Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 13    https://doi.org/10.1007/s11783-017-0957-z
RESEARCH ARTICLE
Covering α-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance
Jing Gu, Hongtao Yu, Xie Quan(), Shuo Chen
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
 Download: PDF(469 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

SiMP/α-Fe2O3 improved photoeletrochemical stability of Si.

Optical absorption and photocurrent density of SiMP/α-Fe2O3 improved 2 and 4 times.

Enhanced photogenerated charge separation derived from built-in electric field.

Few papers with respect to the α-Fe2O3-covering-Si photocathode had been published.

The spontaneous oxidation process of pristine silicon (Si) limits its application as photocatalyst or electrode in aqueous solution or moist air. Covering a protection layer on Si surface is an effective approach to overcome this disadvantage. In this paper, α-Fe2O3 is demonstrated to be an excellent alternative as a protection material. α-Fe2O3 layer was deposited around each p-type Si micropillar (SiMP) in well-ordered array by chemical bath deposition method. The diameter of SiMP was 5 mm and the thickness of α-Fe2O3 layer was about 20 nm. The photoeletrochemical stability of SiMP/α-Fe2O3 was proved by 10 circles cyclic voltammetry testing. Compared with SiMP, its optical absorption and photocurrent density improved 2 times and 4 times, respectively, and its onset potential for hydrogen evolution moved positively about 0.4 V. These improved performances could be ascribed to the enhanced photogenerated-charge-separation efficiency deriving from built-in electric field at the interface between Si and α-Fe2O3. The above results show an effective strategy to utilize Si material as photocatalyst or electrode in aqueous solution or moist air.

Keywords Si      α-Fe2O3      Photoelectrochemistry      Photogenerated charge separation     
Corresponding Author(s): Xie Quan   
Issue Date: 16 June 2017
 Cite this article:   
Jing Gu,Hongtao Yu,Xie Quan, et al. Covering α-Fe2O3 protection layer on the surface of p-Si micropillar array for enhanced photoelectrochemical performance[J]. Front. Environ. Sci. Eng., 2017, 11(6): 13.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0957-z
https://academic.hep.com.cn/fese/EN/Y2017/V11/I6/13
Fig.1  Schematic illustration of the SiMP/a-Fe2O3 construction
Fig.2  SEM images of SiMP (a, b) and SiMP/a-Fe2O3 obtained with different concentrations of iron nitrate solution(c, d 0.005 mol·L-1, e, f 0.01 mol·L-1, g, h 0.02 mol·L-1, i, j 0.04 mol·L-1) and EDS images of SiMP/a-Fe2O3-0.01 mol·L-1 (k)
Fig.3  XRD pattern of a-Fe2O3 (a) and HRTEM image of SiMP (b) and SiMP/a-Fe2O3-0.01 mol·L-1 (c) taken from the area as marked in the larger scale image inset of them
Fig.4  XPS pattern of SiMP/a-Fe2O3 (a. survey spectrum, b. high-resolution XPS spectra for Fe 2p) and DRS pattern of SiMP, SiMP/a-Fe2O3-0.01 mol·L-1 and a-Fe2O3 powder (c)
Fig.5  Photocurrent versus potential curves of the SiMP and SiMP/a-Fe2O3 samples obtained with different iron nitrate concentration ((a) 0.005 mol·L-1, (b) 0.01 mol·L-1, (c) 0.02 mol·L-1)
Fig.6  Cyclic voltammetry curves of the SiMP and SiMP/a-Fe2O3samples (a) and the magnified part of SiMP, SiMP/a-Fe2O3-0.005 mol·L-1 and SiMP/a-Fe2O3-0.02 mol·L-1 (b)
Fig.7  Positions of energy bands and bending directions at the junction
Fig.8  OCV curves of the SiMP, a-Fe2O3 and SiMP/a-Fe2O3 samples (a) and the magnified part of the a-Fe2O3 sample (b)
1 Liu J, Cai H, Mei C, Wang M. Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars. Frontiers of Environmental Science & Engineering, 2015, 9(5): 905–911
https://doi.org/10.1007/s11783-015-0786-x
2 Liu Q, Wu F, Cao F, Chen L, Xie X, Wang W, Tian W, Li L. A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting. Nano Research, 2015, 8(11): 3524–3534
https://doi.org/10.1007/s12274-015-0852-5
3 Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
https://doi.org/10.1021/cr1002326 pmid: 21062097
4 Lewis N S. An integrated, systems approach to the development of solar fuel generators. Interface, 2013, 22(2): 43–49
5 Tong G, Guan J, Zhang Q. Goethite hierarchical nanostructures: Glucose-assisted synthesis, chemical conversion into hematite with excellent photocatalytic properties. Materials Chemistry and Physics, 2011, 127(1): 371–378
https://doi.org/10.1016/j.matchemphys.2011.02.021
6 Murphy A B, Barnes P R F, Randeniya L K, Plumb I C, Grey I E, Horne M D, Glasscock J A. Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy, 2006, 31(14): 1999–2017
https://doi.org/10.1016/j.ijhydene.2006.01.014
7 Wang X, Peng K Q, Hu Y, Zhang F Q, Hu B, Li L, Wang M, Meng X M, Lee S T. Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. Nano Letters, 2014, 14(1): 18–23
https://doi.org/10.1021/nl402205f pmid: 24341833
8 Klahr B M, Hamann T W. Voltage dependent photocurrent of thin film hematite electrodes. Applied Physics Letters, 2011, 99(6): 063508
https://doi.org/10.1063/1.3622130
9 Kay A, Cesar I, Grätzel M. New benchmark for water photooxidation by nanostructured  a-Fe2O3 films. Journal of the American Chemical Society, 2006, 128(49): 15714–15721
https://doi.org/10.1021/ja064380l pmid: 17147381
10 Zhao H, Fu W, Yang H, Xu Y, Zhao W, Zhang Y, Chen H, Jing Q, Qi X, Cao J, Zhou X, Li Y. Synthesis and characterization of TiO2/Fe2O3 core–shell nanocomposition film and their photoelectrochemical property. Applied Surface Science, 2011, 257(21): 8778–8783
https://doi.org/10.1016/j.apsusc.2011.04.004
11 Jiang C, Liu L, Crittenden J C. An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity. Frontiers of Environmental Science & Engineering, 2016, 10(4): 1–8
https://doi.org/10.1007/s11783-016-0860-z
12 Kazazis D, Guha S, Bojarczuk N A, Zaslavsky A, Kim H C. Substrate Fermi level effects in photocatalysis on oxides: properties of ultrathin TiO2/Si films. Applied Physics Letters, 2009, 95(6): 064103
https://doi.org/10.1063/1.3196314
13 Yu H, Chen S, Quan X, Zhao H, Zhang Y. Silicon nanowire/TiO2 heterojunction arrays for effective photoelectrocatalysis under simulated solar light irradiation. Applied Catalysis B: Environmental, 2009, 90(1–2): 242–248
https://doi.org/10.1016/j.apcatb.2009.03.010
14 Yoon K H, Shin C W, Kang D H. Photoelectrochemical conversion in a WO3 coated p-Si photoelectrode: effect of annealing temperature. Journal of Applied Physics, 1997, 81(10): 7024–7029
https://doi.org/10.1063/1.365268
15 Feng X, Qi X, Li J, Yang L, Qiu M, Yin J, Lu F, Zhong J. Preparation, structure and photo-catalytic performances of hybrid Bi2SiO5 modified Si nanowire arrays. Applied Surface Science, 2011, 257(13): 5571–5575
https://doi.org/10.1016/j.apsusc.2011.01.045
16 Hodes G, Thompso L, DuBow J, Rajeshwar K. Heterojunction silicon/indium tin oxide photoelectrodes: development of stable systems in aqueous electrolytes and their applicability to solar energy conversion and storage. Journal of the American Chemical Society, 1983, 105(3): 324–330
https://doi.org/10.1021/ja00341a004
17 Tainboli A C, Malhotra M, Kimball G M, Turner-Evans D B, Atwater H A. Confonnal GaP layers on Si wire arrays for solar energy applications. Applied Physics Letters, 2010, 97(22): 221914
https://doi.org/10.1063/1.3522895
18 Kim M S, Yim K G, Kim S, Main G, Leem J. White light emission from nano-fibrous ZnO thin films/porous silicon nanocomposite. Journal of Sol-Gel Science and Technology, 2011, 59(2): 364–370
https://doi.org/10.1007/s10971-011-2513-9
19 Hosono E, Fujihara S, Honma I, Ichihara M, Zhou H. Fabrication of nano/micro hierarchical Fe2O3/Ni micrometer-wire structure and characteristics for high rate Li rechargeable battery. Journal of the Electrochemical Society, 2006, 153(7): A1273–A1278
https://doi.org/10.1149/1.2195887
20 Künle M, Janz S, Nickel K G, Heidt A, Luysberg M, Eibl O. Annealing of nm-thin Si1−xCx/SiC multilayers. Solar Energy Materials and Solar Cells, 2013, 115: 11–20
https://doi.org/10.1016/j.solmat.2013.03.011
21 Su C, Li W, Liu X, Huang X, Yu X. Fe-Mn-sepiolite as an effective heterogeneous Fenton-like catalyst for the decolorization of reactive brilliant blue. Frontiers of Environmental Science & Engineering, 2016, 10(1): 37–45
https://doi.org/10.1007/s11783-014-0729-y
22 Wang Y, Cao J, Wang S, Guo X, Zhang J, Xia H, Zhang S, Wu S. Facile synthesis of porous  a-Fe2O3 nanorods and their application in ethanol sensors. Journal of Physical Chemistry C, 2008, 112(46): 17804–17808
https://doi.org/10.1021/jp806430f
23 Ke X, Xu L, Zeng C, Zhang L, Xu N. Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine. Microporous and Mesoporous Materials, 2007, 106(1): 68–75
https://doi.org/10.1016/j.micromeso.2007.02.034
24 Hu X, Yu J C, Gong J, Li Q, Li G. a-Fe2O3 Nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Advanced Materials, 2007, 19(17): 2324–2329
https://doi.org/10.1002/adma.200602176
25 Zhang S, Xu W, Zeng M, Li J, Xu J, Wang X. Hierarchically grown CdS/ a-Fe2O3 heterojunction nanocomposites with enhanced visible-light-driven photocatalytic performance. Dalton Transactions (Cambridge, England), 2013, 42(37): 13417–13424
https://doi.org/10.1039/c3dt51492g pmid: 23892325
26 Pendlebury S R, Barroso M, Cowan A J, Sivula K, Tang J, Grätzel M, Klug D, Durrant J R. Dynamics of photogenerated holes in nanocrystalline  a-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chemical Communications, 2011, 47(2): 716–718
https://doi.org/10.1039/C0CC03627G pmid: 21072391
27 Zeng Q, Bai J, Li J, Xia L, Huang K, Li X, Zhou B. A novel in situ preparation method for nanostructured  a-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(8): 4345–4353
https://doi.org/10.1039/C4TA06017B
28 Lu N, Quan X, Li J, Chen S, Yu H, Chen G. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. Journal of Physical Chemistry C, 2007, 111(32): 11836–11842
https://doi.org/10.1021/jp071359d
29 Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278
https://doi.org/10.1039/B800489G pmid: 19088977
30 Sze S M, Ng K K. Physics of Semiconductor Devices. New York: John Wiley & Sons, 2006
31 F01 Committee. Practice for Conversion Between Resistivity and Dopant Density for Boron-Doped, Phosphorus-Doped, and Arsenic-Doped Silicon. Technical Representative, ASTM International, 1999, Available online at 
32 Xu Y, Schoonen M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 2000, 85(3–4): 543–556
https://doi.org/10.2138/am-2000-0416
33 George C, Beeldens A, Barmpas F, Doussin J, Manganelli G, Herrmann H, Kleffmann J, Mellouki A. Impact of photocatalytic remediation of pollutants on urban air quality. Frontiers of Environmental Science & Engineering, 2016, 10(5): 1–11
https://doi.org/10.1007/s11783-016-0834-1
[1] Yanxiao Si, Fang Zhang, Hong Chen, Guanghe Li, Haichuan Zhang, Dun Liu. Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation[J]. Front. Environ. Sci. Eng., 2021, 15(6): 112-.
[2] Zongqun Chen, Wei Jin, Hailong Yin, Mengqi Han, Zuxin Xu. Performance evaluation on the pollution control against wet weather overflow based on on-site coagulation/flocculation in terminal drainage pipes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 111-.
[3] Shiguan Yang, Xinrui Fan, Ji Liu, Wei Zhao, Bin Hu, Qiang Lu. Mechanism insight into the formation of H2S from thiophene pyrolysis: A theoretical study[J]. Front. Environ. Sci. Eng., 2021, 15(6): 120-.
[4] Fei Xie, Bowei Zhao, Ying Cui, Xiao Ma, Xiao Zhang, Xiuping Yue. Reutilize tire in microbial fuel cell for enhancing the nitrogen removal of the anammox process coupled with iron-carbon micro-electrolysis[J]. Front. Environ. Sci. Eng., 2021, 15(6): 121-.
[5] Guowen Hu, Zeqi Zhang, Xuan Zhang, Tianrong Li. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants[J]. Front. Environ. Sci. Eng., 2021, 15(5): 108-.
[6] Ziyue Yin, Qing Lin, Shaohui Xu. Using hydrochemical signatures to characterize the long-period evolution of groundwater information in the Dagu River Basin, China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 105-.
[7] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[8] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[9] Violeta Makareviciene, Egle Sendzikiene, Ieva Gaide. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil[J]. Front. Environ. Sci. Eng., 2021, 15(5): 97-.
[10] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[11] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[12] Yueqi Jiang, Jia Xing, Shuxiao Wang, Xing Chang, Shuchang Liu, Aijun Shi, Baoxian Liu, Shovan Kumar Sahu. Understand the local and regional contributions on air pollution from the view of human health impacts[J]. Front. Environ. Sci. Eng., 2021, 15(5): 88-.
[13] Mengzhi Ji, Zichen Liu, Kaili Sun, Zhongfang Li, Xiangyu Fan, Qiang Li. Bacteriophages in water pollution control: Advantages and limitations[J]. Front. Environ. Sci. Eng., 2021, 15(5): 84-.
[14] Shuchang Wang, Binbin Shao, Junlian Qiao, Xiaohong Guan. Application of Fe(VI) in abating contaminants in water: State of art and knowledge gaps[J]. Front. Environ. Sci. Eng., 2021, 15(5): 80-.
[15] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed