the initial vortex spacing is d=1.8x0 for λ=0.9 and g12/g22=3.0. (b) The center-of-mass trajectories of the sector?sector density profile [see (a)] where the red(blue) solid line indicates the trajectory of component-1(-2) with the start point red (blue) dot. (c) Dynamics of the sandwiched density profile [see Fig.5(b)(IV)] while the initial vortex spacing is d=2.3x0 for λ=0.9 and g12/g22=3.0. (d) Dynamics of the ball-shell density profile [see Fig.5(b)(VI)] while the initial vortex spacing by the phase imprinting is d=14x0 for λ=0.9 and g12/g22=3.0. Here, for (a), (c) and (d), the first row is for the component-1 and the other one is for the component-2.
Type of phase-imprinting Position of the phase singularity in component-1 λ Total density structure Density profiles of two components Dynamics
Single vortex b=0 (Centered phase singularity) λ<1 Ball-shell Component-1: ball with vortex Component-2: shell Stable
λ>1 Component-1: shell Component-2: ball without vortex Stable
b0 (Off-center phase singularity) λ<1 Crescent-gibbous Component-1: Gibbous Component-2: Crescent Rotating with interface deform (amplitude of VG:|A|<|Ac|) Pinning (amplitude of VG:|A|=|Ac|)Oscillating (amplitude of VG:|A|>|Ac|)
λ>1 Component-1: Crescent Component-2: Gibbous
Vortex dipole Varing d and g12/g22 λ<1 Ball-shell (I) Component-1: ball with vortex dipole Component-2: shell Transition from ball-shell structure to sector?sector structure with formation of half-vortex dipole
Matryoshka-like (II) Component-1: ball with density dip Component-2: bull’s eye Transition from Matryoshka-like structure to sector?sector structure with penetration of vortex dipole
Sector-sector (III) Component-1: sector Component-2: sector Rotating with interface deform
Sandwich-type (IV) Component-1: two separated gibbous Component-2: central part Oscillating periodically
Transposed sandwich-type (V) Component-1: central part Component-2: two separated gibbous Transition from sandwich-type structure to sector?sector structure
Ball-shell (VI) Component-1: ball Component-2: shell Transition from ball-shell structure to oscillating asymmetric sandwich structure
Varing d and g12/g22 λ>1 Ball-shell (VII) Component-1: shell Component-2: ball Transition from ball-shell structure to oscillating asymmetric sandwich structure
Sandwich-type (IV) Component-1: two separated gibbous Component-2: central part Oscillating periodically
Tab.1  Comparison of initial structure and dynamic behavior for two-component BEC.
1 R. Matthews M. , P. Anderson B. , C. Haljan P. , S. Hall D. , E. Wieman C. , A. Cornell E. . Vortices in a Bose–Einstein condensate. Phys. Rev. Lett., 1999, 83(13): 2498
https://doi.org/10.1103/PhysRevLett.83.2498
2 Jackson B. , F. McCann J. , S. Adams C. . Vortex line and ring dynamics in trapped Bose–Einstein condensates. Phys. Rev. A, 1999, 61(1): 013604
https://doi.org/10.1103/PhysRevA.61.013604
3 Yang T. , Xiong B. , A. Benedict K. . Dynamical excitations in the collision of two-dimensional Bose–Einstein condensates. Phys. Rev. A, 2013, 87(2): 023603
https://doi.org/10.1103/PhysRevA.87.023603
4 Denschlag J. , E. Simsarian J. , L. Feder D. , W. Clark C. , A. Collins L. , Cubizolles J. , Deng L. , W. Hagley E. , Helmerson K. , P. Reinhardt W. , L. Rolston S. , I. Schneider B. , D. Phillips W. . Generating solitons by phase engineering of a Bose–Einstein condensate. Science, 2000, 287(5450): 97
https://doi.org/10.1126/science.287.5450.97
5 L. Cheng Q. , K. Bai W. , Z. Zhang Y. , Xiong B. , Yang T. . Influence of a dark soliton on the reflection of a Bose–Einstein condensate by a square barrier. Laser Phys., 2019, 29(1): 015501
https://doi.org/10.1088/1555-6611/aaea78
6 M. Wang D. , C. Xing J. , Du R. , Xiong B. , Yang T. . Quantum reflection of a Bose–Einstein condensate with a dark soliton from a step potential. Chin. Phys. B, 2021, 30(12): 120303
https://doi.org/10.1088/1674-1056/ac051e
7 Du R. , C. Xing J. , Xiong B. , H. Zheng J. , Yang T. . Quench dynamics of Bose–Einstein condensates in boxlike traps. Chin. Phys. Lett., 2022, 39(7): 070304
https://doi.org/10.1088/0256-307X/39/7/070304
8 Proment D. , Onorato M. , F. Barenghi C. . Vortex knots in a Bose–Einstein condensate. Phys. Rev. E, 2012, 85(3): 036306
https://doi.org/10.1103/PhysRevE.85.036306
9 K. Bai W. , Yang T. , M. Liu W. . Topological transition from superfluid vortex rings to isolated knots and links. Phys. Rev. A, 2020, 102(6): 063318
https://doi.org/10.1103/PhysRevA.102.063318
10 Ruostekoski J. , R. Anglin J. . Creating vortex rings and three-dimensional skyrmions in Bose–Einstein condensates. Phys. Rev. Lett., 2001, 86(18): 3934
https://doi.org/10.1103/PhysRevLett.86.3934
11 Zhang X. , Hu X. , Wang D. , Liu X. , Liu W. . Dynamics of Bose−Einstein condensates near Feshbach resonance in external potential. Front. Phys. China, 2011, 6: 46
12 H. Lu P. , F. Zhang X. , Q. Dai C. . Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin–orbit coupled Bose–Einstein condensate. Front. Phys., 2022, 17(4): 42501
https://doi.org/10.1007/s11467-021-1134-1
13 W. Song S. , Wen L. , F. Liu C. , C. Gou S. , M. Liu W. . Ground states, solitons and spin textures in spin-1 Bose–Einstein condensates. Front. Phys., 2013, 8(3): 302
https://doi.org/10.1007/s11467-013-0350-8
14 K. Adhikari S. . Coupled Bose–Einstein condensate: Collapse for attractive interaction. Phys. Rev. A, 2001, 63(4): 043611
https://doi.org/10.1103/PhysRevA.63.043611
15 L. Ho T. , B. Shenoy V. . Binary mixtures of Bose condensates of alkali atoms. Phys. Rev. Lett., 1996, 77(16): 3276
https://doi.org/10.1103/PhysRevLett.77.3276
16 Navarro R. , Carretero-González R. , G. Kevrekidis P. . Phase separation and dynamics of two-component Bose–Einstein condensates. Phys. Rev. A, 2009, 80(2): 023613
https://doi.org/10.1103/PhysRevA.80.023613
17 Catelani G. , A. Yuzbashyan E. . Coreless vorticity in multicomponent Bose and Fermi superfluids. Phys. Rev. A, 2010, 81(3): 033629
https://doi.org/10.1103/PhysRevA.81.033629
18 J. H. Law K. , G. Kevrekidis P. , S. Tuckerman L. . Stable vortex–bright-soliton structures in two-component Bose–Einstein condensates. Phys. Rev. Lett., 2010, 105(16): 160405
https://doi.org/10.1103/PhysRevLett.105.160405
19 Pola M. , Stockhofe J. , Schmelcher P. , G. Kevrekidis P. . Vortex–bright-soliton dipoles: Bifurcations, symmetry breaking, and soliton tunneling in a vortex-induced double well. Phys. Rev. A, 2012, 86(5): 053601
https://doi.org/10.1103/PhysRevA.86.053601
20 Kuopanportti P. , A. M. Huhtamäki J. , Möttönen M. . Exotic vortex lattices in two-species Bose–Einstein condensates. Phys. Rev. A, 2012, 85(4): 043613
https://doi.org/10.1103/PhysRevA.85.043613
21 Lee C. . Universality and anomalous mean-field break-down of symmetry-breaking transitions in a coupled two-component Bose–Einstein Condensate. Phys. Rev. Lett., 2009, 102(7): 070401
https://doi.org/10.1103/PhysRevLett.102.070401
22 Sabbatini J. , H. Zurek W. , J. Davis M. . Phase separation and pattern formation in a binary Bose–Einstein condensate. Phys. Rev. Lett., 2011, 107(23): 230402
https://doi.org/10.1103/PhysRevLett.107.230402
23 Takeuchi H. , Ishino S. , Tsubota M. . Binary quantum turbulence arising from countersuperflow instability in two-component Bose–Einstein condensates. Phys. Rev. Lett., 2010, 105(20): 205301
https://doi.org/10.1103/PhysRevLett.105.205301
24 Timmermans E. . Phase separation of Bose–Einstein condensates. Phys. Rev. Lett., 1998, 81(26): 5718
https://doi.org/10.1103/PhysRevLett.81.5718
25 Wen L. , M. Liu W. , Cai Y. , M. Zhang J. , Hu J. . Controlling phase separation of a two-component Bose–Einstein condensate by confinement. Phys. Rev. A, 2012, 85(4): 043602
https://doi.org/10.1103/PhysRevA.85.043602
26 W. Pattinson R. , P. Billam T. , A. Gardiner S. , J. McCarron D. , W. Cho H. , L. Cornish S. , G. Parker N. , P. Proukakis N. . Equilibrium solutions for immiscible two-species Bose–Einstein condensates in perturbed harmonic traps. Phys. Rev. A, 2013, 87(1): 013625
https://doi.org/10.1103/PhysRevA.87.013625
27 L. Lee K. , B. Jørgensen N. , K. Liu I. , Wacker L. , J. Arlt J. , P. Proukakis N. . Phase separation and dynamics of two-component Bose–Einstein condensates. Phys. Rev. A, 2016, 94(1): 013602
https://doi.org/10.1103/PhysRevA.94.013602
28 Pyzh M. , Schmelcher P. . Phase separation of a Bose–Bose mixture: Impact of the trap and particle-number imbalance. Phys. Rev. A, 2020, 102(2): 023305
https://doi.org/10.1103/PhysRevA.102.023305
29 Sasaki K. , Suzuki N. , Akamatsu D. , Saito H. . Rayleigh–Taylor instability and mushroom-pattern formation in a two-component Bose–Einstein condensate. Phys. Rev. A, 2009, 80(6): 063611
https://doi.org/10.1103/PhysRevA.80.063611
30 Takeuchi H. , Suzuki N. , Kasamatsu K. , Saito H. , Tsubota M. . Quantum Kelvin–Helmholtz instability in phase-separated two-component Bose–Einstein condensates. Phys. Rev. B, 2010, 81(9): 094517
https://doi.org/10.1103/PhysRevB.81.094517
31 W. Madison K. , Chevy F. , Wohlleben W. , Dalibard J. . Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett., 2000, 84(5): 806
https://doi.org/10.1103/PhysRevLett.84.806
32 Chevy F. , W. Madison K. , Dalibard J. . Measurement of the angular momentum of a rotating Bose–Einstein condensate. Phys. Rev. Lett., 2000, 85(11): 2223
https://doi.org/10.1103/PhysRevLett.85.2223
33 S. Leslie L. , Hansen A. , C. Wright K. , M. Deutsch B. , P. Bigelow N. . Creation and detection of skyrmions in a Bose–Einstein condensate. Phys. Rev. Lett., 2009, 103(25): 250401
https://doi.org/10.1103/PhysRevLett.103.250401
34 Choi J. , J. Kwon W. , Shin Y. . Observation of topologically stable 2D skyrmions in an antiferromagnetic spinor Bose–Einstein condensate. Phys. Rev. Lett., 2012, 108(3): 035301
https://doi.org/10.1103/PhysRevLett.108.035301
35 E. Leanhardt A. , Görlitz A. , P. Chikkatur A. , Kielpinski D. , Shin Y. , E. Pritchard D. , Ketterle W. . Imprinting vortices in a Bose–Einstein condensate using topological phases. Phys. Rev. Lett., 2002, 89(19): 190403
https://doi.org/10.1103/PhysRevLett.89.190403
36 Yang T. , Q. Hu Z. , Zou S. , M. Liu W. . Dynamics of vortex quadrupoles in nonrotating trapped Bose–Einstein condensates. Sci. Rep., 2016, 6(1): 29066
https://doi.org/10.1038/srep29066
37 Bandyopadhyay S. , Roy A. , Angom D. . Dynamics of phase separation in two-species Bose–Einstein condensates with vortices. Phys. Rev. A, 2017, 96(4): 043603
https://doi.org/10.1103/PhysRevA.96.043603
38 Aioi T. , Kadokura T. , Saito H. . Penetration of a vortex dipole across an interface of Bose–Einstein condensates. Phys. Rev. A, 2012, 85(2): 023618
https://doi.org/10.1103/PhysRevA.85.023618
39 T. Kapale K. , P. Dowling J. . Vortex phase qubit: Generating arbitrary, counterrotating, coherent superpositions in Bose–Einstein condensates via optical angular momentum beams. Phys. Rev. Lett., 2005, 95(17): 173601
https://doi.org/10.1103/PhysRevLett.95.173601
40 Thanvanthri S. , T. Kapale K. , P. Dowling J. . Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light. Phys. Rev. A, 2008, 77(5): 053825
https://doi.org/10.1103/PhysRevA.77.053825
41 Wen L. , Qiao Y. , Xu Y. , Mao L. . Structure of two-component Bose−Einstein condensates with respective vortex−antivortex superposition states. Phys. Rev. A, 2013, 87(3): 033604
https://doi.org/10.1103/PhysRevA.87.033604
42 Ishino S. , Tsubota M. , Takeuchi H. . Counter-rotating vortices in miscible two-component Bose–Einstein condensates. Phys. Rev. A, 2013, 88(6): 063617
https://doi.org/10.1103/PhysRevA.88.063617
43 W. Neely T. , C. Samson E. , S. Bradley A. , J. Davis M. , P. Anderson B. . Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett., 2010, 104(16): 160401
https://doi.org/10.1103/PhysRevLett.104.160401
44 K. Maity D. , Mukherjee K. , I. Mistakidis S. , Das S. , G. Kevrekidis P. , Majumder S. , Schmelcher P. . Parametrically excited star-shaped patterns at the interface of binary Bose–Einstein condensates. Phys. Rev. A, 2020, 102(3): 033320
https://doi.org/10.1103/PhysRevA.102.033320
45 Pethick C.Smith H., Bose−Einstein Condensation in Dilute Gases, New York: Cambridge University Press, 2014
46 Yang G. , Zhang S. , Han W. . Oblique collisions and catching-up phenomena of vortex dipoles in a uniform Bose–Einstein condensate. Phys. Scr., 2019, 94(7): 075006
https://doi.org/10.1088/1402-4896/ab1220
47 J. Torres P. , G. Kevrekidis P. , J. Frantzeskakis D. , Carretero-González R. , Schmelcher P. , S. Hall D. . Dynamics of vortex dipoles Einstein condensates. Phys. Lett. A, 2011, 375(33): 3044
https://doi.org/10.1016/j.physleta.2011.06.061
[1] Zhanlei Hao, Haojie Chen, Yuhang Yin, Cheng-Wei Qiu, Shan Zhu, Huanyang Chen. Efficient conversion of acoustic vortex using extremely anisotropic metasurface[J]. Front. Phys. , 2024, 19(4): 42202-.
[2] Si Jia Li, Zhuo Yue Li, Guo Shai Huang, Xiao Bin Liu, Rui Qi Li, Xiang Yu Cao. Digital coding transmissive metasurface for multi-OAM-beam[J]. Front. Phys. , 2022, 17(6): 62501-.
[3] Hai-Yun Wang, Zhao-Hui Yang, Kun Liu, Ya-Hong Chen, Lin Liu, Fei Wang, Yang-Jian Cai. Generalized high-order twisted partially coherent beams and their propagation characteristics[J]. Front. Phys. , 2022, 17(5): 52506-.
[4] Zhucheng Zhang, Jiancheng Pei, Yi-Ping Wang, Xiaoguang Wang. Measuring orbital angular momentum of vortex beams in optomechanics[J]. Front. Phys. , 2021, 16(3): 32503-.
[5] Jin Peng, X. M. Gu, G. T. Zhou, W. Wang, J. Y. Liu, Yu Wang, Z. Q. Mao, X. S. Wu, Shuai Dong. Electron mass enhancement and magnetic phase separation near the Mott transition in double-layer ruthenates[J]. Front. Phys. , 2018, 13(4): 137108-.
[6] C. Echeverria, K. Tucci, O. Alvarez-Llamoza, E. E. Orozco-Guillén, M. Morales, M. G. Cosenza. Mesoscopic model for binary fluids[J]. Front. Phys. , 2017, 12(5): 128703-.
[7] Deng Pan, Hong-Xing Xu. Gravitational field around black hole induces photonic spin–orbit interaction that twists light[J]. Front. Phys. , 2017, 12(5): 128102-.
[8] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed