Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 63206    https://doi.org/10.1007/s11467-024-1424-5
Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2
Imran Khan, Jisang Hong()
Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
 Download: PDF(3718 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In spintronics, transverse anomalous transport properties have emerged as a highly promising avenue surpassing the conventional longitudinal transport behaviors. Here, we explore the transverse transport properties of monolayer and bilayer Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) systems. All the systems exhibit ferromagnetic ground states with metallic features and also have perpendicular magnetic anisotropy. Besides, the magnetic anisotropy is substantially enhanced with increasing Co-doping concentration. However, unlike magnetic anisotropy, the Curie temperature is suppressed by increasing the Co-doping concentration. For instance, the monolayer and bilayer Fe2.917Co0.083GaTe2 hold a Curie temperature of 253 K and 269 K, which decreases to 163 K and 173 K in monolayer and bilayer Fe2.67Co0.33GaTe2 systems, respectively. We find a giant anomalous Nernst conductivity (ANC) of 6.03 A/(K·m) in the monolayer Fe2.917Co0.083GaTe2 at −30 meV, and this is further enhanced to 11.30 A/(K·m) in the bilayer Fe2.917Co0.083GaTe2 at −20 meV. Moreover, the bilayer Fe2.917Co0.083GaTe2 structure has a large anomalous thermal Hall conductivity (ATHC) of −0.14 W/(K·m) at 100 K. Overall, we find that the Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) structures have better anomalous transverse transport performance than the pristine Fe3GaTe2 system and can be used for potential spintronics and spin caloritronics applications.

Keywords two-dimensional (2D) material      Fe3GaTe2      ferromagnetism      magnetic anisotropy      Curie temperature      anomalous Hall conductivity      anomalous Nernst conductivity      anomalous thermal Hall conductivity     
Corresponding Author(s): Jisang Hong   
Issue Date: 16 July 2024
 Cite this article:   
Imran Khan,Jisang Hong. Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2[J]. Front. Phys. , 2024, 19(6): 63206.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1424-5
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/63206
Fig.1  Crystal structures (a) top view of the monolayer Fe2.917Co0.083GaTe2, (b) side view of the monolayer Fe2.917Co0.083GaTe2, (c) side view of the monolayer Fe2.833Co0.167GaTe2, (d) side view of the monolayer Fe2.75Co0.25GaTe2, (e) side view of the monolayer Fe2.67Co0.33GaTe2, (f) AA stacking in the bilayer Fe2.917Co0.083GaTe2, (g) AB stacking in the bilayer Fe2.917Co0.083GaTe2, (h) AA stacking in the bilayer Fe2.833Co0.167GaTe2, (i) AB stacking in the bilayer Fe2.833Co0.167GaTe2, (j) AA stacking in the bilayer Fe2.75Co0.25GaTe2, (k) AB stacking in the bilayer Fe2.75Co0.25GaTe2, (l) AA stacking in the bilayer Fe2.67Co0.33GaTe2, and (m) AB stacking in the bilayer Fe2.67Co0.33GaTe2.
System x = 0.083 x = 0.167 x = 0.25 x = 0.33
a = b, Monolayer (in Å) 8.155 8.161 8.165 4.089
a = b, Bilayer (in Å) 8.058 8.064 8.072 4.040
d (in Å) 3.11 3.02 3.00 2.97
EF molayer (meV/atom) −166 −171 −175 −171
ΔEex(meV/cell) - Intralayer monolayer 983 884 760 581
ΔEex(meV/cell) - Interlayer bilayer 19 16 16 6
Tab.1  Lattice constants of monolayer and bilayer Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) along with interlayer distance (d) in the bilayer. The formation energy (EF) of monolayer and exchange energy (ΔEex) of monolayer and bilayer.
Exchange interactions J (1st NN) (meV) J (2nd NN) (meV) J (3rd NN) (meV)
Febottom−Febottom (Fetop−Fetop) 2.91 0.46 0.41
Fecentral−Fecentral −1.58 −0.42 1.44
Febottom−Fetop 81.79 −2.65 1.66
Febottom−Fecentral (Fetop−Fecentral) 27.74 2.60 −1.33
Fecentral−Cocentral −1.69 −0.22 −0.12
Cocentral−Cocentral 0.19 −0.01 0
Febottom−Cocentral (Fetop−Cocentral) 15.76 2.66 −1.20
Tab.2  Exchange parameter (J) in meV monolayer Fe2.917Co0.083GaTe2.
Exchange interactions (intra-layer) J (1st NN) (meV) J (2nd NN) (meV) J (3rd NN) (meV)
Febottom−Febottom (Fetop−Fetop) 0.53 0.90 0.51
Fecentral−Fecentral −0.96 −0.15 −0.07
Febottom−Fetop 77.38 −1.23 0.65
Febottom−Fecentral (Fetop−Fecentral) 26.06 1.77 −0.68
Fecentral−Cocentral −1.34 0.04 0.0
Cocentral−Cocentral 0.07 0.01 −0.05
Febottom−Cocentral (Fetop−Cocentral) 15.89 −0.84 −0.17
Exchange interactions (inter-layer) J (1st NN) (meV) J (2nd NN) (meV) J (3rd NN) (meV)
Fetop (layer 1)−Febottom (layer 2) 0.09 0.24 −0.13
Fetop (layer 1)−Fecentral (layer 2) 0.54 0.27 −0.02
Fetop (layer 1)−Fetop (layer 2) −0.07 −0.11 −0.04
Fetop (layer 1)−Cocentral (layer 2) 0.15 −0.04 −0.03
Fecentral (layer 1)−Cocentral (layer 2) −0.22 0.02 0.01
Cocentral (layer 1)−Cocentral (layer 2) −0.13 0.02 0.01
Febottom (layer 1)−Cocentral (layer 2) 0.07 −0.01 −0.01
Tab.3  Exchange parameter (J) in meV for bilayer Fe2.917Co0.083GaTe2.
Fig.2  Spin-projected band structures including spin−orbit coupling (a) monolayer Fe2.917Co0.083GaTe2, (b) bilayer Fe2.917Co0.083GaTe2.
System x = 0.083 x = 0.167 x = 0.25 x = 0.33
Monolayer MAE 0.49 0.75 1.07 1.48
Bilayer MAE 0.53 0.76 1.04 1.37
Monolayer TC (K) 253 230 200 163
Bilayer TC (K) 269 240 210 173
Tab.4  Magnetocrystalline anisotropy (in meV/atom) and Curie temperatures of monolayer and bilayer.
Fig.3  Orbital resolved MAE of monolayer Fe2.917Co0.083GaTe2 (a) Te atom, (b) Fe-top atom, (c) Fe-center atom, (d) Co atom.
Fig.4  Temperature-dependent magnetization curves for (a) monolayer Fe2.917Co0.083GaTe2, (b) monolayer Fe2.833Co0.167GaTe2, (c) monolayer Fe2.75Co0.25GaTe2, (d) monolayer Fe2.67Co0.33GaTe2, (e) bilayer Fe2.917Co0.083GaTe2, (f) bilayer Fe2.833Co0.167GaTe2, (g) bilayer Fe2.75Co0.25GaTe2, (h) bilayer Fe2.67Co0.33GaTe2.
Fig.5  Thickness-dependent (a, b) anomalous Hall conductivity as a function of chemical potential for monolayer and bilayer Fe3−xCoxGaTe2 systems, (c, d) anomalous Nernest conductivity as a function of chemical potential for monolayer and bilayer Fe3−xCoxGaTe2 systems, and (e, f) anomalous thermal Hall conductivity as a function of chemical potential for monolayer and bilayer Fe3−xCoxGaTe2 systems.
Fig.6  Berry curvature along high symmetry lines for (a) monolayer Fe2.75Co0.25GaTe2 at zero chemical potential, (b) bilayer Fe2.917Co0.083GaTe2 at zero chemical potential, (c) monolayer Fe2.75Co0.25GaTe2 at −40 meV and (d) bilayer Fe2.917Co0.083GaTe2 at −10 meV.
1 V. Yazyev O., Emergence of magnetism in graphene materials and nanostructures, Rep. Prog. Phys. 73(5), 056501 (2010)
https://doi.org/10.1088/0034-4885/73/5/056501
2 V. Yazyev O. and Helm L., Defect-induced magnetism in graphene, Phys. Rev. B 75(12), 125408 (2007)
https://doi.org/10.1103/PhysRevB.75.125408
3 Khan I. and Hong J., Magnetic properties of transition metal Mn, Fe and Co dimers on monolayer phosphorene, Nanotechnology 27(38), 385701 (2016)
https://doi.org/10.1088/0957-4484/27/38/385701
4 W. Son Y., L. Cohen M., and G. Louie S., Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
https://doi.org/10.1038/nature05180
5 Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., and Xu X., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
6 Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., and Zhang X., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
7 J. O’Hara D., Zhu T., H. Trout A., S. Ahmed A., K. Luo Y., H. Lee C., R. Brenner M., Rajan S., A. Gupta J., W. McComb D., and K. Kawakami R., Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit, Nano Lett. 18(5), 3125 (2018)
https://doi.org/10.1021/acs.nanolett.8b00683
8 Bonilla M., Kolekar S., Ma Y., C. Diaz H., Kalappattil V., Das R., Eggers T., R. Gutierrez H., H. Phan M., and Batzill M., Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 13(4), 289 (2018)
https://doi.org/10.1038/s41565-018-0063-9
9 Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., and Xu X., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
10 Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., and Zhang X., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
11 Xue F., Hou Y., Wang Z., and Wu R., Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature, Phys. Rev. B 100(22), 224429 (2019)
https://doi.org/10.1103/PhysRevB.100.224429
12 Li B., Wan Z., Wang C., Chen P., Huang B., Cheng X., Qian Q., Li J., Zhang Z., Sun G., Zhao B., Ma H., Wu R., Wei Z., Liu Y., Liao L., Ye Y., Huang Y., Xu X., Duan X., Ji W., and Duan X., Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order, Nat. Mater. 20(6), 818 (2021)
https://doi.org/10.1038/s41563-021-00927-2
13 Wu Y., Hu Y., Wang C., Zhou X., Hou X., Xia W., Zhang Y., Wang J., Ding Y., He J., Dong P., Bao S., Wen J., Guo Y., Watanabe K., Taniguchi T., Ji W., J. Wang Z., and Li J., Fe-intercalation dominated ferromagnetism of van der Waals Fe3GeTe2, Adv. Mater. 35(36), 2302568 (2023)
https://doi.org/10.1002/adma.202302568
14 Fei Z., Huang B., Malinowski P., Wang W., Song T., Sanchez J., Yao W., Xiao D., Zhu X., F. May A., Wu W., H. Cobden D., H. Chu J., and Xu X., Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater. 17(9), 778 (2018)
https://doi.org/10.1038/s41563-018-0149-7
15 Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., and Zhang Y., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
https://doi.org/10.1038/s41586-018-0626-9
16 Zhang G., Guo F., Wu H., Wen X., Yang L., Jin W., Zhang W., and Chang H., Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy, Nat. Commun. 13(1), 5067 (2022)
https://doi.org/10.1038/s41467-022-32605-5
17 Roy Karmakar A., Nandy S., Taraphder A., and P. Das G., Giant anomalous thermal Hall effect in tilted type-I magnetic Weyl semimetal Co3Sn2S2, Phys. Rev. B 106(24), 245133 (2022)
https://doi.org/10.1103/PhysRevB.106.245133
18 Wuttke C., Caglieris F., Sykora S., Scaravaggi F., U. B. Wolter A., Manna K., Süss V., Shekhar C., Felser C., Büchner B., and Hess C., Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge, Phys. Rev. B 100(8), 085111 (2019)
https://doi.org/10.1103/PhysRevB.100.085111
19 Jungwirth T., Niu Q., and H. MacDonald A., Anomalous Hall effect in ferromagnetic semiconductors, Phys. Rev. Lett. 88(20), 207208 (2002)
https://doi.org/10.1103/PhysRevLett.88.207208
20 Onoda M. and Nagaosa N., Quantized anomalous Hall effect in two-dimensional ferromagnets: Quantum Hall effect in metals, Phys. Rev. Lett. 90(20), 206601 (2003)
https://doi.org/10.1103/PhysRevLett.90.206601
21 Yao Y., Kleinman L., H. MacDonald A., Sinova J., Jungwirth T., Wang D., Wang E., and Niu Q., First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)
https://doi.org/10.1103/PhysRevLett.92.037204
22 Lin X. and Ni J., Layer-dependent intrinsic anomalous Hall effect in Fe3GeTe2, Phys. Rev. B 100(8), 085403 (2019)
https://doi.org/10.1103/PhysRevB.100.085403
23 J. Dong X.Y. You J.Gu B.Su G., Strain-induced room-temperature ferromagnetic semiconductors with large anomalous Hall conductivity in two-dimensional Cr2Ge2Se6, Phys. Rev. Appl. 12(1), 014020 (2019)
24 Syariati R., Minami S., Sawahata H., and Ishii F., First-principles study of anomalous Nernst effect in half-metallic iron dichloride monolayer, APL Mater. 8(4), 041105 (2020)
https://doi.org/10.1063/1.5143474
25 T. Breidenbach A., Yu H., A. Peterson T., P. McFadden A., K. Peria W., J. Palmstrøm C., and A. Crowell P., Anomalous Nernst and Seebeck coefficients in epitaxial thin film Co2MnAlxSi1−x and Co2FeAl, Phys. Rev. B 105(14), 144405 (2022)
https://doi.org/10.1103/PhysRevB.105.144405
26 Marfoua B. and Hong J., Large anomalous transverse transport properties in atomically thin 2D Fe3GaTe2, NPG Asia Mater. 16, 6 (2024)
https://doi.org/10.1038/s41427-023-00525-5
27 Chen H., Asif S., Dolui K., Wang Y., Támara-Isaza J., M. L. D. P. Goli V., Whalen M., Wang X., Chen Z., Zhang H., Liu K., Jariwala D., B. Jungfleisch M., Chakraborty C., F. May A., A. McGuire M., K. Nikolic B., Q. Xiao J., and J. H. Ku M., Above-room-temperature ferromagnetism in thin van der Waals flakes of cobalt-substituted Fe5GeTe2, ACS Appl. Mater. Interfaces 15(2), 3287 (2023)
https://doi.org/10.1021/acsami.2c18028
28 Kresse G. and Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
29 Kresse G. and Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
30 Hobbs D., Kresse G., and Hafner J., Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B 62(17), 11556 (2000)
https://doi.org/10.1103/PhysRevB.62.11556
31 Grimme S.Antony J.Ehrlich S.Krieg H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu, J. Chem. Phys. 132(15), 154104 (2010)
32 Grimme S., Ehrlich S., and Goerigk L., Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32(7), 1456 (2011)
https://doi.org/10.1002/jcc.21759
33 Hobbs D., Kresse G., and Hafner J., Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B 62(17), 11556 (2000)
https://doi.org/10.1103/PhysRevB.62.11556
34 F. L. Evans R., J. Fan W., Chureemart P., A. Ostler T., O. A. Ellis M., and W. Chantrell R., Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26(10), 103202 (2014)
https://doi.org/10.1088/0953-8984/26/10/103202
35 F. L. Evans R., Vampire, VAMPIRE (2016), see: vampire.york.ac.uk/
36 Pizzi G., Vitale V., Arita R., Blügel S., Freimuth F., Géranton G., Gibertini M., Gresch D., Johnson C., Koretsune T., Ibañez-Azpiroz J., Lee H., M. Lihm J., Marchand D., Marrazzo A., Mokrousov Y., I. Mustafa J., Nohara Y., Nomura Y., Paulatto L., Poncé S., Ponweiser T., Qiao J., Thöle F., S. Tsirkin S., Wierzbowska M., Marzari N., Vanderbilt D., Souza I., A. Mostofi A., and R. Yates J., Wannier90 as a community code: New features and applications, J. Phys.: Condens. Matter 32(16), 165902 (2020)
https://doi.org/10.1088/1361-648X/ab51ff
37 Chakraborty T., Samanta K., N. Guin S., Noky J., Robredo I., Prasad S., Kuebler J., Shekhar C., G. Vergniory M., and Felser C., Berry curvature induced anomalous Hall conductivity in the magnetic topological oxide double perovskite Sr2FeMoO6, Phys. Rev. B 106(15), 155141 (2022)
https://doi.org/10.1103/PhysRevB.106.155141
38 Pu Y., Chiba D., Matsukura F., Ohno H., and Shi J., Mott relation for anomalous Hall and Nernst effects in Ga1−xMnxAs ferromagnetic semiconductors, Phys. Rev. Lett. 101(11), 117208 (2008)
https://doi.org/10.1103/PhysRevLett.101.117208
39 Zeng C., Nandy S., and Tewari S., Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime, Phys. Rev. Res. 2(3), 032066 (2020)
https://doi.org/10.1103/PhysRevResearch.2.032066
40 Togo A. and Tanaka I., First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
https://doi.org/10.1016/j.scriptamat.2015.07.021
41 He X.Helbig N. J. Verstraete M.Bousquet E., TB2J: A python package for computing magnetic interaction parameters, Comput. Phys. Commun. 264, 107938 (2021)
42 Wang Q., Xu Y., Lou R., Liu Z., Li M., Huang Y., Shen D., Weng H., Wang S., and Lei H., Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nat. Commun. 9(1), 3681 (2018)
https://doi.org/10.1038/s41467-018-06088-2
43 Xu J., A. Phelan W., and L. Chien C., Large anomalous Nernst effect in a van der Waals ferromagnet Fe3GeTe2, Nano Lett. 19(11), 8250 (2019)
https://doi.org/10.1021/acs.nanolett.9b03739
44 K. H. Madsen G., Carrete J., and J. Verstraete M., BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, Comput. Phys. Commun. 231, 140 (2018)
https://doi.org/10.1016/j.cpc.2018.05.010
45 Nagaosa N., Sinova J., Onoda S., H. MacDonald A., and P. Ong N., Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)
https://doi.org/10.1103/RevModPhys.82.1539
46 Xu L., Li X., Lu X., Collignon C., Fu H., Koo J., Fauqué B., Yan B., Zhu Z., and Behnia K., Finite-temperature violation of the anomalous transverse Wiedemann−Franz law, Sci. Adv. 6(17), eaaz3522 (2020)
https://doi.org/10.1126/sciadv.aaz3522
[1] fop-24424-OF-hong_suppl_1 Download
[1] Bin Liu, Xiaolin Zhang, Jingxian Xiong, Xiuyang Pang, Sheng Liu, Zixin Yang, Qiang Yu, Honggen Li, Sicong Zhu, Jian Wu. Spin transport of half-metal Mn2X3 with high Curie temperature: An ideal giant magnetoresistance device from electrical and thermal drives[J]. Front. Phys. , 2024, 19(4): 43201-.
[2] Zhexi He, Yifan Zhao, Yujing Du, Meng Zhao, Yuxuan Jiang, Ming Liu, Ziyao Zhou. Solar manipulations of perpendicular magnetic anisotropy for flexible spintronics[J]. Front. Phys. , 2024, 19(4): 43206-.
[3] Bocheng Lei, Aolin Li, Wenzhe Zhou, Yunpeng Wang, Wei Xiong, Yu Chen, Fangping Ouyang. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2[J]. Front. Phys. , 2024, 19(4): 43200-.
[4] Liang Liu, Xiaolin Li, Luping Du, Xi Zhang. Generation and modulation of multiple 2D bulk photovoltaic effects in space-time reversal asymmetric 2H-FeCl2[J]. Front. Phys. , 2023, 18(6): 62304-.
[5] Guibo Zheng, Shuixian Qu, Wenzhe Zhou, Fangping Ouyang. Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties[J]. Front. Phys. , 2023, 18(5): 53302-.
[6] Xue-Jing Feng, Jin-Xin Li, Lu Qin, Ying-Ying Zhang, ShiQiang Xia, Lu Zhou, ChunJie Yang, ZunLue Zhu, Wu-Ming Liu, Xing-Dong Zhao. Itinerant ferromagnetism entrenched by the anisotropy of spin−orbit coupling in a dipolar Fermi gas[J]. Front. Phys. , 2023, 18(5): 52303-.
[7] Qirui Cui, Liming Wang, Yingmei Zhu, Jinghua Liang, Hongxin Yang. Magnetic anisotropy, exchange coupling and Dzyaloshinskii–Moriya interaction of two-dimensional magnets[J]. Front. Phys. , 2023, 18(1): 13602-.
[8] Tian-Zhong Yuan, Mu-Yuan Zou, Wen-Tao Jin, Xin-Yuan Wei, Xu-Guang Xu, Wei Li. Pairing symmetry in monolayer of orthorhombic CoSb[J]. Front. Phys. , 2021, 16(4): 43500-.
[9] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[10] Ling-Ling Wang, Jia-Nan Chu, Xuan Zhang, Yong-Hui Ma, Qiu-Cheng Ji, Wei Li, Hui Zhang, Gang Mu, Xiao-Ming Xie. Hydrothermal synthesis, structure and magnetic properties of Ru doped La0.5Sr0.5MnO3[J]. Front. Phys. , 2019, 14(1): 13604-.
[11] Xin-Long Dong, Kun-Hua Zhang, Ming-Xiang Xu. First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni)[J]. Front. Phys. , 2018, 13(5): 137106-.
[12] Wen-Cheng Huang, Wei Li, Xiaosong Liu. Exotic ferromagnetism in the two-dimensional quantum material C3N[J]. Front. Phys. , 2018, 13(2): 137104-.
[13] Li-feng YIN, Jian SHEN. Tailoring interacting magnetic nanodots via dimensionality variation of mediating electrons[J]. Front Phys Chin, 2010, 5(4): 393-404.
[14] Fang WU (吴芳), Richard TJORNHAMMAR, Er-jun KAN (阚二军), Zhen-yu LI (李震宇). A first-principles study on the electronic structure of one-dimensional [TM(Bz)] polymer (TM= Y, Zr, Nb, Mo, and Tc)[J]. Front. Phys. , 2009, 4(3): 403-407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed