Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 63209    https://doi.org/10.1007/s11467-024-1435-2
Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films
Xuqi Li1, Xuyan Chen2, Shiyang Sun1, Huihui Zhang1, Haidan Sang1, Xiaonan Wang3, Shifei Qi1,4(), Zhenhua Qiao4()
1. College of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China
2. School of Gifted Young, University of Science and Technology of China, Hefei 230026, China
3. School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
4. International Center for Quantum Design of Functional Materials, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(3317 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The exploration of magnetism in two-dimensional layered materials has attracted extensive research interest. For the monoclinic phase CrI3 with interlayer antiferromagnetism, finding a static and robust way of realizing the intrinsic interlayer ferromagnetic coupling is desirable. In this work, we study the electronic structure and magnetic properties of the nonmagnetic element (e.g., O, S, Se, N, P, As, and C) doped bi- and triple-layer CrI3 systems via first-principles calculations. Our results demonstrate that O, P, S, As, and Se doped CrI3 bilayer can realize interlayer ferromagnetism. Further analysis shows that the interlayer ferromagnetic coupling in the doped few-layer CrI3 is closely related to the formation of localized spin-polarized state around the doped elements. Further study presents that, for As-doped tri-layer CrI3, it can realize interlayer ferromagnetic coupling. This work proves that nonmagnetic element doping can realize the interlayer ferromagnetically-coupled few-layer CrI3 while maintaining its semiconducting characteristics without introducing additional carriers.

Keywords ferromagnetism      magnetic doping     
Corresponding Author(s): Shifei Qi,Zhenhua Qiao   
Issue Date: 06 August 2024
 Cite this article:   
Xuqi Li,Xuyan Chen,Shiyang Sun, et al. Interlayer ferromagnetic coupling in nonmagnetic elements doped CrI3 thin films[J]. Front. Phys. , 2024, 19(6): 63209.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1435-2
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/63209
Fig.1  (a) Side and top views of crystal structures of high-temperature monoclinic bilayer CrI3 phase and the substitution sites are labeled as I1 and I2. Formation energies of (b) O, S, Se, N and (c) P, As, or C element-doped bilayer CrI3 as a function of the host element chemical potentials. Possible interstitial sites (d) and the formation energy (e) as a function of chemical potential for interstitial and substitutional configurations in the N doped bilayer CrI3.
Structure Δ E() Δ E() Δ E() Δ E()
CrI3 1.99 4.55 12.89 0
As1 15.15 119.91 121.58 11.52
As2 37.22 127.3 147.85 20.44
As3 78.56 100.28 85.28 0
Tab.1  The structural and magnetic properties of As doped trilayer CrI3. The spin direction of each layer is denoted by the up/down arrow. The ground state of each dopant is denoted by red. The energy differences between the specific structure and ground state are shown. The energy is in unit of meV.
Fig.2  (a) Energy difference between interlayer ferromagnetic (FM) and antiferromagnetic (AFM) states. (b) Difference of interlayer distance between doping configuration and pristine CrI3. (c) Charge difference between Cr atoms near doping site in the doped and pristine bilayer CrI3. (d) Schematic illustration of localized spin-polarized state-mediated interlayer ferromagneitic coupling in doped bilayer CrI3.
Fig.3  Differential charge density of (a) pristine and (b) As-doped bilayer CrI3. Spin density of (c) pristine and (d) As-doped bilayer CrI3. Local density of states from (e) PBE+U and (f) HSE06 calculations in As-doped bilayer CrI3. Yellow and blue isosurfaces represent respectively charge accumulation and reduction. Red and green isosurfaces represent respectively spin up and spin down. Cr-d, I-p and As-p orbitals in each layer of CrI3 are displayed. In addition, band-decomposed charge density of the localized electron state is shown in the inset of (f).
Fig.4  The density of states in ferromagnetic state of (a) O, (b) P, (c) S, and (d) Se doped CrI3 bilayer from PBE+U calculations. The density of states in ferromagnetic state of (e) O, (f) P, (g) S, and (h) Se doped CrI3 bilayer from HSE06 calculations. Band-decomposed charge density of the localized electron state in ferromagnetic state of (i) O, (j) P, (k) S, and (l) Se doped CrI3 bilayer from HSE06 calculations. The shadow part indicates the formation of spin-polarized state.
Fig.5  (a) Side view of crystal structure of trilayer CrI3 with one As substitution at three sites I1, I2, and I3. (b) Schematic illustration of ferromagnetic and three antiferromagnetic states in trilayer CrI3.
1 Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., and Xu X., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
2 Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., and Zhang X., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
3 Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., and Zhang Y., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
https://doi.org/10.1038/s41586-018-0626-9
4 Gibertini M., Koperski M., F. Morpurgo A., and S. Novoselov K., Magnetic 2D materials and heterostructures, Nat. Nanotechnol. 14(5), 408 (2019)
https://doi.org/10.1038/s41565-019-0438-6
5 Zhong D., L. Seyler K., Linpeng X., Cheng R., Sivadas N., Huang B., Schmidgall E., Taniguchi T., Watanabe K., A. McGuire M., Yao W., Xiao D., M. C. Fu K., and Xu X., Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics, Sci. Adv. 3(5), e1603113 (2017)
https://doi.org/10.1126/sciadv.1603113
6 L. Seyler K., Zhong D., Huang B., Linpeng X., P. Wilson N., Taniguchi T., Watanabe K., Yao W., Xiao D., A. McGuire M., M. C. Fu K., and Xu X., Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures, Nano Lett. 18(6), 3823 (2018)
https://doi.org/10.1021/acs.nanolett.8b01105
7 Zollner K., Gmitra M., and Fabian J., Electrically tunable exchange splitting in bilayer graphene on monolayer Cr2X2Te6 with X = Ge, Si, and Sn, New J. Phys. 20(7), 073007 (2018)
https://doi.org/10.1088/1367-2630/aace51
8 Song T., Cai X., W. Y. Tu M., Zhang X., Huang B., P. Wilson N., L. Seyler K., Zhu L., Taniguchi T., Watanabe K., A. McGuire M., H. Cobden D., Xiao D., Yao W., and Xu X., Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science 360(6394), 1214 (2018)
https://doi.org/10.1126/science.aar4851
9 R. Klein D., MacNeill D., L. Lado J., Soriano D., Navarro-Moratalla E., Watanabe K., Taniguchi T., Manni S., Canfield P., Fernández-Rossier J., and Jarillo-Herrero P., Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling, Science 360(6394), 1218 (2018)
https://doi.org/10.1126/science.aar3617
10 Cardoso C., Soriano D., A. García-Martínez N., and Fernández-Rossier J., Van der Waals spin valves, Phys. Rev. Lett. 121(6), 067701 (2018)
https://doi.org/10.1103/PhysRevLett.121.067701
11 Wang Z., Gutiérrez-Lezama I., Ubrig N., Kroner M., Gibertini M., Taniguchi T., Watanabe K., Imamoğlu A., Giannini E., and F. Morpurgo A., Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3, Nat. Commun. 9(1), 2516 (2018)
https://doi.org/10.1038/s41467-018-04953-8
12 Ghazaryan D., T. Greenaway M., Wang Z., H. Guarochico-Moreira V., J. Vera-Marun I., Yin J., Liao Y., V. Morozov S., Kristanovski O., I. Lichtenstein A., I. Katsnelson M., Withers F., Mishchenko A., Eaves L., K. Geim A., S. Novoselov K., and Misra A., Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3, Nat. Electron. 1(6), 344 (2018)
https://doi.org/10.1038/s41928-018-0087-z
13 Huang B., Clark G., R. Klein D., MacNeill D., Navarro-Moratalla E., L. Seyler K., Wilson N., A. McGuire M., H. Cobden D., Xiao D., Yao W., Jarillo-Herrero P., and Xu X., Electrical control of 2D magnetism in bilayer CrI3, Nat. Nanotechnol. 13(7), 544 (2018)
https://doi.org/10.1038/s41565-018-0121-3
14 Wang Z., Gibertini M., Dumcenco D., Taniguchi T., Watanabe K., Giannini E., and F. Morpurgo A., Determining the phase diagram of atomically thin layered antiferromagnet CrCl3, Nat. Nanotechnol. 14(12), 1116 (2019)
https://doi.org/10.1038/s41565-019-0565-0
15 Wang Y., Zhang F., Zeng M., Sun H., Hao Z., Cai Y., Rong H., Zhang C., Liu C., Ma X., Wang L., Guo S., Lin J., Liu Q., Liu C., and Chen C., Intrinsic magnetic topological materials, Front. Phys. 18(2), 21304 (2023)
https://doi.org/10.1007/s11467-022-1250-6
16 Kim M., Kumaravadivel P., Birkbeck J., Kuang W., G. Xu S., G. Hopkinson D., Knolle J., A. McClarty P., I. Berdyugin A., Ben Shalom M., V. Gorbachev R., J. Haigh S., Liu S., H. Edgar J., S. Novoselov K., V. Grigorieva I., and K. Geim A., Micromagnetometry of two-dimensional ferromagnets, Nat. Electron. 2(10), 457 (2019)
https://doi.org/10.1038/s41928-019-0302-6
17 Karpiak B., W. Cummings A., Zollner K., Vila M., Khokhriakov D., M. Hoque A., Dankert A., Svedlindh P., Fabian J., Roche S., and P. Dash S., Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene, 2D Mater. 7(1), 015026 (2019)
https://doi.org/10.1088/2053-1583/ab5915
18 Sivadas N., Okamoto S., Xu X., J. Fennie C., and Xiao D., Stacking-dependent magnetism in bilayer CrI3, Nano Lett. 18(12), 7658 (2018)
https://doi.org/10.1021/acs.nanolett.8b03321
19 Wang D. and Sanyal B., Systematic study of monolayer to trilayer CrI3: Stacking sequence dependence of electronic structure and magnetism, J. Phys. Chem. C 125(33), 18467 (2021)
https://doi.org/10.1021/acs.jpcc.1c04311
20 Jiang P., Wang C., Chen D., Zhong Z., Yuan Z., Y. Lu Z., and Ji W., Stacking tunable interlayer magnetism in bilayer CrI3, Phys. Rev. B 99(14), 144401 (2019)
https://doi.org/10.1103/PhysRevB.99.144401
21 W. Jang S., Y. Jeong M., Yoon H., Ryee S., and J. Han M., Microscopic understanding of magnetic interactions in bilayer CrI3, Phys. Rev. Mater. 3(3), 031001 (2019)
https://doi.org/10.1103/PhysRevMaterials.3.031001
22 Soriano D., Cardoso C., and Fernández-Rossier J., Interplay between interlayer exchange and stacking in CrI3 bilayers, Solid State Commun. 299, 113662 (2019)
https://doi.org/10.1016/j.ssc.2019.113662
23 Thiel L., Wang Z., A. Tschudin M., Rohner D., Gutiérrez-Lezama I., Ubrig N., Gibertini M., Giannini E., F. Morpurgo A., and Maletinsky P., Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science 364(6444), 973 (2019)
https://doi.org/10.1126/science.aav6926
24 Ubrig N., Wang Z., Teyssier J., Taniguchi T., Watanabe K., Giannini E., F. Morpurgo A., and Gibertini M., Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals, 2D Mater. 7(1), 015007 (2020)
https://doi.org/10.1088/2053-1583/ab4c64
25 H. Kim H., Yang B., Patel T., Sfigakis F., Li C., Tian S., L. Lei H., and W. Tsen A., One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure, Nano Lett. 18(8), 4885 (2018)
https://doi.org/10.1021/acs.nanolett.8b01552
26 A. McGuire M., Dixit H., R. Cooper V., and C. Sales B., Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3, Chem. Mater. 27(2), 612 (2015)
https://doi.org/10.1021/cm504242t
27 Jiang S., Li L., Wang Z., F. Mak K., and Shan J., Controlling magnetism in 2D CrI3 by electrostatic doping, Nat. Nanotechnol. 13(7), 549 (2018)
https://doi.org/10.1038/s41565-018-0135-x
28 Xu C., J. Wang Q., Xu B., and Hu J., Effect of biaxial strain and hydrostatic pressure on the magnetic properties of bilayer CrI3, Front. Phys. 16(5), 53502 (2021)
https://doi.org/10.1007/s11467-021-1073-x
29 Xu R. and Zou X., Electric field-modulated magnetic phase transition in van der Waals CrI3 bilayers, J. Phys. Chem. Lett. 11(8), 3152 (2020)
30 Soriano D. and I. Katsnelson M., Magnetic polaron and antiferromagnetic-ferromagnetic transition in doped bilayer CrI3, Phys. Rev. B 101(4), 041402(R) (2020)
https://doi.org/10.1103/PhysRevB.101.041402
31 E. Blöchl P., Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
32 Kresse G. and Furthmuller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
33 Kresse G. and Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
34 P. Perdew J., Burke K., and Ernzerhof M., Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
35 Grimme S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)
https://doi.org/10.1002/jcc.20495
36 I. Anisimov V., Zaanen J., and K. Andersen O., Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
https://doi.org/10.1103/PhysRevB.44.943
37 L. Dudarev S., A. Botton G., Y. Savrasov S., J. Humphreys C., and P. Sutton A., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57(3), 1505 (1998)
https://doi.org/10.1103/PhysRevB.57.1505
38 Yang M., Shu H., Tang P., Liang P., Cao D., and Chen X., Intrinsic polarization-induced enhanced ferro-magnetism and self-doped p‒n junctions in CrBr3/GaN van der Waals heterostructures, ACS Appl. Mater. Interfaces 13(7), 8764 (2021)
https://doi.org/10.1021/acsami.0c21532
39 Franchini C., Reticcioli M., Setvin M., and Diebold U., Polarons in materials, Nat. Rev. Mater. 6(7), 560 (2021)
https://doi.org/10.1038/s41578-021-00289-w
40 Heyd J., E. Scuseria G., and Ernzerhof M., Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)
https://doi.org/10.1063/1.1564060
41 M. Zhang J., G. Zhu W., Zhang Y., Xiao D., and G. Yao Y., Tailoring magnetic doping in the topological insulator Bi2Se3, Phys. Rev. Lett. 109(26), 266405 (2012)
https://doi.org/10.1103/PhysRevLett.109.266405
42 Qi S., Gao R., Chang M., Hou T., Han Y., and Qiao Z., Nonmagnetic doping induced quantum anomalous Hall effect in topological insulators, Phys. Rev. B 102(8), 085419 (2020)
https://doi.org/10.1103/PhysRevB.102.085419
43 Han Y., Sun S., Qi S., Xu X., and Qiao Z., Interlayer ferromagnetism and high-temperature quantum anomalous Hall effect in p-doped MnBi2Te4 multilayers, Phys. Rev. B 103(24), 245403 (2021)
https://doi.org/10.1103/PhysRevB.103.245403
44 Pan H., B. Yi J., Shen L., Q. Wu R., H. Yang J., Y. Lin J., P. Feng Y., Ding J., H. Van L., and H. Yin J., Room-temperature ferromagnetism in carbon-doped ZnO, Phys. Rev. Lett. 99(12), 127201 (2007)
https://doi.org/10.1103/PhysRevLett.99.127201
45 Grimme S.Antony J.Ehrlich S.Krieg S., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15), 154104 (2010)
46 Dion M., Rydberg H., Schröder E., C. Langreth D., and I. Lundqvist B., Van der Waals density functional for general geometries, Phys. Rev. Lett. 92(24), 246401 (2004)
https://doi.org/10.1103/PhysRevLett.92.246401
47 Lee K., D. Murray E., Kong L., I. Lundqvist B., and C. Langreth D., Higher-accuracy van der Waals density functional, Phys. Rev. B 82(8), 081101(R) (2010)
https://doi.org/10.1103/PhysRevB.82.081101
48 Klimeš J., R. Bowler D., and Michaelides A., Van der Waals density functionals applied to solids, Phys. Rev. B 83(19), 195131 (2011)
https://doi.org/10.1103/PhysRevB.83.195131
49 Klimeš J., R. Bowler D., and Michaelides A., Chemical accuracy for the van der Waals density functional, J. Phys.: Condens. Matter 22(2), 022201 (2010)
https://doi.org/10.1088/0953-8984/22/2/022201
50 Li T., Jiang S., Sivadas N., Wang Z., Xu Y., Weber D., E. Goldberger J., Watanabe K., Taniguchi T., J. Fennie C., Fai Mak K., and Shan J., Pressure-controlled interlayer magnetism in atomically thin CrI3, Nat. Mater. 18(12), 1303 (2019)
https://doi.org/10.1038/s41563-019-0506-1
51 Song T., Fei Z., Yankowitz M., Lin Z., Jiang Q., Hwangbo K., Zhang Q., Sun B., Taniguchi T., Watanabe K., A. McGuire M., Graf D., Cao T., H. Chu J., H. Cobden D., R. Dean C., Xiao D., and Xu X., Switching 2D magnetic states via pressure tuning of layer stacking, Nat. Mater. 18(12), 1298 (2019)
https://doi.org/10.1038/s41563-019-0505-2
52 Xia J., Yan J., Wang Z., He Y., Gong Y., Chen W., C. Sum T., Liu Z., M. Ajayan P., and Shen Z., Strong coupling and pressure engineering in WSe2−MoSe2 heterobilayers, Nat. Phys. 17(1), 92 (2021)
https://doi.org/10.1038/s41567-020-1005-7
53 Zhu W., Song C., Zhou Y., Wang Q., Bai H., and Pan F., Insight into interlayer magnetic coupling in 1T-type transition metal dichalcogenides based on the stacking of nonmagnetic atoms, Phys. Rev. B 103(22), 224404 (2021)
https://doi.org/10.1103/PhysRevB.103.224404
54 W. Xiao J. and H. Yan B., An electron-counting rule to determine the interlayer magnetic coupling of the van der Waals materials, 2D Mater. 7(4), 045010 (2020)
https://doi.org/10.1088/2053-1583/ab9ea4
55 Li Z., Li J., He K., Wan X., Duan W., and Xu Y., Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials, Phys. Rev. B 102(8), 081107(R) (2020)
https://doi.org/10.1103/PhysRevB.102.081107
56 Zhu W., Song C., Liao L., Zhou Z., Bai H., Zhou Y., and Pan F., Quantum anomalous Hall insulator state in ferromagnetically ordered MnBi2Te4/VBi2Te4 heterostructures, Phys. Rev. B 102(8), 085111 (2020)
https://doi.org/10.1103/PhysRevB.102.085111
57 Liu N., Zhou S., and Zhao J., High-Curie-temperature ferromagnetism in bilayer CrI3 on bulk semiconducting substrates, Phys. Rev. Mater. 4(9), 094003 (2020)
https://doi.org/10.1103/PhysRevMaterials.4.094003
58 M. D. Coey J., Venkatesan M., and B. Fitzgerald C., Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater. 4(2), 173 (2005)
https://doi.org/10.1038/nmat1310
59 J. Telford E., H. Dismukes A., L. Dudley R., A. Wiscons R., Lee K., G. Chica D., E. Ziebel M., G. Han M., Yu J., Shabani S., Scheie A., Watanabe K., Taniguchi T., Xiao D., Zhu Y., N. Pasupathy A., Nuckolls C., Zhu X., R. Dean C., and Roy X., Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor, Nat. Mater. 21(7), 754 (2022)
https://doi.org/10.1038/s41563-022-01245-x
[1] Imran Khan, Jisang Hong. Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2[J]. Front. Phys. , 2024, 19(6): 63206-.
[2] Liang Liu, Xiaolin Li, Luping Du, Xi Zhang. Generation and modulation of multiple 2D bulk photovoltaic effects in space-time reversal asymmetric 2H-FeCl2[J]. Front. Phys. , 2023, 18(6): 62304-.
[3] Xue-Jing Feng, Jin-Xin Li, Lu Qin, Ying-Ying Zhang, ShiQiang Xia, Lu Zhou, ChunJie Yang, ZunLue Zhu, Wu-Ming Liu, Xing-Dong Zhao. Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas[J]. Front. Phys. , 2023, 18(5): 52303-.
[4] Tian-Zhong Yuan, Mu-Yuan Zou, Wen-Tao Jin, Xin-Yuan Wei, Xu-Guang Xu, Wei Li. Pairing symmetry in monolayer of orthorhombic CoSb[J]. Front. Phys. , 2021, 16(4): 43500-.
[5] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[6] Wen-Cheng Huang, Wei Li, Xiaosong Liu. Exotic ferromagnetism in the two-dimensional quantum material C3N[J]. Front. Phys. , 2018, 13(2): 137104-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed