Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (4) : 255-272    https://doi.org/10.1007/s13238-017-0382-x
REVIEW
Reversible phosphorylation of the 26S proteasome
Xing Guo1(), Xiuliang Huang2, Mark J. Chen3
1. The Life Sciences Institute of Zhejiang University, Hangzhou 310058, China
2. Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
3. Department of Bioinformatics and Computational Biology, Genentech Inc., South San Francisco, CA 94080, USA
 Download: PDF(1426 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The 26S proteasome at the center of the ubiquitinproteasome system (UPS) is essential for virtually all cellular processes of eukaryotes. A common misconception about the proteasome is that, once made, it remains as a static and uniform complex with spontaneous and constitutive activity for protein degradation. Recent discoveries have provided compelling evidence to support the exact opposite insomuch as the 26S proteasome undergoes dynamic and reversible phosphorylation under a variety of physiopathological conditions. In this review, we summarize the history and current understanding of proteasome phosphorylation, and advocate the idea of targeting proteasome kinases/phosphatases as a new strategy for clinical interventions of several human diseases.

Keywords proteasome      phosphorylation      kinase      phosphatase      protein degradation     
Corresponding Author(s): Xing Guo   
Issue Date: 19 May 2017
 Cite this article:   
Xing Guo,Xiuliang Huang,Mark J. Chen. Reversible phosphorylation of the 26S proteasome[J]. Protein Cell, 2017, 8(4): 255-272.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0382-x
https://academic.hep.com.cn/pac/EN/Y2017/V8/I4/255
1 AsaiM, TsukamotoO, MinaminoT, AsanumaH, FujitaM, AsanoY, TakahamaH, SasakiH, HigoS, AsakuraMet al. (2009) PKA rapidly enhances proteasome assembly and activity in in vivo canine hearts.J Mol Cell Cardiol46:452–462
https://doi.org/10.1016/j.yjmcc.2008.11.001
2 AsanoS, FukudaY, BeckF, AufderheideA, ForsterF, DanevR, BaumeisterW (2015) Proteasomes. A molecular census of 26S proteasomes in intact neurons.Science347:439–442
https://doi.org/10.1126/science.1261197
3 BaiY, LiJ, FangB, EdwardsA, ZhangG, BuiM, EschrichS, AltiokS, KoomenJ, HauraEB (2012) Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors.Cancer Res72:2501–2511
https://doi.org/10.1158/0008-5472.CAN-11-3015
4 Bardag-GorceF, VenkateshR, LiJ, FrenchBA, FrenchSW (2004) Hyperphosphorylation of rat liver proteasome subunits: the effects of ethanol and okadaic acid are compared.Life Sci75:585–597
https://doi.org/10.1016/j.lfs.2003.12.027
5 BeausoleilSA, VillenJ, GerberSA, RushJ, GygiSP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization.Nat Biotechnol24: 1285–1292
https://doi.org/10.1038/nbt1240
6 BeckerW (2012) Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control.Cell Cycle11:3389–3394
https://doi.org/10.4161/cc.21404
7 BenedictCM, ClawsonGA (1996) Nuclear multicatalytic proteinase subunit RRC3 is important for growth regulation in hepatocytes.Biochemistry35:11612–11621
https://doi.org/10.1021/bi960889p
8 BianY, LiL, DongM, LiuX, KanekoT, ChengK, LiuH, VossC, CaoX, WangYet al. (2016) Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder.Nat Chem Biol12:959–966
https://doi.org/10.1038/nchembio.2178
9 BingolB, SchumanEM (2006) Activity-dependent dynamics and sequestration of proteasomes in dendritic spines.Nature441:1144–1148
https://doi.org/10.1038/nature04769
10 BingolB, ShengM (2011) Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease.Neuron69:22–32
https://doi.org/10.1016/j.neuron.2010.11.006
11 BingolB, WangC-F, ArnottD, ChengD, PengJ, ShengM (2010) Autophosphorylated CaMKIIα acts as a Scaffold to recruit proteasomes to dendritic spines.Cell140:567–578
https://doi.org/10.1016/j.cell.2010.01.024
12 BoseS, BrooksP, MasonGG, RivettAJ (2001) gamma-Interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation.Biochem J353:291–297
13 BoseS, StratfordFL, BroadfootKI, MasonGG, RivettAJ (2004) Phosphorylation of 20S proteasome alpha subunit C8 (alpha7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by gamma-interferon.Biochem J378:177–184
https://doi.org/10.1042/bj20031122
14 BrillLM, XiongW, LeeKB, FicarroSB, CrainA, XuY, TerskikhA, SnyderEY, DingS (2009) Phosphoproteomic analysis of human embryonic stem cells.Cell Stem Cell5:204–213
https://doi.org/10.1016/j.stem.2009.06.002
15 CastanoJG, MahilloE, AriztiP, ArribasJ (1996) Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis.Biochemistry35:3782–3789
https://doi.org/10.1021/bi952540s
16 ChenS, WuJ, LuY, MaYB, LeeBH, YuZ, OuyangQ, FinleyDJ, KirschnerMW, MaoY(2016) Structural basis for dynamic regulation of the human 26S proteasome.Proc Natl Acad Sci USA113:12991–12996
https://doi.org/10.1073/pnas.1614614113
17 ChouTF, DeshaiesRJ (2011) Quantitative cell-based protein degradation assays to identify and classify drugs that target the ubiquitin-proteasome system.J Biol Chem286:16546–16554
https://doi.org/10.1074/jbc.M110.215319
18 ChoudharyC, OlsenJV, BrandtsC, CoxJ, ReddyPN, BohmerFD, GerkeV, Schmidt-ArrasDE, BerdelWE, Muller-TidowCet al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes.Mol Cell36:326–339
https://doi.org/10.1016/j.molcel.2009.09.019
19 CuiZ, ScruggsSB, GildaJE, PingP, GomesAV (2014) Regulation of cardiac proteasomes by ubiquitination, SUMOylation, and beyond.J Mol Cell Cardiol71:32–42
https://doi.org/10.1016/j.yjmcc.2013.10.008
20 DephoureN, ZhouC, VillenJ, BeausoleilSA, BakalarskiCE, ElledgeSJ, GygiSP (2008) A quantitative atlas of mitotic phosphorylation.Proc Natl Acad Sci USA105:10762–10767
https://doi.org/10.1073/pnas.0805139105
21 DeverauxQ, JensenC, RechsteinerM (1995) Molecular cloning and expression of a 26 S protease subunit enriched in dileucine repeats.J Biol Chem270:23726–23729
https://doi.org/10.1074/jbc.270.40.23726
22 DjakovicSN, SchwarzLA, BarylkoB, DeMartinoGN, PatrickGN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II.J Biol Chem284:26655–26665
https://doi.org/10.1074/jbc.M109.021956
23 DjakovicSN, Marquez-LonaEM, JakawichSK, WrightR, ChuC, SuttonMA, PatrickGN (2012) Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons.J Neurosci32:5126–5131
https://doi.org/10.1523/JNEUROSCI.4427-11.2012
24 DjuranovicS, HartmannMD, HabeckM, UrsinusA, ZwicklP, MartinJ, LupasAN, ZethK (2009) Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases.Mol Cell34:580–590
https://doi.org/10.1016/j.molcel.2009.04.030
25 DrakeJM, GrahamNA, StoyanovaT, SedghiA, GoldsteinAS, CaiH, SmithDA, ZhangH, KomisopoulouE, HuangJet al. (2012) Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression.Proc Natl Acad Sci USA109:1643–1648
https://doi.org/10.1073/pnas.1120985109
26 DullaK, DaubH, HornbergerR, NiggEA, KornerR (2010) Quantitative site-specific phosphorylation dynamics of human protein kinases during mitotic progression.Mol Cell Proteomics9:1167–1181
https://doi.org/10.1074/mcp.M900335-MCP200
27 EangR, Girbal-NeuhauserE, XuB, GairinJE (2009) Characterization and differential expression of a newly identified phosphorylated isoform of the human 20S proteasome beta7 subunit in tumor vs. normal cell lines.Fundam Clin Pharmacol23:215–224
https://doi.org/10.1111/j.1472-8206.2009.00665.x
28 EhlersMD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system.Nat Neurosci6:231–242
https://doi.org/10.1038/nn1013
29 EhlingerA, WaltersKJ (2013) Structural insights into proteasome activationby the19Sregulatory particle.Biochemistry52:3618–3628
https://doi.org/10.1021/bi400417a
30 FengY, LongoDL, FerrisDK (2001) Polo-like kinase interacts with proteasomes and regulates their activity.Cell Growth Differ12:29–37
31 FinleyD (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome.Annu Rev Biochem78:477–513
https://doi.org/10.1146/annurev.biochem.78.081507.101607
32 FinleyD, ChenX, WaltersKJ (2016) Gates, channels, and switches: elements of the proteasome machine.Trends Biochem Sci41:77–93
https://doi.org/10.1016/j.tibs.2015.10.009
33 FranchinC, CesaroL, SalviM, MillioniR, IoriE, CifaniP, JamesP, ArrigoniG, PinnaL (2015) Quantitative analysis of a phosphoproteome readily altered by the protein kinase CK2 inhibitor quinalizarin in HEK-293T cells.Biochim Biophys Acta1854:609–623
https://doi.org/10.1016/j.bbapap.2014.09.017
34 FuhsSR, MeisenhelderJ, AslanianA, MaL, ZagorskaA, StankovaM, BinnieA, Al-ObeidiF, MaugerJ, LemkeGet al. (2015) Monoclonal 1- and 3-phosphohistidine antibodies: new tools to study histidine phosphorylation.Cell162:198–210
https://doi.org/10.1016/j.cell.2015.05.046
35 FunakoshiM, TomkoRJ Jr, KobayashiH, HochstrasserM (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base.Cell137:887–899
https://doi.org/10.1016/j.cell.2009.04.061
36 GerschM, HacklMW, DubiellaC, DobrinevskiA, GrollM, SieberSA (2015) A mass spectrometry platform for a streamlined investigation of proteasome integrity, posttranslational modifications, and inhibitor binding.Chem Biol22:404–411
https://doi.org/10.1016/j.chembiol.2015.01.004
37 GilletteTG, HillJA (2013) PKG primes the proteasome.Circulation128:325–327
https://doi.org/10.1161/CIRCULATIONAHA.113.003955
38 GnadF, YoungA, ZhouW, LyleK, OngCC, StokesMP, SilvaJC, BelvinM, FriedmanLS, KoeppenHet al. (2013) Systems-wide analysis of K-Ras, Cdc42, and PAK4 signaling by quantitative phosphoproteomics.Mol Cell Proteomics12:2070–2080
https://doi.org/10.1074/mcp.M112.027052
39 GoswamiT, LiX, SmithAM, LuderowskiEM, VincentJJ, RushJ, BallifBA (2012) Comparative phosphoproteomic analysis of neonatal and adult murine brain.Proteomics12:2185–2189
https://doi.org/10.1002/pmic.201200003
40 GrollM, DitzelL, LoweJ, StockD, BochtlerM, BartunikHD, HuberR (1997) Structure of 20S proteasome from yeast at 2.4 A resolution.Nature386:463–471
https://doi.org/10.1038/386463a0
41 Grosstessner-HainK, HegemannB, NovatchkovaM, RamesederJ, JoughinBA, HudeczO, RoitingerE, PichlerP, KrautN, YaffeMBet al. (2011) Quantitative phospho-proteomics to investigate the polo-like kinase 1-dependent phospho-proteome.Mol Cell Proteomics10(M111):008540
https://doi.org/10.1074/mcp.m111.008540
42 GuTL, GossVL, ReevesC, PopovaL, NardoneJ, MacneillJ, WaltersDK, WangY, RushJ, CombMJet al. (2006) Phosphotyrosine profiling identifies the KG-1 cell line as a model for the study of FGFR1 fusions in acute myeloid leukemia.Blood108:4202–4204
https://doi.org/10.1182/blood-2006-06-026666
43 GuoX, DixonJE (2016) The 26S proteasome: a cell cycle regulator regulated by cell cycle.Cell Cycle15:875–876
https://doi.org/10.1080/15384101.2016.1151728
44 GuoA, VillenJ, KornhauserJ, LeeKA, StokesMP, RikovaK, PossematoA, NardoneJ, InnocentiG, WetzelRet al. (2008) Signaling networks assembled by oncogenic EGFR and c-Met.Proc Natl Acad Sci USA105:692–697
https://doi.org/10.1073/pnas.0707270105
45 GuoX, EngelJL, XiaoJ, TagliabracciVS, WangX, HuangL, DixonJE (2011) UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity.Proc Natl Acad Sci USA108:18649–18654
https://doi.org/10.1073/pnas.1113170108
46 GuoX, WangX, WangZ, BanerjeeS, YangJ, HuangL, DixonJE (2016) Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis.Nat Cell Biol18:202–212
https://doi.org/10.1038/ncb3289
47 HaassC, KloetzelPM (1989) The Drosophila proteasome undergoes changes in its subunit pattern during development.Exp Cell Res180:243–252
https://doi.org/10.1016/0014-4827(89)90228-0
48 HamiltonAM, OhWC, Vega-RamirezH, SteinIS, HellJW, PatrickGN, ZitoK (2012) Activity-dependent growth of new dendritic spines is regulated by the proteasome.Neuron74:1023–1030
https://doi.org/10.1016/j.neuron.2012.04.031
49 HeY, GuoX, YuZH, WuL, GunawanAM, ZhangY, DixonJE, ZhangZY (2015) A potent and selective inhibitor for the UBLCP1 proteasome phosphatase.Bioorg Med Chem23:2798–2809
https://doi.org/10.1016/j.bmc.2015.03.066
50 HoellerD, DikicI (2009) Targeting the ubiquitin system in cancer therapy.Nature458:438–444
https://doi.org/10.1038/nature07960
51 HoltLJ, TuchBB, VillenJ, JohnsonAD, GygiSP, MorganDO (2009) Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.Science325:1682–1686
https://doi.org/10.1126/science.1172867
52 HoughR, PrattG, RechsteinerM (1987) Purification of two high molecular weight proteases from rabbit reticulocyte lysate.J Biol Chem262:8303–8313
53 HowardCJ, Hanson-SmithV, KennedyKJ, MillerCJ, LouHJ, JohnsonAD, TurkBE, HoltLJ (2014) Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity.Elife3:e04126
https://doi.org/10.7554/elife.04126
54 HuangX, LuanB, WuJ, ShiY (2016) An atomic structure of the human 26S proteasome.Nat Struct Mol Biol23:778–785
https://doi.org/10.1038/nsmb.3273
55 HuibregtseJM, MatouschekA (2016) Ramping up degradation for proliferation.Nat Cell Biol18:141–142
https://doi.org/10.1038/ncb3306
56 HunterT, SeftonBM (1980) Transforming gene product of Rous sarcoma virus phosphorylates tyrosine.Proc Natl Acad Sci USA77:1311–1315
https://doi.org/10.1073/pnas.77.3.1311
57 HusnjakK, ElsasserS, ZhangN, ChenX, RandlesL, ShiY, HofmannK, WaltersKJ, FinleyD, DikicI (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor.Nature453:481–488
https://doi.org/10.1038/nature06926
58 IliukAB, MartinVA, AlicieBM, GeahlenRL, TaoWA (2010) In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers.Mol Cell Proteomics9:2162–2172
https://doi.org/10.1074/mcp.M110.000091
59 ImamiK, SugiyamaN, ImamuraH, WakabayashiM, TomitaM, TaniguchiM, UenoT, ToiM, IshihamaY (2012) Temporal profiling of lapatinib-suppressed phosphorylation signals in EGFR/HER2 pathways.Mol Cell Proteomics11:1741–1757
https://doi.org/10.1074/mcp.M112.019919
60 JaromeTJ, KwapisJL, RuenzelWL, HelmstetterFJ (2013) CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories.Front Behav Neurosci7:115
https://doi.org/10.3389/fnbeh.2013.00115
61 JaromeTJ, FerraraNC, KwapisJL, HelmstetterFJ (2016) CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval.Neurobiol Learn Mem128:103–109
https://doi.org/10.1016/j.nlm.2016.01.001
62 JohnsonH, Del RosarioAM, BrysonBD, SchroederMA, SarkariaJN, WhiteFM (2012) Molecular characterization of EGFR and EGFRvIII signaling networks in human glioblastoma tumor xenografts.Mol Cell Proteomics11:1724–1740
https://doi.org/10.1074/mcp.M112.019984
63 KanekoT, HamazakiJ, IemuraS, SasakiK, FuruyamaK, NatsumeT, TanakaK, MurataS (2009) Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones.Cell137:914–925
https://doi.org/10.1016/j.cell.2009.05.008
64 KettenbachAN, SchweppeDK, FahertyBK, PechenickD, PletnevAA, GerberSA (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells.Sci Signal4:rs5
https://doi.org/10.1126/scisignal.2001497
65 KikuchiJ, IwafuneY, AkiyamaT, OkayamaA, NakamuraH, ArakawaN, KimuraY, HiranoH (2010) Co- and post-translational modifications of the 26S proteasome in yeast.Proteomics10:2769–2779
https://doi.org/10.1002/pmic.200900283
66 KimBG, LeeJH, AhnJM, ParkSK, ChoJH, HwangD, YooJS, YatesJR III, RyooHM, ChoJY(2009) ‘Two-stage doubletechnique hybrid (TSDTH)’ identification strategy for the analysis of BMP2-induced transdifferentiation of premyoblast C2C12 cells to osteoblast.J Proteome Res8:4441–4454
https://doi.org/10.1021/pr900231a
67 KloetzelPM (2001) Antigen processing by the proteasome.Nat Rev Mol Cell Biol2:179–187
https://doi.org/10.1038/35056572
68 LeeBH, LeeMJ, ParkS, OhDC, ElsasserS, ChenPC, GartnerC, DimovaN, HannaJ, GygiSPet al. (2010a) Enhancement of proteasome activity by a small-molecule inhibitor of USP14.Nature467:179–184
https://doi.org/10.1038/nature09299
69 LeeSH, ParkY, YoonSK, YoonJB (2010b) Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation.J Biol Chem285:41280–41289
https://doi.org/10.1074/jbc.M110.182188
70 LiN, ZhangZ, ZhangW, WeiQ (2011) Calcineurin B subunit interacts with proteasome subunit alpha type 7 and represses hypoxia-inducible factor-1alpha activity via the proteasome pathway.Biochem Biophys Res Commun405:468–472
https://doi.org/10.1016/j.bbrc.2011.01.055
71 LiD, DongQ, TaoQ, GuJ, CuiY, JiangX, YuanJ, LiW, XuR, JinYet al. (2015) c-Abl regulates proteasome abundance by controlling the ubiquitin-proteasomal degradation of PSMA7 subunit.Cell Rep10:484–496
https://doi.org/10.1016/j.celrep.2014.12.044
72 LiJ, WilkinsonB, ClementelVA, HouJ, O’DellTJ, CobaMP (2016) Long-term potentiation modulates synaptic phosphorylation networks and reshapes the structure of the postsynaptic interactome.Sci Signal9:rs8
https://doi.org/10.1126/scisignal.aaf6716
73 LinJT, ChangWC, ChenHM, LaiHL, ChenCY, TaoMH, ChernY (2013) Regulation of feedback between protein kinase A and the proteasome system worsens Huntington’s disease.Mol Cell Biol33:1073–1084
https://doi.org/10.1128/MCB.01434-12
74 LiuX, HuangW, LiC, LiP, YuanJ, LiX, QiuXB, MaQ, CaoC(2006) Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation.Mol Cell22:317–327
https://doi.org/10.1016/j.molcel.2006.04.007
75 LivnehI, Cohen-KaplanV, Cohen-RosenzweigC, AvniN, CiechanoverA (2016) The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death.Cell Res26:869–885
https://doi.org/10.1038/cr.2016.86
76 LokireddyS, KukushkinNV, GoldbergAL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins.Proc Natl Acad Sci USA112:E7176–7185
https://doi.org/10.1073/pnas.1522332112
77 LoweryDM, ClauserKR, HjerrildM, LimD, AlexanderJ, KishiK, OngSE, GammeltoftS, CarrSA, YaffeMB (2007) Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate.Embo J26:2262–2273
https://doi.org/10.1038/sj.emboj.7601683
78 LuH, ZongC, WangY, YoungGW, DengN, SoudaP, LiX, WhiteleggeJ, DrewsO, YangPYet al. (2008) Revealing the dynamics of the 20 S proteasome phosphoproteome: a combined CID and electron transfer dissociation approach.Mol Cell Proteomics7:2073–2089
https://doi.org/10.1074/mcp.M800064-MCP200
79 LuY, LeeBH, KingRW, FinleyD, KirschnerMW (2015) Substrate degradation by the proteasome: a single-molecule kinetic analysis.Science348:1250834
https://doi.org/10.1126/science.1250834
80 LudemannR, LereaKM, EtlingerJD (1993) Copurification of casein kinase II with 20 S proteasomes and phosphorylation of a 30-kDa proteasome subunit.J Biol Chem268:17413–17417
81 LundbyA, AndersenMN, SteffensenAB, HornH, KelstrupCD, FrancavillaC, JensenLJ, SchmittN, ThomsenMB, OlsenJV (2013) In vivo phosphoproteomics analysis reveals the cardiac targets of beta-adrenergic receptor signaling.Sci Signal6:rs11
https://doi.org/10.1126/scisignal.2003506
82 LuoW, SlebosRJ, HillS, LiM, BrabekJ, AmanchyR, ChaerkadyR, PandeyA, HamAJ, HanksSK (2008) Global impact of oncogenic Src on a phosphotyrosine proteome.J Proteome Res7:3447–3460
https://doi.org/10.1021/pr800187n
83 ManningG, WhyteDB, MartinezR, HunterT, SudarsanamS (2002) The protein kinase complement of the human genome.Science298:1912–1934
https://doi.org/10.1126/science.1075762
84 MarambaudP, WilkS, CheclerF (1996) Protein kinase A phosphorylation of the proteasome: a contribution to the alpha-secretase pathway in human cells.J Neurochem67:2616–2619
https://doi.org/10.1046/j.1471-4159.1996.67062616.x
85 MasonGG, HendilKB, RivettAJ (1996) Phosphorylation of proteasomes in mammalian cells. Identification of two phosphorylated subunits and the effect of phosphorylation on activity.Eur J Biochem238:453–462
https://doi.org/10.1111/j.1432-1033.1996.0453z.x
86 MasonGG, MurrayRZ, PappinD, RivettAJ (1998) Phosphorylation of ATPase subunits of the 26S proteasome.FEBS Lett430: 269–274
https://doi.org/10.1016/S0014-5793(98)00676-0
87 MatsuokaS, BallifBA, SmogorzewskaA, McDonaldER 3rd, HurovKE, LuoJ, BakalarskiCE, ZhaoZ, SoliminiN, LerenthalYet al. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage.Science316:1160–1166
https://doi.org/10.1126/science.1140321
88 MatyskielaME, LanderGC, MartinA (2013) Conformational switching of the 26S proteasome enables substrate degradation.Nat Struct Mol Biol20:781–788
https://doi.org/10.1038/nsmb.2616
89 MayyaV, LundgrenDH, HwangSI, RezaulK, WuL, EngJK, RodionovV, HanDK (2009) Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions.Sci Signal2:ra46
https://doi.org/10.1126/scisignal.2000007
90 MertinsP, YangF, LiuT, ManiDR, PetyukVA, GilletteMA, ClauserKR, QiaoJW, GritsenkoMA, MooreRJet al. (2014) Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels.Mol Cell Proteomics13:1690–1704
https://doi.org/10.1074/mcp.M113.036392
91 MorenoD, KnechtE, ViolletB, SanzP (2008) A769662, a novel activator of AMP-activated protein kinase, inhibits non-proteolytic components of the 26S proteasome by an AMPK-independent mechanism.FEBS Lett582:2650–2654
https://doi.org/10.1016/j.febslet.2008.06.044
92 MurataS, SasakiK, KishimotoT, NiwaS, HayashiH, TakahamaY, TanakaK (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes.Science316:1349–1353
https://doi.org/10.1126/science.1141915
93 MurataS, YashirodaH, TanakaK (2009) Molecular mechanisms of proteasome assembly.Nat Rev Mol Cell Biol10:104–115
https://doi.org/10.1038/nrm2630
94 MurrayPF, PardoPS, ZeladaAM, PasseronS (2002) In vivo and in vitro phosphorylation of Candida albicans 20S proteasome.Arch Biochem Biophys404:116–125
https://doi.org/10.1016/S0003-9861(02)00248-5
95 MyekuN, WangH, Figueiredo-PereiraME (2012) cAMP stimulates the ubiquitin/proteasome pathway in rat spinal cord neurons.Neurosci Lett527:126–131
https://doi.org/10.1016/j.neulet.2012.08.051
96 MyekuN, ClellandCL, EmraniS, KukushkinNV, YuWH, GoldbergAL, DuffKE (2016) Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling.Nat Med22:46–53
https://doi.org/10.1038/nm.4011
97 NaganoK, ShinkawaT, MutohH, KondohO, MorimotoS, InomataN, AshiharaM, IshiiN, AokiY, HaramuraM (2009) Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment.Proteomics9:2861–2874
https://doi.org/10.1002/pmic.200800667
98 OlsenJV, BlagoevB, GnadF, MacekB, KumarC, MortensenP, MannM (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks.Cell127:635–648
https://doi.org/10.1016/j.cell.2006.09.026
99 OlsenJV, VermeulenM, SantamariaA, KumarC, MillerML, JensenLJ, GnadF, CoxJ, JensenTS, NiggEAet al. (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis.Sci Signal3:ra3
https://doi.org/10.1126/scisignal.2000475
100 PackCG, YukiiH, Toh-eA, KudoT, TsuchiyaH, KaihoA, SakataE, MurataS, YokosawaH, SakoYet al. (2014) Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome.Nat Commun5:3396
https://doi.org/10.1038/ncomms4396
101 PanC, OlsenJV, DaubH, MannM (2009) Global effects of kinase inhibitors on signaling networks revealed by quantitative phosphoproteomics.Mol Cell Proteomics8:2796–2808
https://doi.org/10.1074/mcp.M900285-MCP200
102 PardoPS, MurrayPF,WalzK, FrancoL, PasseronS(1998) In vivo and in vitro phosphorylation of the alpha 7/PRS1 subunit of Saccharomyces cerevisiae 20 S proteasome: in vitro phosphorylation by protein kinase CK2 is absolutely dependent on polylysine.Arch Biochem Biophys349:397–401
https://doi.org/10.1006/abbi.1997.0466
103 ParkS, RoelofsJ, KimW, RobertJ, SchmidtM, GygiSP, FinleyD (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini.Nature459:866–870
https://doi.org/10.1038/nature08065
104 PereiraME, WilkS (1990) Phosphorylation of the multicatalytic proteinase complex from bovine pituitaries by a copurifying cAMP-dependent protein kinase.Arch Biochem Biophys283:68–74
https://doi.org/10.1016/0003-9861(90)90613-4
105 PethA, KukushkinN, BosseM, GoldbergAL (2013) Ubiquitinated proteins activate the proteasomal ATPases by binding to Usp14 or Uch37 homologs.J Biol Chem288:7781–7790
https://doi.org/10.1074/jbc.M112.441907
106 PetroccaF, AltschulerG, TanSM, MendilloML, YanH, JerryDJ, KungAL, HideW, InceTA, LiebermanJ (2013) A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells.Cancer Cell24:182–196
https://doi.org/10.1016/j.ccr.2013.07.008
107 RablJ, SmithDM, YuY, ChangSC, GoldbergAL, ChengY (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases.Mol Cell30:360–368
https://doi.org/10.1016/j.molcel.2008.03.004
108 RainerPP, KassDA (2016) Old dog, new tricks: novel cardiac targets and stress regulation by protein kinase G.Cardiovasc Res111:154–162
https://doi.org/10.1093/cvr/cvw107
109 RanekMJ, TerpstraEJ, LiJ, KassDA, WangX (2013) Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins.Circulation128:365–376
https://doi.org/10.1161/CIRCULATIONAHA.113.001971
110 RigboltKT, ProkhorovaTA, AkimovV, HenningsenJ, JohansenPT, KratchmarovaI, KassemM, MannM, OlsenJV, BlagoevB (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation.Sci Signal4:rs3
https://doi.org/10.1126/scisignal.2001570
111 RikovaK, GuoA, ZengQ, PossematoA, YuJ, HaackH, NardoneJ, LeeK, ReevesC, LiYet al. (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.Cell131:1190–1203
https://doi.org/10.1016/j.cell.2007.11.025
112 RivettJA, BoseS, BrooksP, BroadfootKI (2001) Regulation of proteasome complexes by γ-interferon and phosphorylation.Biochimie83:363–366
https://doi.org/10.1016/S0300-9084(01)01249-4
113 RoelofsJ, ParkS, HaasW, TianG, McAllisterFE, HuoY, LeeBH, ZhangF, ShiY, GygiSPet al. (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly.Nature459:861–865
https://doi.org/10.1038/nature08063
114 RuperezP, Gago-MartinezA, BurlingameAL, Oses-PrietoJA (2012) Quantitative phosphoproteomic analysis reveals a role for serine and threonine kinases in the cytoskeletal reorganization in early T cell receptor activation in human primary T cells.Mol Cell Proteomics11:171–186
https://doi.org/10.1074/mcp.M112.017863
115 RushJ, MoritzA, LeeKA, GuoA, GossVL, SpekEJ, ZhangH, ZhaXM, PolakiewiczRD, CombMJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.Nat Biotechnol23:94–101
https://doi.org/10.1038/nbt1046
116 SantamariaA, WangB, EloweS, MalikR, ZhangF, BauerM, SchmidtA, SilljeHH, KornerR, NiggEA (2011) The Plk1-dependent phosphoproteome of the early mitotic spindle.Mol Cell Proteomics10(M110):004457
https://doi.org/10.1074/mcp.m110.004457
117 SantariusT, ShipleyJ, BrewerD, StrattonMR, CooperCS (2010) A census of amplified and overexpressed human cancer genes.Nat Rev Cancer10:59–64
https://doi.org/10.1038/nrc2771
118 SatohK, NishikawaT, YokosawaH, SawadaH (1995) Phosphorylation of proteasome substrate by a protein kinase associated with the 26 S proteasome is linked to the ATP-dependent proteolysis of the 26 S proteasome.Biochem Biophys Res Commun213:7–14
https://doi.org/10.1006/bbrc.1995.2091
119 SatohK, SasajimaH, NyoumuraK-I, YokosawaH, SawadaH (2000) Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit.Biochemistry40:314–319
https://doi.org/10.1021/bi001815n
120 SchmidtM, FinleyD (2014) Regulation of proteasome activity in health and disease.Biochim Biophys Acta1843:13–25
https://doi.org/10.1016/j.bbamcr.2013.08.012
121 SchmidtF, DahlmannB, HustoftHK, KoehlerCJ, StrozynskiM, KlossA, Zimny-ArndtU, JungblutPR, ThiedeB (2011) Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells.Amino Acids41:351–361
https://doi.org/10.1007/s00726-010-0575-6
122 SchreinerP, ChenX, HusnjakK, RandlesL, ZhangN, ElsasserS, FinleyD, DikicI, WaltersKJ, GrollM (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction.Nature453:548–552
https://doi.org/10.1038/nature06924
123 SchweitzerA, AufderheideA, RudackT, BeckF, PfeiferG, PlitzkoJM, SakataE, SchultenK, ForsterF, BaumeisterW (2016) Structure of the human 26S proteasome at a resolution of 3.9 A.Proc Natl Acad Sci USA113:7816–7821
https://doi.org/10.1073/pnas.1608050113
124 ScruggsSB, ZongNC, WangD, StefaniE, PingP (2012) Posttranslational modification of cardiac proteasomes: functional delineation enabled by proteomics.Am J Physiol Heart Circ Physiol303:H9–18
https://doi.org/10.1152/ajpheart.00189.2012
125 ShaZ, PethA, GoldbergAL (2011) Keeping proteasomes under control—a role for phosphorylation in the nucleus.Proc Natl Acad Sci USA108:18573–18574
https://doi.org/10.1073/pnas.1115315108
126 SharmaK, D’SouzaRC, TyanovaS, SchaabC, WisniewskiJR, CoxJ, MannM (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling.Cell Rep8:1583–1594
https://doi.org/10.1016/j.celrep.2014.07.036
127 ShiY, ChenX, ElsasserS, StocksBB, TianG, LeeBH, ShiY, ZhangN, de PootSA, TuebingFet al. (2016)Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome.Science.
https://doi.org/10.1126/science.aad9421
128 SmithDM, KafriG, ChengY, NgD, WalzT, GoldbergAL (2005) ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins.Mol Cell20:687–698
https://doi.org/10.1016/j.molcel.2005.10.019
129 SmithDM, ChangSC, ParkS, FinleyD, ChengY, GoldbergAL (2007) Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry.Mol Cell27:731–744
https://doi.org/10.1016/j.molcel.2007.06.033
130 StadtmuellerBM, HillCP (2011) Proteasome activators.Mol Cell41:8–19
https://doi.org/10.1016/j.molcel.2010.12.020
131 StokesMP, RushJ, MacneillJ, RenJM, SprottK, NardoneJ, YangV, BeausoleilSA, GygiSP, LivingstoneMet al. (2007) Profiling of UV-induced ATM/ATR signaling pathways.Proc Natl Acad Sci USA104:19855–19860
https://doi.org/10.1073/pnas.0707579104
132 TaipaleM, KrykbaevaI, KoevaM, KayatekinC, WestoverKD, KarrasGI, LindquistS (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition.Cell150:987–1001
https://doi.org/10.1016/j.cell.2012.06.047
133 TanCS, PasculescuA, LimWA, PawsonT, BaderGD, LindingR (2009) Positive selection of tyrosine loss in metazoan evolution.Science325:1686–1688
https://doi.org/10.1126/science.1174301
134 TrostM, SauvageauM, HeraultO, DelerisP, PomiesC, ChagraouiJ, MayotteN, MelocheS, SauvageauG, ThibaultP (2012) Posttranslational regulation of self-renewal capacity: insights from proteome and phosphoproteome analyses of stem cell leukemia.Blood120:e17–27
https://doi.org/10.1182/blood-2011-12-397844
135 TsaiCF, WangYT, YenHY, TsouCC, KuWC, LinPY, ChenHY, NesvizhskiiAI, IshihamaY, ChenYJ (2015) Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics.Nat Commun6:6622
https://doi.org/10.1038/ncomms7622
136 UechiH, HamazakiJ, MurataS (2014) Characterization of the testisspecific proteasome subunit alpha4s in mammals.J Biol Chem289:12365–12374
https://doi.org/10.1074/jbc.M114.558866
137 UmJW, ImE, ParkJ, OhY, MinB, LeeHJ, YoonJB, ChungKC (2010) ASK1 negatively regulates the 26 S proteasome.J Biol Chem285:36434–36446
https://doi.org/10.1074/jbc.M110.133777
138 UmedaM, ManabeY, UchimiyaH (1997) Phosphorylation of the C2 subunit of the proteasome in rice (Oryza sativa L.).FEBS Lett403:313–317
https://doi.org/10.1016/S0014-5793(97)00073-2
139 UnnoM, MizushimaT, MorimotoY, TomisugiY, TanakaK, YasuokaN, TsukiharaT (2002) The structure of the mammalian 20S proteasome at 2.75 A resolution.Structure10:609–618
https://doi.org/10.1016/S0969-2126(02)00748-7
140 UnverdorbenP, BeckF, SledzP, SchweitzerA, PfeiferG, PlitzkoJM, BaumeisterW, ForsterF (2014) Deep classification of a large cryo-EM dataset defines the conformational landscape of the 26S proteasome.Proc Natl Acad Sci USA111:5544–5549
https://doi.org/10.1073/pnas.1403409111
141 van de WeerdtBC, MedemaRH (2006) Polo-like kinases: a team in control of the division.Cell Cycle5:853–864
https://doi.org/10.4161/cc.5.8.2692
142 VermaR, AravindL, OaniaR, McDonaldWH, YatesJR 3rd, KooninEV, DeshaiesRJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome.Science298:611–615
https://doi.org/10.1126/science.1075898
143 VianaR, AguadoC, EstebanI, MorenoD, ViolletB, KnechtE, SanzP (2008) Role of AMP-activated protein kinase in autophagy and proteasome function.Biochem Biophys Res Commun369: 964–968
https://doi.org/10.1016/j.bbrc.2008.02.126
144 WangX, HuangL (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry.Mol Cell Proteomics7:46–57
https://doi.org/10.1074/mcp.M700261-MCP200
145 WangX, ChenCF, BakerPR, ChenPL, KaiserP, HuangL (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex.Biochemistry46:3553–3565
https://doi.org/10.1021/bi061994u
146 WangS, ZhangM, LiangB, XuJ, XieZ, LiuC, ViolletB, YanD, ZouMH (2010) AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes.Circ Res106: 1117–1128
https://doi.org/10.1161/CIRCRESAHA.109.212530
147 WangR, FerrarisJD, IzumiY, DmitrievaN, RamkissoonK, WangG, GucekM, BurgMB (2014) Global discovery of high-NaCl-induced changes of protein phosphorylation.Am J Physiol Cell Physiol307:C442–454
https://doi.org/10.1152/ajpcell.00379.2013
148 WaniPS, SuppahiaA, CapallaX, OndracekA, RoelofsJ (2016) Phosphorylation of the C-terminal tail of proteasome subunit alpha7 is required for binding of the proteasome quality control factor Ecm29.Sci Rep6:27873
https://doi.org/10.1038/srep27873
149 WaxmanL, FaganJM, GoldbergAL (1987) Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates.J Biol Chem262:2451–2457
150 WeintzG, OlsenJV, FruhaufK, NiedzielskaM, AmitI, JantschJ, MagesJ, FrechC, DolkenL, MannMet al. (2010) The phosphoproteome of toll-like receptor-activated macrophages.Mol Syst Biol6:371
https://doi.org/10.1038/msb.2010.29
151 WilliamsGR, BethardJR, BerkawMN, NagelAK, LuttrellLM, BallLE (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics.Methods92:36–50
https://doi.org/10.1016/j.ymeth.2015.06.022
152 WordenEJ, PadovaniC, MartinA (2014) Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation.Nat Struct Mol Biol21:220–227
https://doi.org/10.1038/nsmb.2771
153 WuR, HaasW, DephoureN, HuttlinEL, ZhaiB, SowaME, GygiSP (2011) A large-scale method to measure absolute protein phosphorylation stoichiometries.Nat Methods8:677–683
https://doi.org/10.1038/nmeth.1636
154 WuX, TianL, LiJ, ZhangY, HanV, LiY, XuX, LiH, ChenX, ChenJet al. (2012) Investigation of receptor interacting protein (RIP3)-dependent protein phosphorylation by quantitative phosphoproteomics.Mol Cell Proteomics11:1640–1651
https://doi.org/10.1074/mcp.M112.019091
155 XuJ, WangAH, Oses-PrietoJ, MakhijaniK, KatsunoY, PeiM, YanL, ZhengYG, BurlingameA, BrucknerKet al. (2013) Arginine methylation initiates BMP-induced Smad signaling.Mol Cell51:5–19
https://doi.org/10.1016/j.molcel.2013.05.004
156 YanoM, MoriS, KidoH (1999) Intrinsic nucleoside diphosphate kinase-like activity is a novel function of the 20 S proteasome.J Biol Chem274:34375–34382
https://doi.org/10.1074/jbc.274.48.34375
157 YaoT, CohenRE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome.Nature419:403–407
https://doi.org/10.1038/nature01071
158 YuY, SmithDM, KimHM, RodriguezV, GoldbergAL, ChengY (2010) Interactions of PAN’s C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions.Embo J29:692–702
https://doi.org/10.1038/emboj.2009.382
159 YuanF, MaY, YouP, LinW, LuH, YuY, WangX, JiangJ, YangP, MaQet al. (2013) A novel role of proteasomal beta1 subunit in tumorigenesis.Biosci Rep33:e0050
https://doi.org/10.1042/BSR20130013
160 ZhangW, WeiQ (2011) Calcineurin stimulates the expression of inflammatory factors in RAW 264.7 cells by interacting with proteasome subunit alpha type 6.Biochem Biophys Res Commun407:668–673
https://doi.org/10.1016/j.bbrc.2011.03.071
161 ZhangF, HuY, HuangP, TolemanCA, PatersonAJ, KudlowJE (2007a) Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6.J Biol Chem282:22460–22471
https://doi.org/10.1074/jbc.M702439200
162 ZhangF, PatersonAJ, HuangP, WangK, KudlowJE (2007b) Metabolic control of proteasome function.Physiology (Bethesda)22:373–379
https://doi.org/10.1152/physiol.00026.2007
163 ZongC, GomesAV, DrewsO, LiX, YoungGW, BerhaneB, QiaoX, FrenchSW, Bardag-GorceF, PingP (2006) Regulation of murine cardiac 20S proteasomes: role of associating partners.Circ Res99:372–380
https://doi.org/10.1161/01.RES.0000237389.40000.02
[1] Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
[2] Mi Li, Hong-Bing Shu. Dephosphorylation of cGAS by PPP6C impairs its substrate binding activity and innate antiviral response[J]. Protein Cell, 2020, 11(8): 584-599.
[3] Tong Li, Jinbo Han, Liangjie Jia, Xiao Hu, Liqun Chen, Yiguo Wang. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation[J]. Protein Cell, 2019, 10(8): 583-594.
[4] Wenzhi Li, Peizhe Wang, Bingjie Zhang, Jing Zhang, Jia Ming, Wei Xie, Jie Na. Differential regulation of H3S10 phosphorylation, mitosis progression and cell fate by Aurora Kinase B and C in mouse preimplantation embryos[J]. Protein Cell, 2017, 8(9): 662-674.
[5] Mengqi Lv,Chongyuan Wang,Fudong Li,Junhui Peng,Bin Wen,Qingguo Gong,Yunyu Shi,Yajun Tang. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy[J]. Protein Cell, 2017, 8(1): 25-38.
[6] Liang Chen,Zhimin Peng,Qinghang Meng,Maureen Mongan,Jingcai Wang,Maureen Sartor,Jing Chen,Liang Niu,Mario Medvedovic,Winston Kao,Ying Xia. Loss of IκB kinase β promotes myofibroblast transformation and senescence through activation of the ROS-TGFβ autocrine loop[J]. Protein Cell, 2016, 7(5): 338-350.
[7] Hong Zhou,Rongzhen Xu. Leukemia stem cells: the root of chronic myeloid leukemia[J]. Protein Cell, 2015, 6(6): 403-412.
[8] Ping Wang,Chang Sun,Tingting Zhu,Yanhui Xu. Structural insight into mechanisms for dynamic regulation of PKM2[J]. Protein Cell, 2015, 6(4): 275-287.
[9] Wenzhi Feng,Tong Wu,Xiaoyu Dan,Yuling Chen,Lin Li,She Chen,Di Miao,Haiteng Deng,Xinqi Gong,Li Yu. Phosphorylation of Atg31 is required for autophagy[J]. Protein Cell, 2015, 6(4): 288-296.
[10] Xiangxuan Zhao,Yong Liu,Lei Du,Leya He,Biyun Ni,Junbo Hu,Dahai Zhu,Quan Chen. Threonine 32 (Thr32) of FoxO3 is critical for TGF-β-induced apoptosis via Bim in hepatocarcinoma cells[J]. Protein Cell, 2015, 6(2): 127-138.
[11] Jiangmei Li,Lunfeng Zhang,Zhen Gao,Hua Kang,Guohua Rong,Xu Zhang,Chang Chen. Dual inhibition of EGFR at protein and activity level via combinatorial blocking of PI4KIIα as anti-tumor strategy[J]. Protein Cell, 2014, 5(6): 457-468.
[12] Hui Yang,Hongbing Wang. Signaling control of the constitutive androstane receptor (CAR)[J]. Protein Cell, 2014, 5(2): 113-123.
[13] Yinghao Zhang,Fang-Mei Chang,Jianjun Huang,Jacob J. Junco,Shivani K. Maffi,Hannah I. Pridgen,Gabriel Catano,Hong Dang,Xiang Ding,Fuquan Yang,Dae Joon Kim,Thomas J. Slaga,Rongqiao He,Sung-Jen Wei. DSSylation, a novel protein modification targets proteins induced by oxidative stress, and facilitates their degradation in cells[J]. Protein Cell, 2014, 5(2): 124-140.
[14] Fengfeng Niu, Heng Ru, Wei Ding, Songying Ouyang, Zhi-Jie Liu. Structural biology study of human TNF receptor associated factor 4 TRAF domain[J]. Prot Cell, 2013, 4(9): 687-694.
[15] Jiangtao Guo, Xuepeng Wei, Mei Li, Xiaowei Pan, Wenrui Chang, Zhenfeng Liu. Structure of the catalytic domain of a state transition kinase homolog from Micromonas algae[J]. Prot Cell, 2013, 4(8): 607-619.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed