|
|
Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2 |
Imran Khan, Jisang Hong( ) |
Department of Physics, Pukyong National University, Busan 48513, Republic of Korea |
|
|
Abstract In spintronics, transverse anomalous transport properties have emerged as a highly promising avenue surpassing the conventional longitudinal transport behaviors. Here, we explore the transverse transport properties of monolayer and bilayer Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) systems. All the systems exhibit ferromagnetic ground states with metallic features and also have perpendicular magnetic anisotropy. Besides, the magnetic anisotropy is substantially enhanced with increasing Co-doping concentration. However, unlike magnetic anisotropy, the Curie temperature is suppressed by increasing the Co-doping concentration. For instance, the monolayer and bilayer Fe2.917Co0.083GaTe2 hold a Curie temperature of 253 K and 269 K, which decreases to 163 K and 173 K in monolayer and bilayer Fe2.67Co0.33GaTe2 systems, respectively. We find a giant anomalous Nernst conductivity (ANC) of 6.03 A/(K·m) in the monolayer Fe2.917Co0.083GaTe2 at −30 meV, and this is further enhanced to 11.30 A/(K·m) in the bilayer Fe2.917Co0.083GaTe2 at −20 meV. Moreover, the bilayer Fe2.917Co0.083GaTe2 structure has a large anomalous thermal Hall conductivity (ATHC) of −0.14 W/(K·m) at 100 K. Overall, we find that the Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) structures have better anomalous transverse transport performance than the pristine Fe3GaTe2 system and can be used for potential spintronics and spin caloritronics applications.
|
Keywords
two-dimensional (2D) material
Fe3GaTe2
ferromagnetism
magnetic anisotropy
Curie temperature
anomalous Hall conductivity
anomalous Nernst conductivity
anomalous thermal Hall conductivity
|
Corresponding Author(s):
Jisang Hong
|
Issue Date: 16 July 2024
|
|
1 |
V. Yazyev O., Emergence of magnetism in graphene materials and nanostructures, Rep. Prog. Phys. 73(5), 056501 (2010)
https://doi.org/10.1088/0034-4885/73/5/056501
|
2 |
V. Yazyev O. and Helm L., Defect-induced magnetism in graphene, Phys. Rev. B 75(12), 125408 (2007)
https://doi.org/10.1103/PhysRevB.75.125408
|
3 |
Khan I. and Hong J., Magnetic properties of transition metal Mn, Fe and Co dimers on monolayer phosphorene, Nanotechnology 27(38), 385701 (2016)
https://doi.org/10.1088/0957-4484/27/38/385701
|
4 |
W. Son Y., L. Cohen M., and G. Louie S., Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
https://doi.org/10.1038/nature05180
|
5 |
Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., and Xu X., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
|
6 |
Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., and Zhang X., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
|
7 |
J. O’Hara D., Zhu T., H. Trout A., S. Ahmed A., K. Luo Y., H. Lee C., R. Brenner M., Rajan S., A. Gupta J., W. McComb D., and K. Kawakami R., Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit, Nano Lett. 18(5), 3125 (2018)
https://doi.org/10.1021/acs.nanolett.8b00683
|
8 |
Bonilla M., Kolekar S., Ma Y., C. Diaz H., Kalappattil V., Das R., Eggers T., R. Gutierrez H., H. Phan M., and Batzill M., Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 13(4), 289 (2018)
https://doi.org/10.1038/s41565-018-0063-9
|
9 |
Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., and Xu X., Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
https://doi.org/10.1038/nature22391
|
10 |
Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., and Zhang X., Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
https://doi.org/10.1038/nature22060
|
11 |
Xue F., Hou Y., Wang Z., and Wu R., Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature, Phys. Rev. B 100(22), 224429 (2019)
https://doi.org/10.1103/PhysRevB.100.224429
|
12 |
Li B., Wan Z., Wang C., Chen P., Huang B., Cheng X., Qian Q., Li J., Zhang Z., Sun G., Zhao B., Ma H., Wu R., Wei Z., Liu Y., Liao L., Ye Y., Huang Y., Xu X., Duan X., Ji W., and Duan X., Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order, Nat. Mater. 20(6), 818 (2021)
https://doi.org/10.1038/s41563-021-00927-2
|
13 |
Wu Y., Hu Y., Wang C., Zhou X., Hou X., Xia W., Zhang Y., Wang J., Ding Y., He J., Dong P., Bao S., Wen J., Guo Y., Watanabe K., Taniguchi T., Ji W., J. Wang Z., and Li J., Fe-intercalation dominated ferromagnetism of van der Waals Fe3GeTe2, Adv. Mater. 35(36), 2302568 (2023)
https://doi.org/10.1002/adma.202302568
|
14 |
Fei Z., Huang B., Malinowski P., Wang W., Song T., Sanchez J., Yao W., Xiao D., Zhu X., F. May A., Wu W., H. Cobden D., H. Chu J., and Xu X., Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater. 17(9), 778 (2018)
https://doi.org/10.1038/s41563-018-0149-7
|
15 |
Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., and Zhang Y., Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
https://doi.org/10.1038/s41586-018-0626-9
|
16 |
Zhang G., Guo F., Wu H., Wen X., Yang L., Jin W., Zhang W., and Chang H., Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy, Nat. Commun. 13(1), 5067 (2022)
https://doi.org/10.1038/s41467-022-32605-5
|
17 |
Roy Karmakar A., Nandy S., Taraphder A., and P. Das G., Giant anomalous thermal Hall effect in tilted type-I magnetic Weyl semimetal Co3Sn2S2, Phys. Rev. B 106(24), 245133 (2022)
https://doi.org/10.1103/PhysRevB.106.245133
|
18 |
Wuttke C., Caglieris F., Sykora S., Scaravaggi F., U. B. Wolter A., Manna K., Süss V., Shekhar C., Felser C., Büchner B., and Hess C., Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge, Phys. Rev. B 100(8), 085111 (2019)
https://doi.org/10.1103/PhysRevB.100.085111
|
19 |
Jungwirth T., Niu Q., and H. MacDonald A., Anomalous Hall effect in ferromagnetic semiconductors, Phys. Rev. Lett. 88(20), 207208 (2002)
https://doi.org/10.1103/PhysRevLett.88.207208
|
20 |
Onoda M. and Nagaosa N., Quantized anomalous Hall effect in two-dimensional ferromagnets: Quantum Hall effect in metals, Phys. Rev. Lett. 90(20), 206601 (2003)
https://doi.org/10.1103/PhysRevLett.90.206601
|
21 |
Yao Y., Kleinman L., H. MacDonald A., Sinova J., Jungwirth T., Wang D., Wang E., and Niu Q., First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)
https://doi.org/10.1103/PhysRevLett.92.037204
|
22 |
Lin X. and Ni J., Layer-dependent intrinsic anomalous Hall effect in Fe3GeTe2, Phys. Rev. B 100(8), 085403 (2019)
https://doi.org/10.1103/PhysRevB.100.085403
|
23 |
J. Dong X.Y. You J.Gu B.Su G., Strain-induced room-temperature ferromagnetic semiconductors with large anomalous Hall conductivity in two-dimensional Cr2Ge2Se6, Phys. Rev. Appl. 12(1), 014020 (2019)
|
24 |
Syariati R., Minami S., Sawahata H., and Ishii F., First-principles study of anomalous Nernst effect in half-metallic iron dichloride monolayer, APL Mater. 8(4), 041105 (2020)
https://doi.org/10.1063/1.5143474
|
25 |
T. Breidenbach A., Yu H., A. Peterson T., P. McFadden A., K. Peria W., J. Palmstrøm C., and A. Crowell P., Anomalous Nernst and Seebeck coefficients in epitaxial thin film Co2MnAlxSi1−x and Co2FeAl, Phys. Rev. B 105(14), 144405 (2022)
https://doi.org/10.1103/PhysRevB.105.144405
|
26 |
Marfoua B. and Hong J., Large anomalous transverse transport properties in atomically thin 2D Fe3GaTe2, NPG Asia Mater. 16, 6 (2024)
https://doi.org/10.1038/s41427-023-00525-5
|
27 |
Chen H., Asif S., Dolui K., Wang Y., Támara-Isaza J., M. L. D. P. Goli V., Whalen M., Wang X., Chen Z., Zhang H., Liu K., Jariwala D., B. Jungfleisch M., Chakraborty C., F. May A., A. McGuire M., K. Nikolic B., Q. Xiao J., and J. H. Ku M., Above-room-temperature ferromagnetism in thin van der Waals flakes of cobalt-substituted Fe5GeTe2, ACS Appl. Mater. Interfaces 15(2), 3287 (2023)
https://doi.org/10.1021/acsami.2c18028
|
28 |
Kresse G. and Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
29 |
Kresse G. and Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
30 |
Hobbs D., Kresse G., and Hafner J., Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B 62(17), 11556 (2000)
https://doi.org/10.1103/PhysRevB.62.11556
|
31 |
Grimme S.Antony J.Ehrlich S.Krieg H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu, J. Chem. Phys. 132(15), 154104 (2010)
|
32 |
Grimme S., Ehrlich S., and Goerigk L., Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32(7), 1456 (2011)
https://doi.org/10.1002/jcc.21759
|
33 |
Hobbs D., Kresse G., and Hafner J., Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B 62(17), 11556 (2000)
https://doi.org/10.1103/PhysRevB.62.11556
|
34 |
F. L. Evans R., J. Fan W., Chureemart P., A. Ostler T., O. A. Ellis M., and W. Chantrell R., Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26(10), 103202 (2014)
https://doi.org/10.1088/0953-8984/26/10/103202
|
35 |
F. L. Evans R., Vampire, VAMPIRE (2016), see: vampire.york.ac.uk/
|
36 |
Pizzi G., Vitale V., Arita R., Blügel S., Freimuth F., Géranton G., Gibertini M., Gresch D., Johnson C., Koretsune T., Ibañez-Azpiroz J., Lee H., M. Lihm J., Marchand D., Marrazzo A., Mokrousov Y., I. Mustafa J., Nohara Y., Nomura Y., Paulatto L., Poncé S., Ponweiser T., Qiao J., Thöle F., S. Tsirkin S., Wierzbowska M., Marzari N., Vanderbilt D., Souza I., A. Mostofi A., and R. Yates J., Wannier90 as a community code: New features and applications, J. Phys.: Condens. Matter 32(16), 165902 (2020)
https://doi.org/10.1088/1361-648X/ab51ff
|
37 |
Chakraborty T., Samanta K., N. Guin S., Noky J., Robredo I., Prasad S., Kuebler J., Shekhar C., G. Vergniory M., and Felser C., Berry curvature induced anomalous Hall conductivity in the magnetic topological oxide double perovskite Sr2FeMoO6, Phys. Rev. B 106(15), 155141 (2022)
https://doi.org/10.1103/PhysRevB.106.155141
|
38 |
Pu Y., Chiba D., Matsukura F., Ohno H., and Shi J., Mott relation for anomalous Hall and Nernst effects in Ga1−xMnxAs ferromagnetic semiconductors, Phys. Rev. Lett. 101(11), 117208 (2008)
https://doi.org/10.1103/PhysRevLett.101.117208
|
39 |
Zeng C., Nandy S., and Tewari S., Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime, Phys. Rev. Res. 2(3), 032066 (2020)
https://doi.org/10.1103/PhysRevResearch.2.032066
|
40 |
Togo A. and Tanaka I., First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
https://doi.org/10.1016/j.scriptamat.2015.07.021
|
41 |
He X.Helbig N. J. Verstraete M.Bousquet E., TB2J: A python package for computing magnetic interaction parameters, Comput. Phys. Commun. 264, 107938 (2021)
|
42 |
Wang Q., Xu Y., Lou R., Liu Z., Li M., Huang Y., Shen D., Weng H., Wang S., and Lei H., Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nat. Commun. 9(1), 3681 (2018)
https://doi.org/10.1038/s41467-018-06088-2
|
43 |
Xu J., A. Phelan W., and L. Chien C., Large anomalous Nernst effect in a van der Waals ferromagnet Fe3GeTe2, Nano Lett. 19(11), 8250 (2019)
https://doi.org/10.1021/acs.nanolett.9b03739
|
44 |
K. H. Madsen G., Carrete J., and J. Verstraete M., BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, Comput. Phys. Commun. 231, 140 (2018)
https://doi.org/10.1016/j.cpc.2018.05.010
|
45 |
Nagaosa N., Sinova J., Onoda S., H. MacDonald A., and P. Ong N., Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)
https://doi.org/10.1103/RevModPhys.82.1539
|
46 |
Xu L., Li X., Lu X., Collignon C., Fu H., Koo J., Fauqué B., Yan B., Zhu Z., and Behnia K., Finite-temperature violation of the anomalous transverse Wiedemann−Franz law, Sci. Adv. 6(17), eaaz3522 (2020)
https://doi.org/10.1126/sciadv.aaz3522
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|