Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 23302    https://doi.org/10.1007/s11467-023-1334-y
RESEARCH ARTICLE
Proposal for valleytronic materials: Ferrovalley metal and valley gapless semiconductor
San-Dong Guo1(), Yu-Ling Tao1, Guangzhao Wang2, Shaobo Chen3, Dong Huang1, Yee Sin Ang4
1. School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
2. Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China
3. College of Electronic and Information Engineering, Anshun University, Anshun 561000, China
4. Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
 Download: PDF(5277 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Valleytronic materials can provide new degrees of freedom to future electronic devices. In this work, the concepts of the ferrovalley metal (FVM) and valley gapless semiconductor (VGS) are proposed, which can be achieved in valleytronic bilayer systems by electric field engineering. In valleytronic bilayer systems, the interaction between out-of-plane ferroelectricity and A-type antiferromagnetism can induce layer-polarized anomalous valley Hall (LP-AVH) effect. The K and −K valleys of FVM are both metallic, and electron and hole carriers simultaneously exist. In the extreme case, the FVM can become VGS by analogizing spin gapless semiconductor (SGS). Moreover, it is proposed that the valley splitting enhancement and valley polarization reversal can be achieved by electric field engineering in valleytronic bilayer systems. Taking the bilayer RuB r2 as an example, our proposal is confirmed by the first-principle calculations. The FVM and VGS can be achieved in bilayer R uB r2 by applying electric field. With appropriate electric field range, increasing electric field can enhance valley splitting, and the valley polarization can be reversed by flipping electric field direction. To effectively tune valley properties by electric field in bilayer systems, the parent monolayer should possess out-of-plane magnetization, and have large valley splitting. Our results shed light on the possible role of electric field in tuning valleytronic bilayer systems, and provide a way to design the ferrovalley-related material by electric field.

Keywords valleytronics      electric field      bilayer     
Corresponding Author(s): San-Dong Guo   
Issue Date: 13 September 2023
 Cite this article:   
San-Dong Guo,Yu-Ling Tao,Guangzhao Wang, et al. Proposal for valleytronic materials: Ferrovalley metal and valley gapless semiconductor[J]. Front. Phys. , 2024, 19(2): 23302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1334-y
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/23302
Fig.1  Schematic diagrams of energy bands of ferrovalley semiconductor (a), half-valley-metal (b), quasi-half-valley-metal (c) and ferrovalley metal (d). The horizontal red lines mean Fermi level.
Fig.2  Schematic diagram of the analogy between spin gapless semiconductor (a, c) and valley gapless semiconductor (b, d). The spin-up/spin-down is equivalent to −K/K valley. The green arrows mean spin, and the horizontal red lines mean Fermi level.
Fig.3  (a) The distribution of Berry curvature, and Berry curvature only occurs around −K and K valleys with opposite signs and unequal magnitudes. Under an in-plane longitudinal electric field E: (b) for VGS-1, the electron carriers of −K valley turn towards one edge of the sample, while the hole carriers of −K valley move towards the other edge of the sample, producing measurable valley Hall voltage; (c) for FVM and VGS-2, the electron carriers of −K valley and hole carriers of K valley move towards the same edge of the sample, producing non-measurable valley Hall voltage.
Fig.4  (a) The schematic diagram of a bilayer lattice with AB pattern, and the red, blue and green arrows represents spin, electric polarization P and external electric field Ep (positive z direction) and E n (negative z direction). The energy level of −K and K valleys without (b) and with external electric field Ep = Epc (c) and E p > Epc (d). The red (blue) energy levels are from up-layer (dn-layer).
Fig.5  For AB-stacked bilayer RuBr 2, (a) the energy band structures; (b) layer-characters energy band structures; (c) Ru-d-orbital projected energy band structures.
Fig.6  The energy band structures of AB-stacked bilayer RuB r2 at representative E = ±0.10, ±0.20, ±0.30 and ±0.40 V/Å.
Fig.7  The related band gaps including the global gap [GT] and gaps of −K and K valleys [G K and G K] (a) and valley splitting for both valence [V] and condition [C] bands (b) of AB-stacked bilayer RuBr 2 as a function of E.
Fig.8  The Berry curvatures of AB-stacked bilayer Ru Br2 in BZ at representative E = +0.10 V/Å (a) and −0.10 V/Å (b).
Fig.9  At a/a0 = 0.95, the energy band structures of AB-stacked bilayer RuB r2 with intrinsic out-of-plane magnetization at representative E.
Fig.10  Under an in-plane longitudinal electric field E (black circles), for bilayer system with suitable out-of-plane electric field (red arrows) producing FVM or VGS-2, (a) the electron carriers of one valley and hole carriers of another valley move towards the same edge of the sample in different layer, which should produce measurable valley Hall voltage with opposite sign in different layer; (b) when the out-of-plane electric field direction is flipped, the electron carriers of one valley and hole carriers of another valley move towards the opposite edge of the sample in different layer, and the electron and hole carriers will exchange between up and dn layers.
1 Xu X., Yao W., Xiao D., F. Heinz T.. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys., 2014, 10(5): 343
https://doi.org/10.1038/nphys2942
2 Liu Y., S. Lian C., Li Y., Xu Y., Duan W.. Pseudospins and topological effects of phonons in a Kekulé lattice. Phys. Rev. Lett., 2017, 119(25): 255901
https://doi.org/10.1103/PhysRevLett.119.255901
3 Zeng M., Xiao Y., Liu J., Yang K., Fu L.. Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chem. Rev., 2018, 118(13): 6236
https://doi.org/10.1021/acs.chemrev.7b00633
4 F. Mak K., He K., Shan J., F. Heinz T.. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494
https://doi.org/10.1038/nnano.2012.96
5 MacNeill D., Heikes C., F. Mak K., Anderson Z., Kormányos A., Zólyomi V., Park J., C. Ralph D.. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett., 2015, 114(3): 037401
https://doi.org/10.1103/PhysRevLett.114.037401
6 Zeng H., Dai J., Yao W., Xiao D., Cui X.. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 2012, 7: 490
https://doi.org/10.1038/nnano.2012.95
7 Srivastava A., Sidler M., V. Allain A., S. Lembke D., Kis A., Imamoglu A.. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141
https://doi.org/10.1038/nphys3203
8 Zhao C., Norden T., Zhang P., Zhao P., Cheng Y., Sun F., P. Parry J., Taheri P., Wang J., Yang Y., Scrace T., Kang K., Yang S., Miao G., Sabirianov R., Kioseoglou G., Huang W., Petrou A., Zeng H.. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol., 2017, 12(8): 757
https://doi.org/10.1038/nnano.2017.68
9 Zeng H., Dai J., Yao W., Xiao D., Cui X.. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 2012, 7(8): 490
https://doi.org/10.1038/nnano.2012.95
10 R. Schaibley J., Yu H., Clark G., Rivera P., S. Ross J., L. Seyler K., Yao W., Xu X.. Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
https://doi.org/10.1038/natrevmats.2016.55
11 S. Mrudul M., Jiménez-Galán Á., Ivanov M., Dixit G.. Light-induced valleytronics in pristine graphene. Optica, 2021, 8(3): 422
https://doi.org/10.1364/OPTICA.418152
12 S. Mrudul M., Dixit G.. Controlling valley-polarisation in graphene via tailored light pulses. J. Phys. At. Mol. Opt. Phys., 2021, 54(22): 224001
https://doi.org/10.1088/1361-6455/ac41ae
13 Y. Tong W., J. Gong S., Wan X., G. Duan C.. Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun., 2016, 7(1): 13612
https://doi.org/10.1038/ncomms13612
14 Hu H., Y. Tong W., H. Shen Y., Wan X., G. Duan C.. Concepts of the half-valley-metal and quantum anomalous valley Hall effect. npj Comput. Mater., 2020, 6: 129
https://doi.org/10.1038/s41524-020-00397-1
15 D. Guo S., X. Zhu J., Q. Mu W., G. Liu B.. Possible way to achieve anomalous valley Hall effect by piezoelectric effect in a GdCl2 monolayer. Phys. Rev. B, 2021, 104(22): 224428
https://doi.org/10.1103/PhysRevB.104.224428
16 Y. Feng X., L. Xu X., L. He Z., Peng R., Dai Y., B. Huang B., D. Ma Y.. Valley-related multiple Hall effect in monolayer VSi2P4. Phys. Rev. B, 2021, 104(7): 075421
https://doi.org/10.1103/PhysRevB.104.075421
17 R. Cui Q., M. Zhu Y., H. Liang J., Cui P., X. Yang H.. Spin-valley coupling in a two-dimensional VSi2N4 monolayer. Phys. Rev. B, 2021, 103(8): 085421
https://doi.org/10.1103/PhysRevB.103.085421
18 Zhou X., Zhang R., Zhang Z., Feng W., Mokrousov Y., Yao Y.. Sign-reversible valley-dependent Berry phase effects in 2D valley-half-semiconductors. npj Comput. Mater., 2021, 7: 160
https://doi.org/10.1038/s41524-021-00632-3
19 Khan I., Marfoua B., Hong J.. Electric field induced giant valley polarization in two dimensional ferromagnetic WSe2/CrSnSe3 heterostructure. npj 2D Mater. Appl., 2021, 5: 10
https://doi.org/10.1038/s41699-020-00195-9
20 X. Cheng H., Zhou J., Ji W., N. Zhang Y., P. Feng Y.. Two-dimensional intrinsic ferrovalley GdI2 with large valley polarization. Phys. Rev. B, 2021, 103(12): 125121
https://doi.org/10.1103/PhysRevB.103.125121
21 Li R., W. Jiang J., B. Mi W., L. Bai H.. Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. Nanoscale, 2021, 13(35): 14807
https://doi.org/10.1039/D1NR04063D
22 Sheng K., Chen Q., K. Yuan H., Y. Wang Z.. Monolayer CeI2: An intrinsic room-temperature ferrovalley semiconductor. Phys. Rev. B, 2022, 105(7): 075304
https://doi.org/10.1103/PhysRevB.105.075304
23 Jiang P., L. Kang L., L. Li Y., H. Zheng X., Zeng Z., Sanvito S.. Prediction of the two-dimensional Janus ferrovalley material LaBrI. Phys. Rev. B, 2021, 104(3): 035430
https://doi.org/10.1103/PhysRevB.104.035430
24 Peng R., Ma Y., Xu X., He Z., Huang B., Dai Y.. Intrinsic anomalous valley Hall effect in single-layer Nb3I8. Phys. Rev. B, 2020, 102(3): 035412
https://doi.org/10.1103/PhysRevB.102.035412
25 Sheng K., K. Zhang B., K. Yuan H., Y. Wang Z.. Strain-engineered topological phase transitions in ferrovalley 2H−RuCl2 monolayer. Phys. Rev. B, 2022, 105(19): 195312
https://doi.org/10.1103/PhysRevB.105.195312
26 D. Guo S., X. Zhu J., Y. Yin M., G. Liu B.. Substantial electronic correlation effects on the electronic properties in a Janus FeClF monolayer. Phys. Rev. B, 2022, 105(10): 104416
https://doi.org/10.1103/PhysRevB.105.104416
27 D. Guo S., Q. Mu W., G. Liu B.. Valley-polarized quantum anomalous Hall insulator in monolayer RuBr2. 2D Mater., 2022, 9: 035011
https://doi.org/10.1088/2053-1583/ac687f
28 Huan H., Xue Y., Zhao B., Y. Gao G., R. Bao H., Q. Yang Z.. Strain-induced half-valley metals and topological phase transitions in MBr2 monolayers (M = Ru, Os). Phys. Rev. B, 2021, 104(16): 165427
https://doi.org/10.1103/PhysRevB.104.165427
29 D. Guo S., L. Tao Y., Q. Mu W., G. Liu B.. Correlation-driven threefold topological phase transition in monolayer OsBr2. Front. Phys., 2023, 18(3): 33304
https://doi.org/10.1007/s11467-022-1243-5
30 D. Guo S., L. Tao Y., T. Guo H., Y. Zhao Z., Wang B., Z. Wang G., T. Wang X.. Possible electronic state quasi-half-valley metal in a VGe2P4 monolayer. Phys. Rev. B, 2023, 107(5): 054414
https://doi.org/10.1103/PhysRevB.107.054414
31 L. Wang X.. Proposal for a new class of materials: Spin gapless semiconductors. Phys. Rev. Lett., 2008, 100(15): 156404
https://doi.org/10.1103/PhysRevLett.100.156404
32 Zhang T., L. Xu X., B. Huang B., Dai Y., Z. Kou L., D. Ma Y.. Layer-polarized anomalous Hall effects in valleytronic van der Waals bilayers. Mater. Horiz., 2023, 10(2): 483
https://doi.org/10.1039/D2MH00906D
33 Liu X., P. Pyatakov A., Ren W.. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett., 2020, 125(24): 247601
https://doi.org/10.1103/PhysRevLett.125.247601
34 O. Fumega A., L. Lado J.. Ferroelectric valley valves with graphene/MoTe2 van der Waals heterostructures. Nanoscale, 2023, 15(5): 2181
https://doi.org/10.1039/D2NR05185K
35 Y. Tong W., G. Duan C.. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers. npj Quantum Mater., 2017, 2: 47
https://doi.org/10.1038/s41535-017-0051-6
36 Hohenberg P., Kohn W.. Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B): B864
https://doi.org/10.1103/PhysRev.136.B864
37 Kohn W., J. Sham L.. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
https://doi.org/10.1103/PhysRev.140.A1133
38 Kresse G., Ab initio molecular dynamics for liquid metals, J. Non-Cryst. Solids 193, 222 (1995)
39 Kresse G., Furthmüller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
40 Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
41 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
42 Cococcioni M., de Gironcoli S.. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B, 2005, 71(3): 035105
https://doi.org/10.1103/PhysRevB.71.035105
43 See Supplemental Material for calculating U; crystal structures; energy difference between FM and AFM and MAE as a function of E; the related energy band structures.
44 L. Dudarev S., A. Botton G., Y. Savrasov S., J. Humphreys C., P. Sutton A.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B, 1998, 57(3): 1505
https://doi.org/10.1103/PhysRevB.57.1505
45 Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7): 1456
https://doi.org/10.1002/jcc.21759
46 Fukui T., Hatsugai Y., Suzuki H.. Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances. J. Phys. Soc. Jpn., 2005, 74(6): 1674
https://doi.org/10.1143/JPSJ.74.1674
47 J. Kim H., (2018)
48 J. Kim H.Li C.Feng J.H. Cho J.Zhang Z., Competing magnetic orderings and tunable topological states in two-dimensional hexagonal organometallic lattices, Phys. Rev. B 93, 041404(R) (2016)
49 To easily meet energy convergence criterion, the parameter DIPOL=0.5 0.5 0.5 is set, and the convergent charge density under small electric field gradually feeds to the calculations with large electric field.
50 Zhao P., Dai Y., Wang H., B. Huang B., D. Ma Y.. Intrinsic valley polarization and anomalous valley hall effect in single-layer 2H-FeCl2. Chem. Phys. Mater., 2022, 1(1): 56
https://doi.org/10.1016/j.chphma.2021.09.006
51 Li R., W. Jiang J., B. Mi W., L. Bai H.. Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. Nanoscale, 2021, 13(35): 14807
https://doi.org/10.1039/D1NR04063D
52 Xiao D., C. Chang M., Niu Q.. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
https://doi.org/10.1103/RevModPhys.82.1959
53 I. Weintrub B., L. Hsieh Y., Kovalchuk S., N. Kirchhof J., Greben K., I. Bolotin K.. Generating intense electric fields in 2D materials by dual ionic gating. Nat. Commun., 2022, 13(1): 6601
https://doi.org/10.1038/s41467-022-34158-z
[1] fop-21334-of-guosandong_suppl_1 Download
[1] Chaowei He, Jiantian Zhang, Li Gong, Peng Yu. Room-temperature ferroelectricity in van der Waals SnP2S6[J]. Front. Phys. , 2024, 19(4): 43202-.
[2] Xingjia Cheng, Wen Xu, Hua Wen, Jing Zhang, Heng Zhang, Haowen Li, Francois M. Peeters, Qingqing Chen. Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy[J]. Front. Phys. , 2023, 18(5): 53303-.
[3] Shuang-Shuang Kong, Wei-Kai Liu, Xiao-Xia Yu, Ya-Lin Li, Liu-Zhu Yang, Yun Ma, Xiao-Yong Fang. Interlayer interaction mechanism and its regulation on optical properties of bilayer SiCNSs[J]. Front. Phys. , 2023, 18(4): 43302-.
[4] Shengshi Li, Weixiao Ji, Jianping Zhang, Yaping Wang, Changwen Zhang, Shishen Yan. Two-dimensional rectangular bismuth bilayer: A novel dual topological insulator[J]. Front. Phys. , 2023, 18(4): 43301-.
[5] Xudong Zhu, Yuqian Chen, Zheng Liu, Yulei Han, Zhenhua Qiao. Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials[J]. Front. Phys. , 2023, 18(2): 23302-.
[6] Lu Wen, Yijun Liu, Guoyu Luo, Xinyu Lv, Kaiyuan Wang, Wang Zhu, Lei Wang, Zhiqiang Li. Theoretical study of broadband near-field optical spectrum of twisted bilayer graphene[J]. Front. Phys. , 2022, 17(4): 43503-.
[7] Guoyu Luo, Xinyu Lv, Lu Wen, Zhiqiang Li, Zhenbing Dai. Strain induced topological transitions in twisted double bilayer graphene[J]. Front. Phys. , 2022, 17(2): 23502-.
[8] Chong Xu, Qian-Jun Wang, Bin Xu, Jun Hu. Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3[J]. Front. Phys. , 2021, 16(5): 53502-.
[9] Mo-Ran Jia,Zi-Liang Li,Chong Lv,Feng Wan,Bai-Song Xie. Pair production in strong SU(2) background fields[J]. Front. Phys. , 2017, 12(5): 121101-.
[10] Kun Peng Dou (豆坤鵬),Chao-Cheng Kaun (關肇正). Conductance switching of a phthalocyanine molecule on an insulating surface[J]. Front. Phys. , 2017, 12(4): 127303-.
[11] Qiu Tong(邱桐),Huang Ji-Ping(黄吉平). Unprecedentedly rapid transport of single-file rolling water molecules[J]. Front. Phys. , 2015, 10(5): 106102-.
[12] Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Role of confinement in water solidification under electric fields[J]. Front. Phys. , 2015, 10(5): 106101-.
[13] Guan-Xing Guo, Lei Zhang, Yong Zhang. Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers[J]. Front. Phys. , 2015, 10(2): 181-190.
[14] Obulkasim Oluk, Bai-Song Xie, Muhmmad Ali Bake, Sayipjamal Dulat. Electron–positron pair production in a strong asymmetric laser electric field[J]. Front. Phys. , 2014, 9(2): 157-163.
[15] Zhi-wei ZHANG (张志伟), Jian-chen LI (李建忱), Qing JIANG (蒋青). Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review[J]. Front. Phys. , 2011, 6(2): 162-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed