Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2012, Vol. 3 Issue (10) : 790-801    https://doi.org/10.1007/s13238-012-2069-7      PMID: 23055042
RESEARCH ARTICLE
Human Bop is a novel BH3-only member of the Bcl-2 protein family
Xiaoping Zhang1,3, Changjiang Weng1, Yuan Li1,3, Xiaoyan Wang1,4, Chunsun Jiang2, Xuemei Li1, Youli Xu1, Quan Chen2, Lei Pan1(), Hong Tang1()
1. The Key Laboratory of Infection and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; 2. National Key Laboratory of Bio-membrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 3. The Graduate School of Chinese Academy of Sciences, Beijing 100049, China; 4. Taizhou Institute of Protein Engineering, Taizhou National Biomedicine Hightech Park, Jiangsu 225300, China
 Download: PDF(769 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

One group of Bcl-2 protein family, which shares only the BH3 domain (BH3-only), is critically involved in the regulation of programmed cell death. Herein we demonstrated a novel human BH3-only protein (designated as Bop) which could induce apoptosis in a BH3 domain-dependent manner. Further analysis indicated that Bop mainly localized to mitochondria and used its BH3 domain to contact the loop regions of voltage dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane. In addition, purified Bop protein induced the loss of mitochondrial transmembrane potential (ΔΨm) and the release of cytochrome c. Furthermore, Bop used its BH3 domain to contact pro-survival Bcl-2 family members (Bcl-2, Bcl-XL, Mcl-1, A1 and Bcl-w), which could inhibit Bop-induced apoptosis. Bop would be constrained by pro-survival Bcl-2 proteins in resting cells, because Bop became released from phosphorylated Bcl-2 induced by microtubule-interfering agent like vincristine (VCR). Indeed, knockdown experiments indicated that Bop was partially required for VCR induced cell death. Finally, Bop might need to function through Bak and Bax, likely by releasing Bak from Bcl-XL sequestration. In conclusion, Bop may be a novel BH3-only factor that can engage with the regulatory network of Bcl-2 family members to process intrinsic apoptotic signaling.

Keywords apoptosis      BH3 domain      Bop     
Corresponding Author(s): Pan Lei,Email:panlei@moon.ibp.ac.cn; Tang Hong,Email:tanghong@moon.ibp.ac.cn   
Issue Date: 01 October 2012
 Cite this article:   
Xuemei Li,Youli Xu,Quan Chen, et al. Human Bop is a novel BH3-only member of the Bcl-2 protein family[J]. Prot Cell, 2012, 3(10): 790-801.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-012-2069-7
https://academic.hep.com.cn/pac/EN/Y2012/V3/I10/790
1 Banerjee, J., and Ghosh, S. (2004). Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem Biophys Res Commun 323, 310-314 .
doi: 10.1016/j.bbrc.2004.08.094
2 Chen, L., Willis, S.N., Wei, A., Smith, B.J., Fletcher, J.I., Hinds, M.G., Colman, P.M., Day, C.L., Adams, J.M., and Huang, D.C. (2005). Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17, 393-403 .
doi: 10.1016/j.molcel.2004.12.030
3 Cheng, E.H., Sheiko, T.V., Fisher, J.K., Craigen, W.J., and Korsmeyer, S.J. (2003). VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513-517 .
doi: 10.1126/science.1083995
4 Cory, S., and Adams, J.M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2, 647-656 .
doi: 10.1038/nrc883
5 Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem J 341 ( Pt 2), 233-249 .
doi: 10.1042/0264-6021:3410233
6 Crompton, M., Barksby, E., Johnson, N., and Capano, M. (2002). Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84, 143-152 .
doi: 10.1016/S0300-9084(02)01368-8
7 Danial, N.N., and Korsmeyer, S.J. (2004). Cell death: critical control points. Cell 116, 205-219 .
doi: 10.1016/S0092-8674(04)00046-7
8 Giam, M., Huang, D.C., and Bouillet, P. (2008). BH3-only proteins and their roles in programmed cell death. Oncogene 27Suppl 1, S128-136 .
doi: 10.1038/onc.2009.50
9 Haldar, S., Jena, N., and Croce, C.M. (1995). Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci U S A 92, 4507-4511 .
doi: 10.1073/pnas.92.10.4507
10 Happo, L., Strasser, A., and Cory, S. (2012). BH3-only proteins in apoptosis at a glance. J Cell Sci 125, 1081-1087 .
doi: 10.1242/jcs.090514
11 Hinds, M.G., and Day, C.L. (2005). Regulation of apoptosis: uncovering the binding determinants. Curr Opin Struct Biol 15, 690-699 .
doi: 10.1016/j.sbi.2005.10.003
12 Huang, D.C., and Strasser, A. (2000). BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839-842 .
doi: 10.1016/S0092-8674(00)00187-2
13 Jiang, X., and Wang, X. (2004). Cytochrome C-mediated apoptosis. Annu Rev Biochem 73, 87-106 .
doi: 10.1146/annurev.biochem.73.011303.073706
14 Jones, D.T. (1999). Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195-202 .
doi: 10.1006/jmbi.1999.3091
15 Kelekar, A., and Thompson, C.B. (1998). Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 8, 324-330 .
doi: 10.1016/S0962-8924(98)01321-X
16 Kim, H., Rafiuddin-Shah, M., Tu, H.C., Jeffers, J.R., Zambetti, G.P., Hsieh, J.J., and Cheng, E.H. (2006). Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8, 1348-1358 .
doi: 10.1038/ncb1499
17 Kuwana, T., Bouchier-Hayes, L., Chipuk, J.E., Bonzon, C., Sullivan, B.A., Green, D.R., and Newmeyer, D.D. (2005). BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17, 525-535 .
doi: 10.1016/j.molcel.2005.02.003
18 Leber, B., Geng, F., Kale, J., and Andrews, D.W. (2010). Drugs targeting Bcl-2 family members as an emerging strategy in cancer. Expert Rev Mol Med 12, e28.
doi: 10.1017/S1462399410001572
19 Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S., and Korsmeyer, S.J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192 .
doi: 10.1016/S1535-6108(02)00127-7
20 Liu, Y., Yang, Y., Ye, Y.C., Shi, Q.F., Chai, K., Tashiro, S., Onodera, S., and Ikejima, T. (2012). Activation of ERK-p53 and ERK-mediated phosphorylation of Bcl-2 are involved in autophagic cell death induced by the c-Met inhibitor SU11274 in human lung cancer A549 cells. J Pharmacol Sci 118, 423-432 .
doi: 10.1254/jphs.11181FP
21 Lomonosova, E., and Chinnadurai, G. (2008). BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27Suppl 1, S2-19 .
doi: 10.1038/onc.2009.39
22 Moldoveanu, T., Liu, Q., Tocilj, A., Watson, M., Shore, G., and Gehring, K. (2006). The X-ray structure of a BAK homodimer reveals an inhibitory zinc binding site. Mol Cell 24, 677-688 .
doi: 10.1016/j.molcel.2006.10.014
23 Petros, A.M., Olejniczak, E.T., and Fesik, S.W. (2004). Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644, 83-94 .
doi: 10.1016/j.bbamcr.2003.08.012
24 Poommipanit, P.B., Chen, B., and Oltvai, Z.N. (1999). Interleukin-3 induces the phosphorylation of a distinct fraction of bcl-2. J Biol Chem 274, 1033-1039 .
doi: 10.1074/jbc.274.2.1033
25 Shamas-Din, A., Brahmbhatt, H., Leber, B., and Andrews, D.W. (2011). BH3-only proteins: Orchestrators of apoptosis. Biochim Biophys Acta 1813, 508-520 .
doi: 10.1016/j.bbamcr.2010.11.024
26 Shi, Y., Chen, J., Weng, C., Chen, R., Zheng, Y., Chen, Q., and Tang, H. (2003). Identification of the protein-protein contact site and interaction mode of human VDAC1 with Bcl-2 family proteins. Biochem Biophys Res Commun 305, 989-996 .
doi: 10.1016/S0006-291X(03)00871-4
27 Shimizu, S., Ide, T., Yanagida, T., and Tsujimoto, Y. (2000). Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275, 12321-12325 .
doi: 10.1074/jbc.275.16.12321
28 Shimizu, S., Matsuoka, Y., Shinohara, Y., Yoneda, Y., and Tsujimoto, Y. (2001). Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 152, 237-250 .
doi: 10.1083/jcb.152.2.237
29 Shimizu, S., Narita, M., and Tsujimoto, Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-487 .
doi: 10.1038/20959
30 Srivastava, R.K., Srivastava, A.R., Korsmeyer, S.J., Nesterova, M., Cho-Chung, Y.S., and Longo, D.L. (1998). Involvement of microtubules in the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol Cell Biol 18, 3509-3517 .
31 Strausberg, R.L., Feingold, E.A., Grouse, L.H., Derge, J.G., Klausner, R.D., Collins, F.S., Wagner, L., Shenmen, C.M., Schuler, G.D., Altschul, S.F.,. (2002). Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99, 16899-16903 .
doi: 10.1073/pnas.242603899
32 Sugiyama, T., Shimizu, S., Matsuoka, Y., Yoneda, Y., and Tsujimoto, Y. (2002). Activation of mitochondrial voltage-dependent anion channel by apro-apoptotic BH3-only protein Bim. Oncogene 21, 4944-4956 .
doi: 10.1038/sj.onc.1205621
33 Suzuki, M., Youle, R.J., and Tjandra, N. (2000). Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645-654 .
doi: 10.1016/S0092-8674(00)00167-7
34 Taylor, J.W., Ott, J., and Eckstein, F.(1985). The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res 13, 8765-8785 .
doi: 10.1093/nar/13.24.8765
35 Tsujimoto, Y., and Shimizu, S. (2002). The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84, 187-193 .
doi: 10.1016/S0300-9084(02)01370-6
36 van Delft, M.F., and Huang, D.C. (2006). How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res 16, 203-213 .
doi: 10.1038/sj.cr.7310028
37 Vo, T.T., and Letai, A. (2010). BH3-only proteins and their effects on cancer. Adv Exp Med Biol 687, 49-63 .
doi: 10.1007/978-1-4419-6706-0_3
38 Weng, C., Li, Y., Xu, D., Shi, Y., and Tang, H. (2005). Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J Biol Chem 280, 10491-10500 .
doi: 10.1074/jbc.M412819200
39 Willis, S.N., and Adams, J.M. (2005). Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17, 617-625 .
doi: 10.1016/j.ceb.2005.10.001
40 Willis, S.N., Chen, L., Dewson, G., Wei, A., Naik, E., Fletcher, J.I., Adams, J.M., and Huang, D.C. (2005). Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19, 1294-1305 .
doi: 10.1101/gad.1304105
41 Wong, W.W., and Puthalakath, H. (2008). Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life 60, 390-397 .
doi: 10.1002/iub.51
42 Yamamoto, K., Ichijo, H., and Korsmeyer, S.J. (1999). BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19, 8469-8478 .
43 Zheng, Y., Shi, Y., Tian, C., Jiang, C., Jin, H., Chen, J., Almasan, A., Tang, H., and Chen, Q. (2004). Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene 23, 1239-1247 .
doi: 10.1038/sj.onc.1207205
44 Zong, W.X., Lindsten, T., Ross, A.J., MacGregor, G.R., and Thompson, C.B. (2001). BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15, 1481-1486 .
doi: 10.1101/gad.897601
[1] Qiang Hong, Cong Li, Ruhong Ying, Heming Lin, Jingqiu Li, Yu Zhao, Hanhua Cheng, Rongjia Zhou. Loss-of-function of sox3 causes follicle development retardation and reduces fecundity in zebrafish[J]. Protein Cell, 2019, 10(5): 347-364.
[2] Yuanlong Ge, Shu Wu, Zepeng Zhang, Xiaocui Li, Feng Li, Siyu Yan, Haiying Liu, Junjiu Huang, Yong Zhao. Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers[J]. Protein Cell, 2019, 10(11): 808-824.
[3] Ping Wang, Zunpeng Liu, Xiaoqian Zhang, Jingyi Li, Liang Sun, Zhenyu Ju, Jian Li, Piu Chan, Guang-Hui Liu, Weiqi Zhang, Moshi Song, Jing Qu. CRISPR/Cas9-mediated gene knockout reveals a guardian role of NF-κB/RelA in maintaining the homeostasis of human vascular cells[J]. Protein Cell, 2018, 9(11): 945-965.
[4] Haiyang Zhang,Jingjing Duan,Yanjun Qu,Ting Deng,Rui Liu,Le Zhang,Ming Bai,Jialu Li,Tao Ning,Shaohua Ge,Xia Wang,Zhenzhen Wang,Qian Fan,Hongli Li,Guoguang Ying,Dingzhi Huang,Yi Ba. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer[J]. Protein Cell, 2016, 7(2): 141-151.
[5] Qian Fan,Xiangrui Meng,Hongwei Liang,Huilai Zhang,Xianming Liu,Lanfang Li,Wei Li,Wu Sun,Haiyang Zhang,Ke Zen,Chen-Yu Zhang,Zhen Zhou,Xi Chen,Yi Ba. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma[J]. Protein Cell, 2016, 7(12): 899-912.
[6] Chao Lu,Yang Yang,Ran Zhao,Bingxuan Hua,Chen Xu,Zuoqin Yan,Ning Sun,Ruizhe Qian. Role of circadian gene Clock during differentiation of mouse pluripotent stem cells[J]. Protein Cell, 2016, 7(11): 820-832.
[7] Fan Chen,Jiebo Chen,Jiacheng Lin,Anton V. Cheltsov,Lin Xu,Ya Chen,Zhiping Zeng,Liqun Chen,Mingfeng Huang,Mengjie Hu,Xiaohong Ye,Yuqi Zhou,Guanghui Wang,Ying Su,Long Zhang,Fangfang Zhou,Xiao-kun Zhang,Hu Zhou. NSC-640358 acts as RXRα ligand to promote TNFα-mediated apoptosis of cancer cell[J]. Protein Cell, 2015, 6(9): 654-666.
[8] Xiangxuan Zhao,Yong Liu,Lei Du,Leya He,Biyun Ni,Junbo Hu,Dahai Zhu,Quan Chen. Threonine 32 (Thr32) of FoxO3 is critical for TGF-β-induced apoptosis via Bim in hepatocarcinoma cells[J]. Protein Cell, 2015, 6(2): 127-138.
[9] Anna Gortat,Mónica Sancho,Laura Mondragón,Àgel Messeguer,Enrique Pérez-Payá,Mar Orzáez. Apaf1 inhibition promotes cell recovery from apoptosis[J]. Protein Cell, 2015, 6(11): 833-843.
[10] Youguang Luo,Dengwen Li,Jie Ran,Bing Yan,Jie Chen,Xin Dong,Zhu Liu,Ruming Liu,Jun Zhou,Min Liu. End-binding protein 1 stimulates paclitaxel sensitivity in breast cancer by promoting its actions toward microtubule assembly and stability[J]. Protein Cell, 2014, 5(6): 469-479.
[11] Xiao-Xi Guo,Yang Li,Chao Sun,Dan Jiang,Ying-Jia Lin,Feng-Xie Jin,Seung-Ki Lee,Ying-Hua Jin. p53-dependent Fas expression is critical for Ginsenoside Rh2 triggered caspase-8 activation in HeLa cells[J]. Protein Cell, 2014, 5(3): 224-234.
[12] Guanghua Xu,Jing Wang,George Fu Gao,Cui Hua Liu. Insights into battles between Mycobacterium tuberculosis and macrophages[J]. Protein Cell, 2014, 5(10): 728-736.
[13] Yi Sun, Hua Li. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase[J]. Prot Cell, 2013, 4(2): 103-116.
[14] Shuang Sha, Honglin Jin, Xiao Li, Jie Yang, Ruiting Ai, Jinling Lu. Comparison of caspase-3 activation in tumor cells upon treatment of chemotherapeutic drugs using capillary electrophoresis[J]. Prot Cell, 2012, 3(5): 392-399.
[15] Yide Mei, Mian Wu. Multifaceted functions of Siva-1: more than an Indian God of Destruction[J]. Prot Cell, 2012, 3(2): 117-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed