|
|
Proposal for valleytronic materials: Ferrovalley metal and valley gapless semiconductor |
San-Dong Guo1( ), Yu-Ling Tao1, Guangzhao Wang2, Shaobo Chen3, Dong Huang1, Yee Sin Ang4 |
1. School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China 2. Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China 3. College of Electronic and Information Engineering, Anshun University, Anshun 561000, China 4. Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore |
|
|
Abstract Valleytronic materials can provide new degrees of freedom to future electronic devices. In this work, the concepts of the ferrovalley metal (FVM) and valley gapless semiconductor (VGS) are proposed, which can be achieved in valleytronic bilayer systems by electric field engineering. In valleytronic bilayer systems, the interaction between out-of-plane ferroelectricity and A-type antiferromagnetism can induce layer-polarized anomalous valley Hall (LP-AVH) effect. The K and −K valleys of FVM are both metallic, and electron and hole carriers simultaneously exist. In the extreme case, the FVM can become VGS by analogizing spin gapless semiconductor (SGS). Moreover, it is proposed that the valley splitting enhancement and valley polarization reversal can be achieved by electric field engineering in valleytronic bilayer systems. Taking the bilayer as an example, our proposal is confirmed by the first-principle calculations. The FVM and VGS can be achieved in bilayer by applying electric field. With appropriate electric field range, increasing electric field can enhance valley splitting, and the valley polarization can be reversed by flipping electric field direction. To effectively tune valley properties by electric field in bilayer systems, the parent monolayer should possess out-of-plane magnetization, and have large valley splitting. Our results shed light on the possible role of electric field in tuning valleytronic bilayer systems, and provide a way to design the ferrovalley-related material by electric field.
|
Keywords
valleytronics
electric field
bilayer
|
Corresponding Author(s):
San-Dong Guo
|
Issue Date: 13 September 2023
|
|
1 |
Xu X., Yao W., Xiao D., F. Heinz T.. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys., 2014, 10(5): 343
https://doi.org/10.1038/nphys2942
|
2 |
Liu Y., S. Lian C., Li Y., Xu Y., Duan W.. Pseudospins and topological effects of phonons in a Kekulé lattice. Phys. Rev. Lett., 2017, 119(25): 255901
https://doi.org/10.1103/PhysRevLett.119.255901
|
3 |
Zeng M., Xiao Y., Liu J., Yang K., Fu L.. Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chem. Rev., 2018, 118(13): 6236
https://doi.org/10.1021/acs.chemrev.7b00633
|
4 |
F. Mak K., He K., Shan J., F. Heinz T.. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494
https://doi.org/10.1038/nnano.2012.96
|
5 |
MacNeill D., Heikes C., F. Mak K., Anderson Z., Kormányos A., Zólyomi V., Park J., C. Ralph D.. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett., 2015, 114(3): 037401
https://doi.org/10.1103/PhysRevLett.114.037401
|
6 |
Zeng H., Dai J., Yao W., Xiao D., Cui X.. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 2012, 7: 490
https://doi.org/10.1038/nnano.2012.95
|
7 |
Srivastava A., Sidler M., V. Allain A., S. Lembke D., Kis A., Imamoglu A.. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141
https://doi.org/10.1038/nphys3203
|
8 |
Zhao C., Norden T., Zhang P., Zhao P., Cheng Y., Sun F., P. Parry J., Taheri P., Wang J., Yang Y., Scrace T., Kang K., Yang S., Miao G., Sabirianov R., Kioseoglou G., Huang W., Petrou A., Zeng H.. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. Nat. Nanotechnol., 2017, 12(8): 757
https://doi.org/10.1038/nnano.2017.68
|
9 |
Zeng H., Dai J., Yao W., Xiao D., Cui X.. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 2012, 7(8): 490
https://doi.org/10.1038/nnano.2012.95
|
10 |
R. Schaibley J., Yu H., Clark G., Rivera P., S. Ross J., L. Seyler K., Yao W., Xu X.. Valleytronics in 2D materials. Nat. Rev. Mater., 2016, 1(11): 16055
https://doi.org/10.1038/natrevmats.2016.55
|
11 |
S. Mrudul M., Jiménez-Galán Á., Ivanov M., Dixit G.. Light-induced valleytronics in pristine graphene. Optica, 2021, 8(3): 422
https://doi.org/10.1364/OPTICA.418152
|
12 |
S. Mrudul M., Dixit G.. Controlling valley-polarisation in graphene via tailored light pulses. J. Phys. At. Mol. Opt. Phys., 2021, 54(22): 224001
https://doi.org/10.1088/1361-6455/ac41ae
|
13 |
Y. Tong W., J. Gong S., Wan X., G. Duan C.. Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun., 2016, 7(1): 13612
https://doi.org/10.1038/ncomms13612
|
14 |
Hu H., Y. Tong W., H. Shen Y., Wan X., G. Duan C.. Concepts of the half-valley-metal and quantum anomalous valley Hall effect. npj Comput. Mater., 2020, 6: 129
https://doi.org/10.1038/s41524-020-00397-1
|
15 |
D. Guo S., X. Zhu J., Q. Mu W., G. Liu B.. Possible way to achieve anomalous valley Hall effect by piezoelectric effect in a GdCl2 monolayer. Phys. Rev. B, 2021, 104(22): 224428
https://doi.org/10.1103/PhysRevB.104.224428
|
16 |
Y. Feng X., L. Xu X., L. He Z., Peng R., Dai Y., B. Huang B., D. Ma Y.. Valley-related multiple Hall effect in monolayer VSi2P4. Phys. Rev. B, 2021, 104(7): 075421
https://doi.org/10.1103/PhysRevB.104.075421
|
17 |
R. Cui Q., M. Zhu Y., H. Liang J., Cui P., X. Yang H.. Spin-valley coupling in a two-dimensional VSi2N4 monolayer. Phys. Rev. B, 2021, 103(8): 085421
https://doi.org/10.1103/PhysRevB.103.085421
|
18 |
Zhou X., Zhang R., Zhang Z., Feng W., Mokrousov Y., Yao Y.. Sign-reversible valley-dependent Berry phase effects in 2D valley-half-semiconductors. npj Comput. Mater., 2021, 7: 160
https://doi.org/10.1038/s41524-021-00632-3
|
19 |
Khan I., Marfoua B., Hong J.. Electric field induced giant valley polarization in two dimensional ferromagnetic WSe2/CrSnSe3 heterostructure. npj 2D Mater. Appl., 2021, 5: 10
https://doi.org/10.1038/s41699-020-00195-9
|
20 |
X. Cheng H., Zhou J., Ji W., N. Zhang Y., P. Feng Y.. Two-dimensional intrinsic ferrovalley GdI2 with large valley polarization. Phys. Rev. B, 2021, 103(12): 125121
https://doi.org/10.1103/PhysRevB.103.125121
|
21 |
Li R., W. Jiang J., B. Mi W., L. Bai H.. Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. Nanoscale, 2021, 13(35): 14807
https://doi.org/10.1039/D1NR04063D
|
22 |
Sheng K., Chen Q., K. Yuan H., Y. Wang Z.. Monolayer CeI2: An intrinsic room-temperature ferrovalley semiconductor. Phys. Rev. B, 2022, 105(7): 075304
https://doi.org/10.1103/PhysRevB.105.075304
|
23 |
Jiang P., L. Kang L., L. Li Y., H. Zheng X., Zeng Z., Sanvito S.. Prediction of the two-dimensional Janus ferrovalley material LaBrI. Phys. Rev. B, 2021, 104(3): 035430
https://doi.org/10.1103/PhysRevB.104.035430
|
24 |
Peng R., Ma Y., Xu X., He Z., Huang B., Dai Y.. Intrinsic anomalous valley Hall effect in single-layer Nb3I8. Phys. Rev. B, 2020, 102(3): 035412
https://doi.org/10.1103/PhysRevB.102.035412
|
25 |
Sheng K., K. Zhang B., K. Yuan H., Y. Wang Z.. Strain-engineered topological phase transitions in ferrovalley 2H−RuCl2 monolayer. Phys. Rev. B, 2022, 105(19): 195312
https://doi.org/10.1103/PhysRevB.105.195312
|
26 |
D. Guo S., X. Zhu J., Y. Yin M., G. Liu B.. Substantial electronic correlation effects on the electronic properties in a Janus FeClF monolayer. Phys. Rev. B, 2022, 105(10): 104416
https://doi.org/10.1103/PhysRevB.105.104416
|
27 |
D. Guo S., Q. Mu W., G. Liu B.. Valley-polarized quantum anomalous Hall insulator in monolayer RuBr2. 2D Mater., 2022, 9: 035011
https://doi.org/10.1088/2053-1583/ac687f
|
28 |
Huan H., Xue Y., Zhao B., Y. Gao G., R. Bao H., Q. Yang Z.. Strain-induced half-valley metals and topological phase transitions in MBr2 monolayers (M = Ru, Os). Phys. Rev. B, 2021, 104(16): 165427
https://doi.org/10.1103/PhysRevB.104.165427
|
29 |
D. Guo S., L. Tao Y., Q. Mu W., G. Liu B.. Correlation-driven threefold topological phase transition in monolayer OsBr2. Front. Phys., 2023, 18(3): 33304
https://doi.org/10.1007/s11467-022-1243-5
|
30 |
D. Guo S., L. Tao Y., T. Guo H., Y. Zhao Z., Wang B., Z. Wang G., T. Wang X.. Possible electronic state quasi-half-valley metal in a VGe2P4 monolayer. Phys. Rev. B, 2023, 107(5): 054414
https://doi.org/10.1103/PhysRevB.107.054414
|
31 |
L. Wang X.. Proposal for a new class of materials: Spin gapless semiconductors. Phys. Rev. Lett., 2008, 100(15): 156404
https://doi.org/10.1103/PhysRevLett.100.156404
|
32 |
Zhang T., L. Xu X., B. Huang B., Dai Y., Z. Kou L., D. Ma Y.. Layer-polarized anomalous Hall effects in valleytronic van der Waals bilayers. Mater. Horiz., 2023, 10(2): 483
https://doi.org/10.1039/D2MH00906D
|
33 |
Liu X., P. Pyatakov A., Ren W.. Magnetoelectric coupling in multiferroic bilayer VS2. Phys. Rev. Lett., 2020, 125(24): 247601
https://doi.org/10.1103/PhysRevLett.125.247601
|
34 |
O. Fumega A., L. Lado J.. Ferroelectric valley valves with graphene/MoTe2 van der Waals heterostructures. Nanoscale, 2023, 15(5): 2181
https://doi.org/10.1039/D2NR05185K
|
35 |
Y. Tong W., G. Duan C.. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers. npj Quantum Mater., 2017, 2: 47
https://doi.org/10.1038/s41535-017-0051-6
|
36 |
Hohenberg P., Kohn W.. Inhomogeneous electron gas. Phys. Rev., 1964, 136(3B): B864
https://doi.org/10.1103/PhysRev.136.B864
|
37 |
Kohn W., J. Sham L.. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140(4A): A1133
https://doi.org/10.1103/PhysRev.140.A1133
|
38 |
Kresse G., Ab initio molecular dynamics for liquid metals, J. Non-Cryst. Solids 193, 222 (1995)
|
39 |
Kresse G., Furthmüller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
|
40 |
Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
|
41 |
P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
42 |
Cococcioni M., de Gironcoli S.. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B, 2005, 71(3): 035105
https://doi.org/10.1103/PhysRevB.71.035105
|
43 |
See Supplemental Material for calculating U; crystal structures; energy difference between FM and AFM and MAE as a function of E; the related energy band structures.
|
44 |
L. Dudarev S., A. Botton G., Y. Savrasov S., J. Humphreys C., P. Sutton A.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B, 1998, 57(3): 1505
https://doi.org/10.1103/PhysRevB.57.1505
|
45 |
Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem., 2011, 32(7): 1456
https://doi.org/10.1002/jcc.21759
|
46 |
Fukui T., Hatsugai Y., Suzuki H.. Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances. J. Phys. Soc. Jpn., 2005, 74(6): 1674
https://doi.org/10.1143/JPSJ.74.1674
|
47 |
J. Kim H., (2018)
|
48 |
J. Kim H.Li C.Feng J.H. Cho J.Zhang Z., Competing magnetic orderings and tunable topological states in two-dimensional hexagonal organometallic lattices, Phys. Rev. B 93, 041404(R) (2016)
|
49 |
To easily meet energy convergence criterion, the parameter DIPOL=0.5 0.5 0.5 is set, and the convergent charge density under small electric field gradually feeds to the calculations with large electric field.
|
50 |
Zhao P., Dai Y., Wang H., B. Huang B., D. Ma Y.. Intrinsic valley polarization and anomalous valley hall effect in single-layer 2H-FeCl2. Chem. Phys. Mater., 2022, 1(1): 56
https://doi.org/10.1016/j.chphma.2021.09.006
|
51 |
Li R., W. Jiang J., B. Mi W., L. Bai H.. Room temperature spontaneous valley polarization in two-dimensional FeClBr monolayer. Nanoscale, 2021, 13(35): 14807
https://doi.org/10.1039/D1NR04063D
|
52 |
Xiao D., C. Chang M., Niu Q.. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
https://doi.org/10.1103/RevModPhys.82.1959
|
53 |
I. Weintrub B., L. Hsieh Y., Kovalchuk S., N. Kirchhof J., Greben K., I. Bolotin K.. Generating intense electric fields in 2D materials by dual ionic gating. Nat. Commun., 2022, 13(1): 6601
https://doi.org/10.1038/s41467-022-34158-z
|
[1] |
fop-21334-of-guosandong_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|