|
|
Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films |
Xuqi Li1, Xuyan Chen2, Shiyang Sun1, Huihui Zhang1, Haidan Sang1, Xiaonan Wang3, Shifei Qi1,4( ), Zhenhua Qiao4( ) |
1. College of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China 2. School of Gifted Young, University of Science and Technology of China, Hefei 230026, China 3. School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China 4. International Center for Quantum Design of Functional Materials, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The exploration of magnetism in two-dimensional layered materials has attracted extensive research interest. For the monoclinic phase CrI3 with interlayer antiferromagnetism, finding a static and robust way of realizing the intrinsic interlayer ferromagnetic coupling is desirable. In this work, we study the electronic structure and magnetic properties of the nonmagnetic element (e.g., O, S, Se, N, P, As, and C) doped bi- and triple-layer CrI3 systems via first-principles calculations. Our results demonstrate that O, P, S, As, and Se doped CrI3 bilayer can realize interlayer ferromagnetism. Further analysis shows that the interlayer ferromagnetic coupling in the doped few-layer CrI3 is closely related to the formation of localized spin-polarized state around the doped elements. Further study presents that, for As-doped tri-layer CrI3, it can realize interlayer ferromagnetic coupling. This work proves that nonmagnetic element doping can realize the interlayer ferromagnetically-coupled few-layer CrI3 while maintaining its semiconducting characteristics without introducing additional carriers.
|
Keywords
ferromagnetism
magnetic doping
|
Corresponding Author(s):
Shifei Qi,Zhenhua Qiao
|
Issue Date: 06 August 2024
|
|
1 |
Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., and Xu X., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
|
2 |
Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., and Zhang X., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
|
3 |
Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., and Zhang Y., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
https://doi.org/10.1038/s41586-018-0626-9
|
4 |
Gibertini M., Koperski M., F. Morpurgo A., and S. Novoselov K., Magnetic 2D materials and heterostructures, Nat. Nanotechnol. 14(5), 408 (2019)
https://doi.org/10.1038/s41565-019-0438-6
|
5 |
Zhong D., L. Seyler K., Linpeng X., Cheng R., Sivadas N., Huang B., Schmidgall E., Taniguchi T., Watanabe K., A. McGuire M., Yao W., Xiao D., M. C. Fu K., and Xu X., Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics, Sci. Adv. 3(5), e1603113 (2017)
https://doi.org/10.1126/sciadv.1603113
|
6 |
L. Seyler K., Zhong D., Huang B., Linpeng X., P. Wilson N., Taniguchi T., Watanabe K., Yao W., Xiao D., A. McGuire M., M. C. Fu K., and Xu X., Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures, Nano Lett. 18(6), 3823 (2018)
https://doi.org/10.1021/acs.nanolett.8b01105
|
7 |
Zollner K., Gmitra M., and Fabian J., Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn, New J. Phys. 20(7), 073007 (2018)
https://doi.org/10.1088/1367-2630/aace51
|
8 |
Song T., Cai X., W. Y. Tu M., Zhang X., Huang B., P. Wilson N., L. Seyler K., Zhu L., Taniguchi T., Watanabe K., A. McGuire M., H. Cobden D., Xiao D., Yao W., and Xu X., Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science 360(6394), 1214 (2018)
https://doi.org/10.1126/science.aar4851
|
9 |
R. Klein D., MacNeill D., L. Lado J., Soriano D., Navarro-Moratalla E., Watanabe K., Taniguchi T., Manni S., Canfield P., Fernández-Rossier J., and Jarillo-Herrero P., Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling, Science 360(6394), 1218 (2018)
https://doi.org/10.1126/science.aar3617
|
10 |
Cardoso C., Soriano D., A. García-Martínez N., and Fernández-Rossier J., Van der Waals spin valves, Phys. Rev. Lett. 121(6), 067701 (2018)
https://doi.org/10.1103/PhysRevLett.121.067701
|
11 |
Wang Z., Gutiérrez-Lezama I., Ubrig N., Kroner M., Gibertini M., Taniguchi T., Watanabe K., Imamoğlu A., Giannini E., and F. Morpurgo A., Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3, Nat. Commun. 9(1), 2516 (2018)
https://doi.org/10.1038/s41467-018-04953-8
|
12 |
Ghazaryan D., T. Greenaway M., Wang Z., H. Guarochico-Moreira V., J. Vera-Marun I., Yin J., Liao Y., V. Morozov S., Kristanovski O., I. Lichtenstein A., I. Katsnelson M., Withers F., Mishchenko A., Eaves L., K. Geim A., S. Novoselov K., and Misra A., Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3, Nat. Electron. 1(6), 344 (2018)
https://doi.org/10.1038/s41928-018-0087-z
|
13 |
Huang B., Clark G., R. Klein D., MacNeill D., Navarro-Moratalla E., L. Seyler K., Wilson N., A. McGuire M., H. Cobden D., Xiao D., Yao W., Jarillo-Herrero P., and Xu X., Electrical control of 2D magnetism in bilayer CrI3, Nat. Nanotechnol. 13(7), 544 (2018)
https://doi.org/10.1038/s41565-018-0121-3
|
14 |
Wang Z., Gibertini M., Dumcenco D., Taniguchi T., Watanabe K., Giannini E., and F. Morpurgo A., Determining the phase diagram of atomically thin layered antiferromagnet CrCl3, Nat. Nanotechnol. 14(12), 1116 (2019)
https://doi.org/10.1038/s41565-019-0565-0
|
15 |
Wang Y., Zhang F., Zeng M., Sun H., Hao Z., Cai Y., Rong H., Zhang C., Liu C., Ma X., Wang L., Guo S., Lin J., Liu Q., Liu C., and Chen C., Intrinsic magnetic topological materials, Front. Phys. 18(2), 21304 (2023)
https://doi.org/10.1007/s11467-022-1250-6
|
16 |
Kim M., Kumaravadivel P., Birkbeck J., Kuang W., G. Xu S., G. Hopkinson D., Knolle J., A. McClarty P., I. Berdyugin A., Ben Shalom M., V. Gorbachev R., J. Haigh S., Liu S., H. Edgar J., S. Novoselov K., V. Grigorieva I., and K. Geim A., Micromagnetometry of two-dimensional ferromagnets, Nat. Electron. 2(10), 457 (2019)
https://doi.org/10.1038/s41928-019-0302-6
|
17 |
Karpiak B., W. Cummings A., Zollner K., Vila M., Khokhriakov D., M. Hoque A., Dankert A., Svedlindh P., Fabian J., Roche S., and P. Dash S., Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene, 2D Mater. 7(1), 015026 (2019)
https://doi.org/10.1088/2053-1583/ab5915
|
18 |
Sivadas N., Okamoto S., Xu X., J. Fennie C., and Xiao D., Stacking-dependent magnetism in bilayer CrI3, Nano Lett. 18(12), 7658 (2018)
https://doi.org/10.1021/acs.nanolett.8b03321
|
19 |
Wang D. and Sanyal B., Systematic study of monolayer to trilayer CrI3: Stacking sequence dependence of electronic structure and magnetism, J. Phys. Chem. C 125(33), 18467 (2021)
https://doi.org/10.1021/acs.jpcc.1c04311
|
20 |
Jiang P., Wang C., Chen D., Zhong Z., Yuan Z., Y. Lu Z., and Ji W., Stacking tunable interlayer magnetism in bilayer CrI3, Phys. Rev. B 99(14), 144401 (2019)
https://doi.org/10.1103/PhysRevB.99.144401
|
21 |
W. Jang S., Y. Jeong M., Yoon H., Ryee S., and J. Han M., Microscopic understanding of magnetic interactions in bilayer CrI3, Phys. Rev. Mater. 3(3), 031001 (2019)
https://doi.org/10.1103/PhysRevMaterials.3.031001
|
22 |
Soriano D., Cardoso C., and Fernández-Rossier J., Interplay between interlayer exchange and stacking in CrI3 bilayers, Solid State Commun. 299, 113662 (2019)
https://doi.org/10.1016/j.ssc.2019.113662
|
23 |
Thiel L., Wang Z., A. Tschudin M., Rohner D., Gutiérrez-Lezama I., Ubrig N., Gibertini M., Giannini E., F. Morpurgo A., and Maletinsky P., Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science 364(6444), 973 (2019)
https://doi.org/10.1126/science.aav6926
|
24 |
Ubrig N., Wang Z., Teyssier J., Taniguchi T., Watanabe K., Giannini E., F. Morpurgo A., and Gibertini M., Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals, 2D Mater. 7(1), 015007 (2020)
https://doi.org/10.1088/2053-1583/ab4c64
|
25 |
H. Kim H., Yang B., Patel T., Sfigakis F., Li C., Tian S., L. Lei H., and W. Tsen A., One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure, Nano Lett. 18(8), 4885 (2018)
https://doi.org/10.1021/acs.nanolett.8b01552
|
26 |
A. McGuire M., Dixit H., R. Cooper V., and C. Sales B., Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3, Chem. Mater. 27(2), 612 (2015)
https://doi.org/10.1021/cm504242t
|
27 |
Jiang S., Li L., Wang Z., F. Mak K., and Shan J., Controlling magnetism in 2D CrI3 by electrostatic doping, Nat. Nanotechnol. 13(7), 549 (2018)
https://doi.org/10.1038/s41565-018-0135-x
|
28 |
Xu C., J. Wang Q., Xu B., and Hu J., Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3, Front. Phys. 16(5), 53502 (2021)
https://doi.org/10.1007/s11467-021-1073-x
|
29 |
Xu R. and Zou X., Electric field-modulated magnetic phase transition in van der Waals CrI3 bilayers, J. Phys. Chem. Lett. 11(8), 3152 (2020)
|
30 |
Soriano D. and I. Katsnelson M., Magnetic polaron and antiferromagnetic-ferromagnetic transition in doped bilayer CrI3, Phys. Rev. B 101(4), 041402(R) (2020)
https://doi.org/10.1103/PhysRevB.101.041402
|
31 |
E. Blöchl P., Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
|
32 |
Kresse G. and Furthmuller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
33 |
Kresse G. and Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
|
34 |
P. Perdew J., Burke K., and Ernzerhof M., Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
35 |
Grimme S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
https://doi.org/10.1002/jcc.20495
|
36 |
I. Anisimov V., Zaanen J., and K. Andersen O., Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
https://doi.org/10.1103/PhysRevB.44.943
|
37 |
L. Dudarev S., A. Botton G., Y. Savrasov S., J. Humphreys C., and P. Sutton A., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57(3), 1505 (1998)
https://doi.org/10.1103/PhysRevB.57.1505
|
38 |
Yang M., Shu H., Tang P., Liang P., Cao D., and Chen X., Intrinsic polarization-induced enhanced ferro-magnetism and self-doped p‒n junctions in CrBr3/GaN van der Waals heterostructures, ACS Appl. Mater. Interfaces 13(7), 8764 (2021)
https://doi.org/10.1021/acsami.0c21532
|
39 |
Franchini C., Reticcioli M., Setvin M., and Diebold U., Polarons in materials, Nat. Rev. Mater. 6(7), 560 (2021)
https://doi.org/10.1038/s41578-021-00289-w
|
40 |
Heyd J., E. Scuseria G., and Ernzerhof M., Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
|
41 |
M. Zhang J., G. Zhu W., Zhang Y., Xiao D., and G. Yao Y., Tailoring magnetic doping in the topological insulator Bi2Se3, Phys. Rev. Lett. 109(26), 266405 (2012)
https://doi.org/10.1103/PhysRevLett.109.266405
|
42 |
Qi S., Gao R., Chang M., Hou T., Han Y., and Qiao Z., Nonmagnetic doping induced quantum anomalous Hall effect in topological insulators, Phys. Rev. B 102(8), 085419 (2020)
https://doi.org/10.1103/PhysRevB.102.085419
|
43 |
Han Y., Sun S., Qi S., Xu X., and Qiao Z., Interlayer ferromagnetism and high-temperature quantum anomalous Hall effect in p-doped MnBi2Te4 multilayers, Phys. Rev. B 103(24), 245403 (2021)
https://doi.org/10.1103/PhysRevB.103.245403
|
44 |
Pan H., B. Yi J., Shen L., Q. Wu R., H. Yang J., Y. Lin J., P. Feng Y., Ding J., H. Van L., and H. Yin J., Room-temperature ferromagnetism in carbon-doped ZnO, Phys. Rev. Lett. 99(12), 127201 (2007)
https://doi.org/10.1103/PhysRevLett.99.127201
|
45 |
Grimme S.Antony J.Ehrlich S.Krieg S., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)
|
46 |
Dion M., Rydberg H., Schröder E., C. Langreth D., and I. Lundqvist B., Van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
https://doi.org/10.1103/PhysRevLett.92.246401
|
47 |
Lee K., D. Murray E., Kong L., I. Lundqvist B., and C. Langreth D., Higher-accuracy van der Waals density functional, Phys. Rev. B 82(8), 081101(R) (2010)
https://doi.org/10.1103/PhysRevB.82.081101
|
48 |
Klimeš J., R. Bowler D., and Michaelides A., Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
https://doi.org/10.1103/PhysRevB.83.195131
|
49 |
Klimeš J., R. Bowler D., and Michaelides A., Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter 22(2), 022201 (2010)
https://doi.org/10.1088/0953-8984/22/2/022201
|
50 |
Li T., Jiang S., Sivadas N., Wang Z., Xu Y., Weber D., E. Goldberger J., Watanabe K., Taniguchi T., J. Fennie C., Fai Mak K., and Shan J., Pressure-controlled interlayer magnetism in atomically thin CrI3, Nat. Mater. 18(12), 1303 (2019)
https://doi.org/10.1038/s41563-019-0506-1
|
51 |
Song T., Fei Z., Yankowitz M., Lin Z., Jiang Q., Hwangbo K., Zhang Q., Sun B., Taniguchi T., Watanabe K., A. McGuire M., Graf D., Cao T., H. Chu J., H. Cobden D., R. Dean C., Xiao D., and Xu X., Switching 2D magnetic states via pressure tuning of layer stacking, Nat. Mater. 18(12), 1298 (2019)
https://doi.org/10.1038/s41563-019-0505-2
|
52 |
Xia J., Yan J., Wang Z., He Y., Gong Y., Chen W., C. Sum T., Liu Z., M. Ajayan P., and Shen Z., Strong coupling and pressure engineering in WSe2−MoSe2 heterobilayers, Nat. Phys. 17(1), 92 (2021)
https://doi.org/10.1038/s41567-020-1005-7
|
53 |
Zhu W., Song C., Zhou Y., Wang Q., Bai H., and Pan F., Insight into interlayer magnetic coupling in 1T-type transition metal dichalcogenides based on the stacking of nonmagnetic atoms, Phys. Rev. B 103(22), 224404 (2021)
https://doi.org/10.1103/PhysRevB.103.224404
|
54 |
W. Xiao J. and H. Yan B., An electron-counting rule to determine the interlayer magnetic coupling of the van der Waals materials, 2D Mater. 7(4), 045010 (2020)
https://doi.org/10.1088/2053-1583/ab9ea4
|
55 |
Li Z., Li J., He K., Wan X., Duan W., and Xu Y., Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials, Phys. Rev. B 102(8), 081107(R) (2020)
https://doi.org/10.1103/PhysRevB.102.081107
|
56 |
Zhu W., Song C., Liao L., Zhou Z., Bai H., Zhou Y., and Pan F., Quantum anomalous Hall insulator state in ferromagnetically ordered MnBi2Te4/VBi2Te4 heterostructures, Phys. Rev. B 102(8), 085111 (2020)
https://doi.org/10.1103/PhysRevB.102.085111
|
57 |
Liu N., Zhou S., and Zhao J., High-Curie-temperature ferromagnetism in bilayer CrI3 on bulk semiconducting substrates, Phys. Rev. Mater. 4(9), 094003 (2020)
https://doi.org/10.1103/PhysRevMaterials.4.094003
|
58 |
M. D. Coey J., Venkatesan M., and B. Fitzgerald C., Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater. 4(2), 173 (2005)
https://doi.org/10.1038/nmat1310
|
59 |
J. Telford E., H. Dismukes A., L. Dudley R., A. Wiscons R., Lee K., G. Chica D., E. Ziebel M., G. Han M., Yu J., Shabani S., Scheie A., Watanabe K., Taniguchi T., Xiao D., Zhu Y., N. Pasupathy A., Nuckolls C., Zhu X., R. Dean C., and Roy X., Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor, Nat. Mater. 21(7), 754 (2022)
https://doi.org/10.1038/s41563-022-01245-x
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|