|
|
|
Single-nucleus profiling unveils a geroprotective role of the FOXO3 in primate skeletal muscle aging |
Ying Jing1,4, Yuesheng Zuo4,6,8, Yang Yu10,12, Liang Sun11, Zhengrong Yu13, Shuai Ma2,5,7, Qian Zhao3,9, Guoqiang Sun1,4, Huifang Hu2,5,7, Jingyi Li2,5,7, Daoyuan Huang3,9, Lixiao Liu4,6,8, Jiaming Li4,6,8,14, Zijuan Xin2,5,7, Haoyan Huang3,9, Juan Carlos Izpisua Belmonte16, Weiqi Zhang4,5,6,8,14,15( ), Si Wang3,9,17( ), Jing Qu1,4,5,7( ), Guang-Hui Liu2,3,4,5,7( ) |
1. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 2. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 3. Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China 4. University of Chinese Academy of Sciences, Beijing 100049, China 5. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China 6. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China 7. Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China 8. China National Center for Bioinformation, Beijing 100101, China 9. Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China 10. Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China 11. The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China 12. Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China 13. Department of Orthopaedics, Peking University First Hospital, Beijing 100034, China 14. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China 15. Sino-Danish Center for Education and Research, Beijing 101408, China 16. Altos Labs, Inc., San Diego, CA 94022, USA 17. The Fifth People’s Hospital of Chongqing, Chongqing 400062, China |
|
|
|
|
Abstract Age-dependent loss of skeletal muscle mass and function is a feature of sarcopenia, and increases the risk of many aging-related metabolic diseases. Here, we report phenotypic and single-nucleus transcriptomic analyses of non-human primate skeletal muscle aging. A higher transcriptional fluctuation was observed in myonuclei relative to other interstitial cell types, indicating a higher susceptibility of skeletal muscle fiber to aging. We found a downregulation of FOXO3 in aged primate skeletal muscle, and identified FOXO3 as a hub transcription factor maintaining skeletal muscle homeostasis. Through the establishment of a complementary experimental pipeline based on a human pluripotent stem cell-derived myotube model, we revealed that silence of FOXO3 accelerates human myotube senescence, whereas genetic activation of endogenous FOXO3 alleviates human myotube aging. Altogether, based on a combination of monkey skeletal muscle and human myotube aging research models, we unraveled the pivotal role of the FOXO3 in safeguarding primate skeletal muscle from aging, providing a comprehensive resource for the development of clinical diagnosis and targeted therapeutic interventions against human skeletal muscle aging and the onset of sarcopenia along with aging-related disorders.
|
| Keywords
single-nucleus RNA sequencing
primate
aging
skeletal muscle
FOXO3
|
|
Corresponding Author(s):
Weiqi Zhang,Si Wang,Jing Qu,Guang-Hui Liu
|
|
Issue Date: 18 July 2023
|
|
| 1 |
S Aibar, CB González-Blas, T Moerman et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 2017;14:1083–1086.
https://doi.org/10.1038/nmeth.4463
|
| 2 |
S Anders, PT Pyl, W. Huber HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166–169.
https://doi.org/10.1093/bioinformatics/btu638
|
| 3 |
RM Anderson, RJ. Colman Prospects and perspectives in primate aging research. Antioxid Redox Signal 2011;14:203–205.
https://doi.org/10.1089/ars.2010.3227
|
| 4 |
I Angelidis, LM Simon, IE Fernandez et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 2019;10:963.
https://doi.org/10.1038/s41467-019-08831-9
|
| 5 |
V Askanas, WK. Engel Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis. Curr Opin Rheumatol 2007;19:550–559.
https://doi.org/10.1097/BOR.0b013e3282efdc7c
|
| 6 |
V Askanas, WK Engel, A. Nogalska Pathogenic considerations in sporadic inclusion-body myositis, a degenerative muscle disease associated with aging and abnormalities of myoproteostasis. J Neuropathol Exp Neurol 2012;71:680–693.
https://doi.org/10.1097/NEN.0b013e31826183c8
|
| 7 |
KK Baskin, BR Winders, EN. Olson Muscle as a “mediator” of systemic metabolism. Cell Metab 2015;21:237–248.
https://doi.org/10.1016/j.cmet.2014.12.021
|
| 8 |
A Butler, P Hoffman, P Smibert et al. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018;36:411–420.
https://doi.org/10.1038/nbt.4096
|
| 9 |
B Cadot, V Gache, ER. Gomes Moving and positioning the nucleus in skeletal muscle – one step at a time. Nucleus 2015;6:373–381.
https://doi.org/10.1080/19491034.2015.1090073
|
| 10 |
Y Cai, W Song, J Li et al. The landscape of aging. Sci China Life Sci 2022; 65(12), 2354–2454.
https://doi.org/10.1007/s11427-022-2161-3
|
| 11 |
G Calissi, EW Lam, W. Link Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov 2021;20:21–38.
https://doi.org/10.1038/s41573-020-0088-2
|
| 12 |
S Dalle, K. Koppo Cannabinoid receptor 1 expression is higher in muscle of old vs. young males, and increases upon resistance exercise in older adults. Sci Rep 2021;11:18349.
https://doi.org/10.1038/s41598-021-97859-3
|
| 13 |
AJ De Micheli, JA Spector, O Elemento et al. A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet Muscle 2020;10:19.
https://doi.org/10.1186/s13395-020-00236-3
|
| 14 |
S Dell’Orso, AH Juan, KD Ko et al. Single cell analysis of adult mouse skeletal muscle stem cells in homeostatic and regenerative conditions. Development 2019;146:dev174177.
https://doi.org/10.1242/dev.181743
|
| 15 |
F Demontis, R Piccirillo, AL Goldberg et al. Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis Model Mech 2013;6:1339–1352.
https://doi.org/10.1242/dmm.012559
|
| 16 |
AJ Dirks, T Hofer, E Marzetti et al. Mitochondrial DNA mutations, energy metabolism and apoptosis in aging muscle. Ageing Res Rev 2006;5:179–195.
https://doi.org/10.1016/j.arr.2006.03.002
|
| 17 |
C Domingues-Faria, MP Vasson, N Goncalves-Mendes et al. Skeletal muscle regeneration and impact of aging and nutrition. Ageing Res Rev 2016;26:22–36.
https://doi.org/10.1016/j.arr.2015.12.004
|
| 18 |
M Dos Santos, S Backer, B Saintpierre et al. Single-nucleus RNA-seq and FISH identify coordinated transcriptional activity in mammalian myofibers. Nat Commun 2020;11:5102.
https://doi.org/10.1038/s41467-020-18789-8
|
| 19 |
SJ Fleming, JC Marioni, M. Babadi CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets. bioRxiv 2019.
https://doi.org/10.1101/791699
|
| 20 |
WR Frontera, J. Ochala Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 2015;96:183–195.
https://doi.org/10.1007/s00223-014-9915-y
|
| 21 |
E Fuchs, HM. Blau Tissue stem cells: architects of their niches. Cell Stem Cell 2020;27:532–556.
https://doi.org/10.1016/j.stem.2020.09.011
|
| 22 |
L Giordani, GJ He, E Negroni et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations. Mol Cell 2019;74:609–621.e6.
https://doi.org/10.1016/j.molcel.2019.02.026
|
| 23 |
M Gomarasca, G Banfi, G. Lombardi Myokines: the endocrine coupling of skeletal muscle and bone. Adv Clin Chem 2020;94:155–218.
https://doi.org/10.1016/bs.acc.2019.07.010
|
| 24 |
JP González, N Queralt-Rosinach, A Bravo et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database 2015;2015:bav028.
https://doi.org/10.1093/database/bav028
|
| 25 |
YB Guang-Hui Liu, J Qu, W Zhang et al. Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res 2021;49:D825–d830.
https://doi.org/10.1093/nar/gkaa894
|
| 26 |
X He, S Memczak, J Qu et al. Single-cell omics in ageing: a young and growing field. Nat Metab 2020;2:293–302.
https://doi.org/10.1038/s42255-020-0196-7
|
| 27 |
EA Hershberg, CK Camplisson, JL Close et al. PaintSHOP enables the interactive design of transcriptome- and genome-scale oligonucleotide FISH experiments. Nat Methods 2021;18:937–944.
https://doi.org/10.1038/s41592-021-01187-3
|
| 28 |
H Hu, Q Ji, M Song et al. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res 2020;48:6001–6018.
https://doi.org/10.1093/nar/gkaa425
|
| 29 |
K Iizuka, T Machida, M. Hirafuji Skeletal muscle is an endocrine organ. J Pharmacol Sci 2014;125:125–131.
https://doi.org/10.1254/jphs.14R02CP
|
| 30 |
A Irrthum, L Wehenkel, P. Geurts Inferring regulatory networks from expression data using tree-based methods. PLoS One 2010;5:e12776.
https://doi.org/10.1371/journal.pone.0012776
|
| 31 |
C Jiang, Y Wen, K Kuroda et al. Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy. Dis Model Mech 2014;7:997–1004.
https://doi.org/10.1242/dmm.015917
|
| 32 |
RA Jones, C Harrison, SL Eaton et al. Cellular and molecular anatomy of the human neuromuscular junction. Cell Rep 2017;21:2348–2356.
https://doi.org/10.1016/j.celrep.2017.11.008
|
| 33 |
A Kalinkovich, G. Livshits Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 2017;35:200–221.
https://doi.org/10.1016/j.arr.2016.09.008
|
| 34 |
M Kanehisa, M Furumichi, Y Sato et al. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res 2021;49:D545–D551.
https://doi.org/10.1093/nar/gkaa970
|
| 35 |
W Kang, T Jin, T Zhang et al. Regeneration Roadmap: data-base resources for regenerative biology. Nucleic Acids Res 2022;50:D1085–D1090.
|
| 36 |
D Kim, B Langmead, SL. Salzberg HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015;12:357–360.
https://doi.org/10.1038/nmeth.3317
|
| 37 |
M Kim, V Franke, B Brandt et al. Single-nucleus transcriptomics reveals functional compartmentalization in syncytial skeletal muscle cells. Nat Commun 2020;11:6375.
https://doi.org/10.1038/s41467-020-20064-9
|
| 38 |
JY Kishi, SW Lapan, BJ Beliveau et al. SABER amplifies FISH: enhanced multiplexed imaging of RNA and DNA in cells and tissues. Nat Methods 2019;16:533–544.
https://doi.org/10.1038/s41592-019-0404-0
|
| 39 |
SR Krishnaswami, RV Grindberg, M Novotny et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 2016;11:499–524.
https://doi.org/10.1038/nprot.2016.015
|
| 40 |
L Larsson, H Degens, M Li et al. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 2019;99:427–511.
https://doi.org/10.1152/physrev.00061.2017
|
| 41 |
B Leger, W Derave, K De Bock et al. Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation. Rejuvenation Res 2008;11:163–175B.
https://doi.org/10.1089/rej.2007.0588
|
| 42 |
J Lei, S Wang, W Kang et al. FOXO3-engineered human mesenchymal progenitor cells efficiently promote cardiac repair after myocardial infarction. Protein Cell 2021;12:145–151.
https://doi.org/10.1007/s13238-020-00779-7
|
| 43 |
SX Leng, G. Pawelec Single-cell immune atlas for human aging and frailty. Life Med 2022:lnac013.
https://doi.org/10.1093/lifemedi/lnac013
|
| 44 |
J Li, Y Zheng, P Yan et al. A single-cell transcriptomic atlas of primate pancreatic islet aging. Natl Sci Rev 2021;8:nwaa127.
https://doi.org/10.1093/nsr/nwaa127
|
| 45 |
A Liberzon, C Birger, H Thorvaldsdóttir et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015;1:417–425.
https://doi.org/10.1016/j.cels.2015.12.004
|
| 46 |
C Limbad, R Doi, J McGirr et al. Senolysis induced by 25-hydroxycholesterol targets CRYAB in multiple cell types. iScience 2022;25:103848.
https://doi.org/10.1016/j.isci.2022.103848
|
| 47 |
C Lipina, HS. Hundal Lipid modulation of skeletal muscle mass and function. J Cachexia Sarcopenia Muscle 2017;8:190–201.
https://doi.org/10.1002/jcsm.12144
|
| 48 |
L Liu, X Liu, Y Bai et al. Neuregulin-1β modulates myogenesis in septic mouse serum-treated C2C12 myotubes in vitro through PPARγ/NF-κB signaling. Mol Biol Rep 2018;45:1611–1619.
https://doi.org/10.1007/s11033-018-4293-6
|
| 49 |
Z Liu, W Li, L Geng et al. Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discov 2022;8:6.
https://doi.org/10.1038/s41421-021-00361-3
|
| 50 |
G Livshits, A. Kalinkovich Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev 2019;56:100980.
https://doi.org/10.1016/j.arr.2019.100980
|
| 51 |
MI Love, W Huber, S. Anders Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.
https://doi.org/0.1186/s13059-014-0550-8
|
| 52 |
S Ma, S Sun, L Geng et al. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus Norvegicus aging. Cell 2020;180:1001.e22.
https://doi.org/10.1016/j.cell.2020.02.008
|
| 53 |
S Ma, S Sun, J Li et al. Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res 2021;31:415–432.
https://doi.org/10.1038/s41422-020-00412-6
|
| 54 |
S Ma, S Wang, Y Ye et al. Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell 2022;29:1005.e10.
https://doi.org/10.1016/j.stem.2022.04.017
|
| 55 |
S Maeda, S Miyagawa, T Kawamura et al. Notch signaling-modified mesenchymal stem cells improve tissue perfusion by induction of arteriogenesis in a rat hindlimb ischemia model. Sci Rep 2021;11:2543.
https://doi.org/10.1038/s41598-021-82284-3
|
| 56 |
SM Maffioletti, MF Gerli, M Ragazzi et al. Efficient derivation and inducible differentiation of expandable skeletal myogenic cells from human ES and patient-specific iPS cells. Nat Protoc 2015;10:941–958.
https://doi.org/10.1038/nprot.2015.057
|
| 57 |
C Mammucari, G Milan, V Romanello et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007;6:458–471.
https://doi.org/10.1016/j.cmet.2007.11.001
|
| 58 |
CS McGinnis, LM Murrow, ZJ. Gartner DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 2019;8:329–337.e4.
https://doi.org/10.1016/j.cels.2019.03.003
|
| 59 |
DW McKellar, LD Walter, LT Song et al. Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Commun Biol 2021;4:1280.
https://doi.org/10.1038/s42003-021-02810-x
|
| 60 |
EM Mercken, M Capri, BA Carboneau et al. Conserved and species-specific molecular denominators in mammalian skeletal muscle aging. NPJ Aging Mech Dis 2017;3:8.
https://doi.org/10.1038/s41514-017-0009-8
|
| 61 |
BJ Morris, DC Willcox, TA Donlon et al. FOXO3: A major gene for human longevity — a mini-review. Gerontology 2015;61:515–525.
https://doi.org/10.1159/000375235
|
| 62 |
M Murgia, L Toniolo, N Nagaraj et al. Single muscle fiber proteomics reveals fiber-type-specific features of human muscle aging. Cell Rep 2017;19:2396–2409.
https://doi.org/10.1016/j.celrep.2017.05.054
|
| 63 |
G. Navarro A guided tour to approximate string matching. ACM Comput Surv 2001;33:31–88.
https://doi.org/10.1145/375360.375365
|
| 64 |
N Ohsawa, M Koebis, S Suo et al. Alternative splicing of PDLIM3/ALP, for α-actinin-associated LIM protein 3, is aberrant in persons with myotonic dystrophy. Biochem Biophys Res Commun 2011;409:64–69.
https://doi.org/10.1016/j.bbrc.2011.04.106
|
| 65 |
P Orchard, N Manickam, C Ventresca et al. Human and rat skeletal muscle single-nuclei multi-omic integrative analyses nominate causal cell types, regulatory elements, and SNPs for complex traits. Genome Res 2021;31:2258–2275.
https://doi.org/10.1101/gr.268482.120
|
| 66 |
J Podnar, H Deiderick, S. Hunicke-Smith Next-generation sequencing fragment library construction. Curr Protoc Mol Biol 2014;107:7.17.11–7.17.16.
https://doi.org/10.1002/0471142727.mb0717s107
|
| 67 |
AB Rubenstein, GR Smith, U Raue et al. Single-cell transcriptional profiles in human skeletal muscle. Sci Rep 2020;10:229.
https://doi.org/10.1038/s41598-019-57110-6
|
| 68 |
DA Salih, A. Brunet FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 2008;20:126–136.
https://doi.org/10.1016/j.ceb.2008.02.005
|
| 69 |
M Sandri, C Sandri, A Gilbert et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004;117:399–412.
https://doi.org/10.1016/S0092-8674(04)00400-3
|
| 70 |
P Shannon, A Markiel, O Ozier et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504.
https://doi.org/10.1101/gr.1239303
|
| 71 |
M Simon, M Van Meter, J Ablaeva et al. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 2019;29:871–885.e5 e875.
https://doi.org/10.1016/j.cmet.2019.02.014
|
| 72 |
T Stokes, AJ Hector, RW Morton et al. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients 2018;10:180.
https://doi.org/10.3390/nu10020180
|
| 73 |
M Tieland, I Trouwborst, BC. Clark Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle 2018;9:3–19.
https://doi.org/10.1002/jcsm.12238
|
| 74 |
M Verma, Y Asakura, BSR Murakonda et al. Muscle satellite cell cross-talk with a vascular niche maintains quiescence via VEGF and notch signaling. Cell Stem Cell 2018;23:530–543.e9.
https://doi.org/10.1016/j.stem.2018.09.007
|
| 75 |
AJ Wagers, IM. Conboy Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell 2005;122:659–667.
https://doi.org/10.1016/j.cell.2005.08.021
|
| 76 |
S Wang, F Cheng, Q Ji et al. Hyperthermia differentially affects specific human stem cells and their differentiated derivatives. Protein Cell 2022;13:615–622.
https://doi.org/10.1007/s13238-021-00887-y
|
| 77 |
S Wang, B Hu, Z Ding et al. ATF6 safeguards organelle homeostasis and cellular aging in human mesenchymal stem cells. Cell Discov 2018;4:2.
https://doi.org/10.1038/s41421-017-0003-0
|
| 78 |
S Wang, X Yao, S Ma et al. A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nat Cell Biol 2021a;23:1314–1328.
https://doi.org/10.1038/s41556-021-00796-6
|
| 79 |
S Wang, Y Zheng, J Li et al. Single-cell transcriptomic atlas of primate ovarian aging. Cell 2020;180:585–600.e19.
https://doi.org/10.1016/j.cell.2020.01.009
|
| 80 |
S Wang, Y Zheng, Q Li et al. Deciphering primate retinal aging at single-cell resolution. Protein Cell 2021b;12:889–898.
https://doi.org/10.1007/s13238-020-00791-x
|
| 81 |
Y Wang, S-C Ng. Sphingolipids mediate lipotoxicity in muscular dystrophies. Life Med 2022:lnac015.
https://doi.org/10.1093/lifemedi/lnac015
|
| 82 |
H. Wickham, 2016. ggplot2: Elegant Graphics for Data Analysis. Springer
https://doi.org/10.1007/978-3-319-24277-4
|
| 83 |
DJ Wilkinson, M Piasecki, PJ. Atherton The age-related loss of skeletal muscle mass and function: measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev 2018;47:123–132.
https://doi.org/10.1016/j.arr.2018.07.005
|
| 84 |
P Yan, Q Li, L Wang et al. FOXO3-engineered human ESC-derived vascular cells promote vascular protection and regeneration. Cell Stem Cell 2019;24:447–461.e8.
https://doi.org/10.1016/j.stem.2018.12.002
|
| 85 |
AD Yates, P Achuthan, W Akanni et al. Ensembl 2020. Nucleic Acids Res 2020;48:D682–D688.
|
| 86 |
W Yu, M Clyne, MJ Khoury et al. Phenopedia and genopedia: disease- centered and gene-centered views of the evolving knowledge of human genetic associations. Bioinformatics 2010;26:145–146.
https://doi.org/10.1093/bioinformatics/btp618
|
| 87 |
W Zhang, J Li, K Suzuki, et al. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Sci 2015;348:1160–1163.
https://doi.org/10.1126/science.aaa1356
|
| 88 |
H Zhang, J Li, J Ren et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 2021;12:695–716.
https://doi.org/10.1007/s13238-021-00852-9
|
| 89 |
W Zhang, H Wan, G Feng et al. SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 2018;560:661–665.
https://doi.org/10.1038/s41586-018-0437-z
|
| 90 |
W Zhang, S Zhang, P Yan et al. A single-cell transcriptomic landscape of primate arterial aging. Nat Commun 2020a;11:2202.
https://doi.org/10.1038/s41467-020-15997-0
|
| 91 |
W Zhang, J Qu, G-H Liu, JCI. Belmonte The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 2020b;21:137–150.
https://doi.org/10.1038/s41580-019-0204-5
|
| 92 |
Y Zhang, Y Zheng, S Wang et al. Single-nucleus transcriptomics reveals a gatekeeper role for FOXP1 in primate cardiac aging. Protein & Cell 2022:pwac038.
https://doi.org/10.1093/procel/pwac038
|
| 93 |
D Zhao, S. Chen Failures at every level: breakdown of the epigenetic machinery of aging. Life Med 2022:lnac016.
https://doi.org/10.1093/lifemedi/lnac016
|
| 94 |
J Zhao, JJ Brault, A Schild et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007;6:472–483.
https://doi.org/10.1016/j.cmet.2007.11.004
|
| 95 |
Y Zhou, B Zhou, L Pache et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10:1523.
https://doi.org/10.1038/s41467-019-09234-6
|
| 96 |
X. Zou,, X. Dai,, A.F.A. Mentis,, M.A. Esteban,, L. Liu,, and L. Han, From monkey single-cell atlases into a broader biomedical perspective. Life Med. 2022:lnac028.
https://doi.org/10.1093/lifemedi/lnac028
|
| 97 |
Z Zou, X Long, Q Zhao et al. A single-cell transcriptomic atlas of human skin aging. Dev Cell 2021;56:383–397.e8.
https://doi.org/10.1016/j.devcel.2020.11.002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|