Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2011, Vol. 2 Issue (7) : 523-530    https://doi.org/10.1007/s13238-011-1077-3      PMID: 21822797
REVIEW
Perspectives on the role of mTORC2 in B lymphocyte development, immunity and tumorigenesis
Adam S. Lazorchak, Bing Su()
Department of Immunobiology and the Vascular Biology and Therapeutic Program, Yale School of Medicine, New Haven, CT 06519, USA
 Download: PDF(234 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mammalian target of rapamycin complex 2 (mTORC2) is a key downstream mediator of phosphoinositol-3-kinase (PI3K) dependent growth factor signaling. In lymphocytes, mTORC2 has emerged as an important regulator of cell development, homeostasis and immune responses. However, our current understanding of mTORC2 functions and the molecular mechanisms regulating mTORC2 signaling in B and T cells are still largely incomplete. Recent studies have begun to shed light on this important pathway. We have previously reported that mTORC2 mediates growth factor dependent phosphorylation of Akt and facilitates Akt dependent phosphorylation and inactivation of transcription factors FoxO1 and FoxO3a. We have recently explored the functions of mTORC2 in B cells and show that mTORC2 plays a key role in regulating survival and immunoglobulin (Ig) gene recombination of bone marrow B cells through an Akt2-FoxO1 dependent mechanism. Ig recombination is suppressed in proliferating B cells to ensure that DNA double strand breaks are not generated in actively dividing cells. Our results raise the possibility that genetic or pharmacologic inhibition of mTORC2 may promote B cell tumor development as a result of inefficient suppression of Ig recombination in dividing B cells. We also propose a novel strategy to treat cancers based on our recent discovery that mTORC2 regulates Akt protein stability.

Keywords mTOR      lymphocyte      B cell      cancer      mTORC2      FoxO      Akt      Sin1     
Corresponding Author(s): Su Bing,Email:bing.su@yale.edu   
Issue Date: 01 July 2011
 Cite this article:   
Adam S. Lazorchak,Bing Su. Perspectives on the role of mTORC2 in B lymphocyte development, immunity and tumorigenesis[J]. Prot Cell, 2011, 2(7): 523-530.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-011-1077-3
https://academic.hep.com.cn/pac/EN/Y2011/V2/I7/523
Fig.1  The role of mTORC2 in B cell development in the bone marrow.
Progenitor B (pro-B) cells that differentiate from bone marrow common lymphoid progenitors are dependent on IL-7 for growth and cell viability. Pro-B cells that produce a functional IgH allele by somatic recombination will express a surface pre-BCR and differentiate into large precursor B (pre-B) cells. Mammalian TORC2 mediates pre-BCR signals to suppress RAG expression which inhibits further IgH gene recombination and suppresses IL-7 receptor expression to limit the IL-7 dependent growth, proliferation, and survival of pre-B cells. Down regulation of the pre-BCR expression facilitates the transition to the small pre-B cell stage and the initiation of IgL recombination. Production of a functional IgL allele results in expression of the BCR on immature B cells. Immature B cells that express a self reactive BCR may attempt additional IgL rearrangements to produce a new, potentially non-self reactive BCR. Expression of a non-self reactive BCR inhibits IgL recombination through a mechanism which is, in part, mediated by mTORC2 dependent suppression of RAG expression. Surface BCR expression is required for further B cell maturation and survival in the spleen.
Fig.1  The role of mTORC2 in B cell development in the bone marrow.
Progenitor B (pro-B) cells that differentiate from bone marrow common lymphoid progenitors are dependent on IL-7 for growth and cell viability. Pro-B cells that produce a functional IgH allele by somatic recombination will express a surface pre-BCR and differentiate into large precursor B (pre-B) cells. Mammalian TORC2 mediates pre-BCR signals to suppress RAG expression which inhibits further IgH gene recombination and suppresses IL-7 receptor expression to limit the IL-7 dependent growth, proliferation, and survival of pre-B cells. Down regulation of the pre-BCR expression facilitates the transition to the small pre-B cell stage and the initiation of IgL recombination. Production of a functional IgL allele results in expression of the BCR on immature B cells. Immature B cells that express a self reactive BCR may attempt additional IgL rearrangements to produce a new, potentially non-self reactive BCR. Expression of a non-self reactive BCR inhibits IgL recombination through a mechanism which is, in part, mediated by mTORC2 dependent suppression of RAG expression. Surface BCR expression is required for further B cell maturation and survival in the spleen.
Fig.2  A model illustrating the growth factor independent [1] and growth factor dependent [2] functions of mTORC2 in pre-B cells.
[1] mTORC2 promotes the stability of maturation of newly synthesized Akt and classical (c)PKC polypeptides. In this example, we show that mTORC2, associated with ribosomes in a growth factor independent manner, phosphorylates the TM site of the Akt polypeptide. TM phosphorylation stabilizes the nascent Akt polypeptide and facilitates the maturation of the properly folded Akt protein. The chaperone protein Hsp90 may facilitate the proper maturation of Akt or cPKC and stabilize these proteins if TM phosphorylation is inhibited. [2] Expression of a functional pre-BCR signals to PI3K. PDK1 and mTORC2 then mediate the PI3K signals to phosphorylate Akt at the T-loop and HM sites, respectively. Activated Akt2 then phosphorylates FoxO1 in the nucleus resulting in the down regulation of FoxO1 transcriptional activity and reduced and gene expression. Loss of mTORC2 function in developing B cells blocks Akt2 HM site phosphorylation and prevents the full activation of Akt2 resulting in insufficient inhibition of FoxO1. This leads to increased and gene expression resulting in increased IL-7 dependent survival and increased recombinase activity, respectively, in developing B cells
Fig.2  A model illustrating the growth factor independent [1] and growth factor dependent [2] functions of mTORC2 in pre-B cells.
[1] mTORC2 promotes the stability of maturation of newly synthesized Akt and classical (c)PKC polypeptides. In this example, we show that mTORC2, associated with ribosomes in a growth factor independent manner, phosphorylates the TM site of the Akt polypeptide. TM phosphorylation stabilizes the nascent Akt polypeptide and facilitates the maturation of the properly folded Akt protein. The chaperone protein Hsp90 may facilitate the proper maturation of Akt or cPKC and stabilize these proteins if TM phosphorylation is inhibited. [2] Expression of a functional pre-BCR signals to PI3K. PDK1 and mTORC2 then mediate the PI3K signals to phosphorylate Akt at the T-loop and HM sites, respectively. Activated Akt2 then phosphorylates FoxO1 in the nucleus resulting in the down regulation of FoxO1 transcriptional activity and reduced and gene expression. Loss of mTORC2 function in developing B cells blocks Akt2 HM site phosphorylation and prevents the full activation of Akt2 resulting in insufficient inhibition of FoxO1. This leads to increased and gene expression resulting in increased IL-7 dependent survival and increased recombinase activity, respectively, in developing B cells
1 Amin, R.H., and Schlissel, M.S. (2008). Foxo1 directly regulates the transcription of recombination-activating genes during B cell development. Nat Immunol 9, 613–622 .
pmid:18469817
2 Baracho, G.V., Miletic, A.V., Omori, S.A., Cato, M.H., and Rickert, R.C. (2011). Emergence of the PI3-kinase pathway as a central modulator of normal and aberrant B cell differentiation. Curr Opin Immunol 23, 178–183 .
pmid:21277760
3 Calamito, M., Juntilla, M.M., Thomas, M., Northrup, D.L., Rathmell, J., Birnbaum, M.J., Koretzky, G., and Allman, D. (2010). Akt1 and Akt2 promote peripheral B-cell maturation and survival. Blood 115, 4043–4050 .
pmid:20042722
4 Chen, J., Limon, J.J., Blanc, C., Peng, S.L., and Fruman, D.A. (2010). Foxo1 regulates marginal zone B-cell development. Eur J Immunol 40, 1890–1896 .
pmid:20449867
5 Chowdhury, D., and Sen, R. (2004). Regulation of immunoglobulin heavy-chain gene rearrangements. Immunol Rev 200, 182–196 .
pmid:15242405
6 Dengler, H.S., Baracho, G.V., Omori, S.A., Bruckner, S., Arden, K.C., Castrillon, D.H., DePinho, R.A., and Rickert, R.C. (2008). Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol 9, 1388–1398 .
pmid:18978794
7 Facchinetti, V., Ouyang, W., Wei, H., Soto, N., Lazorchak, A., Gould, C., Lowry, C., Newton, A.C., Mao, Y., Miao, R.Q., (2008b). The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27, 1932–1943 .
pmid:18566586
8 Feldman, M.E., Apsel, B., Uotila, A., Loewith, R., Knight, Z.A., Ruggero, D., and Shokat, K.M. (2009). Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7, e38.
pmid:19209957
9 Frias, M.A., Thoreen, C.C., Jaffe, J.D., Schroder, W., Sculley, T., Carr, S.A., and Sabatini, D.M. (2006). mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16, 1865–1870 .
pmid:16919458
10 Gingras, A.C., Raught, B., and Sonenberg, N. (2004). mTOR signaling to translation. Curr Top Microbiol Immunol 279, 169–197 .
pmid:14560958
11 Goldmit, M., and Bergman, Y. (2004). Monoallelic gene expression: a repertoire of recurrent themes. Immunol Rev 200, 197–214 .
pmid:15242406
12 Grawunder, U., Leu, T.M., Schatz, D.G., Werner, A., Rolink, A.G., Melchers, F., and Winkler, T.H. (1995). Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608 .
pmid:7584150
13 Guertin, D.A., and Sabatini, D.M. (2009). The pharmacology of mTOR inhibition. Sci Signal 2, pe24.
pmid:19383975
14 Guertin, D.A., Stevens, D.M., Thoreen, C.C., Burds, A.A., Kalaany, N.Y., Moffat, J., Brown, M., Fitzgerald, K.J., and Sabatini, D.M. (2006). Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11, 859–871 .
pmid:17141160
15 Harris, T.E., and Lawrence, J.C. Jr. (2003). TOR signaling. Sci STKE 2003, re15.
pmid:14668532
16 Hasham, M.G., Donghia, N.M., Coffey, E., Maynard, J., Snow, K.J., Ames, J., Wilpan, R.Y., He, Y., King, B.L., and Mills, K.D. (2010). Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nat Immunol 11, 820–826 .
pmid:20657597
17 Herzog, S., Hug, E., Meixlsperger, S., Paik, J.H., DePinho, R.A., Reth, M., and Jumaa, H. (2008). SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway. Nat Immunol 9, 623–631 .
pmid:18488031
18 Herzog, S., Reth, M., and Jumaa, H. (2009). Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 9, 195–205 .
pmid:19240758
19 Hietakangas, V., and Cohen, S.M. (2007). Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth. Genes Dev 21, 632–637 .
pmid:17369395
20 Hoang, B., Frost, P., Shi, Y., Belanger, E., Benavides, A., Pezeshkpour, G., Cappia, S., Guglielmelli, T., Gera, J., and Lichtenstein, A. (2010). Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 116, 4560–4568 .
pmid:20686120
21 Ikenoue, T., Inoki, K., Yang, Q., Zhou, X., and Guan, K.L. (2008). Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 27, 1919–1931 .
pmid:18566587
22 Jacinto, E., Facchinetti, V., Liu, D., Soto, N., Wei, S., Jung, S.Y., Huang, Q., Qin, J., and Su, B. (2006). SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125–137 .
pmid:16962653
23 Janes, M.R., Limon, J.J., So, L., Chen, J., Lim, R.J., Chavez, M.A., Vu, C., Lilly, M.B., Mallya, S., Ong, S.T., (2010). Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 16, 205–213 .
pmid:20072130
24 Jung, D., and Alt, F.W. (2004). Unraveling V(D)J recombination; insights into gene regulation. Cell 116, 299–311 .
pmid:14744439
25 Kharas, M.G., Deane, J.A., Wong, S., O’Bosky, K.R., Rosenberg, N., Witte, O.N., and Fruman, D.A. (2004). Phosphoinositide 3-kinase signaling is essential for ABL oncogene-mediated transformation of B-lineage cells. Blood 103, 4268–4275 .
pmid:14976048
26 Kraus, M., Alimzhanov, M.B., Rajewsky, N., and Rajewsky, K. (2004). Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 117, 787–800 .
pmid:15186779
27 Lazorchak, A.S., Liu, D., Facchinetti, V., Di Lorenzo, A., Sessa, W.C., Schatz, D.G., and Su, B. (2010). Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. Mol Cell 39, 433–443 .
pmid:20705244
28 Li, Z., Dordai, D.I., Lee, J., and Desiderio, S. (1996). A conserved degradation signal regulates RAG-2 accumulation during cell division and links V(D)J recombination to the cell cycle. Immunity 5, 575–589 .
pmid:8986717
29 Llorian, M., Stamataki, Z., Hill, S., Turner, M., and M?rtensson, I.L. (2007). The PI3K p110delta is required for down-regulation of RAG expression in immature B cells. J Immunol 178, 1981–1985 .
pmid:17277100
30 Mackay, F., Figgett, W.A., Saulep, D., Lepage, M., and Hibbs, M.L. (2010). B-cell stage and context-dependent requirements for survival signals from BAFF and the B-cell receptor. Immunol Rev 237, 205–225 .
pmid:20727038
31 Malin, S., McManus, S., and Busslinger, M. (2010). STAT5 in B cell development and leukemia. Curr Opin Immunol 22, 168–176 .
pmid:20227268
32 Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298, 1912–1934 .
pmid:12471243
33 Oh, W.J., Wu, C.C., Kim, S.J., Facchinetti, V., Julien, L.A., Finlan, M., Roux, P.P., Su, B., and Jacinto, E. (2010). mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 29, 3939–3951 .
pmid:21045808
34 Okkenhaug, K., Bilancio, A., Farjot, G., Priddle, H., Sancho, S., Peskett, E., Pearce, W., Meek, S.E., Salpekar, A., Waterfield, M.D., (2002). Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 297, 1031–1034 .
pmid:12130661
35 Patke, A., Mecklenbr?uker, I., Erdjument-Bromage, H., Tempst, P., and Tarakhovsky, A. (2006). BAFF controls B cell metabolic fitness through a PKC beta- and Akt-dependent mechanism. J Exp Med 203, 2551–2562 .
pmid:17060474
36 Ramadani, F., Bolland, D.J., Garcon, F., Emery, J.L., Vanhaesebroeck, B., Corcoran, A.E., and Okkenhaug, K. (2010). The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. [Electronic Resource] Sci Signal 3, ra60.
pmid:20699475
37 Sarbassov, D.D., Ali, S.M., Sengupta, S., Sheen, J.H., Hsu, P.P., Bagley, A.F., Markhard, A.L., and Sabatini, D.M. (2006). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22, 159–168 .
pmid:16603397
38 Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 .
pmid:15718470
39 Schlissel, M.S. (2003). Regulating antigen-receptor gene assembly. Nat Rev Immunol 3, 890–899 .
pmid:14668805
40 Schlissel, M.S., and Stanhope-Baker, P. (1997). Accessibility and the developmental regulation of V(D)J recombination. Semin Immunol 9, 161–170 .
pmid:9200327
41 Srinivasan, L., Sasaki, Y., Calado, D.P., Zhang, B., Paik, J.H., DePinho, R.A., Kutok, J.L., Kearney, J.F., Otipoby, K.L., and Rajewsky, K. (2009). PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 .
pmid:19879843
42 Stadanlick, J.E., Kaileh, M., Karnell, F.G., Scholz, J.L., Miller, J.P., Quinn, W.J. 3rd, Brezski, R.J., Treml, L.S., Jordan, K.A., Monroe, J.G., (2008). Tonic B cell antigen receptor signals supply an NF-kappaB substrate for prosurvival BLyS signaling. Nat Immunol 9, 1379–1387 .
pmid:18978795
43 Staszewski, O., Baker, R.E., Ucher, A.J., Martier, R., Stavnezer, J., and Guikema, J.E. (2011). Activation-induced cytidine deaminase induces reproducible DNA breaks at many non-Ig Loci in activated B cells. Mol Cell 41, 232–242 .
pmid:21255732
44 Tsai, A.G., Lu, H., Raghavan, S.C., Muschen, M., Hsieh, C.L., and Lieber, M.R. (2008). Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 135, 1130–1142 .
pmid:19070581
45 Verkoczy, L., Duong, B., Skog, P., A?t-Azzouzene, D., Puri, K., Vela, J.L., and Nemazee, D. (2007). Basal B cell receptor-directed phosphatidylinositol 3-kinase signaling turns off RAGs and promotes B cell-positive selection. J Immunol 178, 6332–6341 .
pmid:17475862
46 Wang, J.H., Alt, F.W., Gostissa, M., Datta, A., Murphy, M., Alimzhanov, M.B., Coakley, K.M., Rajewsky, K., Manis, J.P., and Yan, C.T. (2008). Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. J Exp Med 205, 3079–3090 .
pmid:19064702
47 Wang, J.H., Gostissa, M., Yan, C.T., Goff, P., Hickernell, T., Hansen, E., Difilippantonio, S., Wesemann, D.R., Zarrin, A.A., Rajewsky, K., (2009). Mechanisms promoting translocations in editing and switching peripheral B cells. Nature 460, 231–236 .
pmid:19587764
48 Wicker, L.S., Boltz, R.C. Jr, Matt, V., Nichols, E.A., Peterson, L.B., and Sigal, N.H. (1990). Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. Eur J Immunol 20, 2277–2283 .
pmid:1700753
49 Wu, Y.-T., Ouyang, W., Lazorchak, A.S., Liu, D., Shen, H.-M., and Su, B. (2011). mTOR Complex 2 Targets Akt for Proteasomal Degradation via Phosphorylation at the Hydrophobic Motif. J Biol Chem 286, 14190–14198 .
50 Wullschleger, S., Loewith, R., and Hall, M.N. (2006a). TOR signaling in growth and metabolism. Cell 124, 471–484 .
pmid:16469695
51 Yamane, A., Resch, W., Kuo, N., Kuchen, S., Li, Z., Sun, H.W., Robbiani, D.F., McBride, K., Nussenzweig, M.C., and Casellas, R. (2011). Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol 12, 62–69 .
pmid:21113164
52 Zeng, Z., Sarbassov, D.D., Samudio, I.J., Yee, K.W.L., Munsell, M.F., Ellen Jackson, C., Giles, F.J., Sabatini, D.M., Andreeff, M., and Konopleva, M. (2007). Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML Blood 109, 3509– 3512 .
53 Zhang, L., Reynolds, T.L., Shan, X., and Desiderio, S. (2011). Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lymphoid tumorigenesis. Immunity 34, 163–174 .
pmid:21349429
54 Zhu, C., Mills, K.D., Ferguson, D.O., Lee, C., Manis, J., Fleming, J., Gao, Y., Morton, C.C., and Alt, F.W. (2002). Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 .
pmid:12110179
[1] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[2] Henry Y. Jiang, Sara Najmeh, Guy Martel, Elyse MacFadden-Murphy, Raquel Farias, Paul Savage, Arielle Leone, Lucie Roussel, Jonathan Cools-Lartigue, Stephen Gowing, Julie Berube, Betty Giannias, France Bourdeau, Carlos H. F. Chan, Jonathan D. Spicer, Rebecca McClure, Morag Park, Simon Rousseau, Lorenzo E. Ferri. Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis[J]. Protein Cell, 2020, 11(3): 187-201.
[3] Ruyi Xu, Yi Li, Yang Liu, Jianwei Qu, Wen Cao, Enfan Zhang, Jingsong He, Zhen Cai. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity?[J]. Protein Cell, 2020, 11(12): 881-893.
[4] Weiwei Jiang, Fangfang Cai, Huangru Xu, Yanyan Lu, Jia Chen, Jia Liu, Nini Cao, Xiangyu Zhang, Xiao Chen, Qilai Huang, Hongqin Zhuang, Zi-Chun Hua. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner[J]. Protein Cell, 2020, 11(11): 825-845.
[5] Tong Li, Jinbo Han, Liangjie Jia, Xiao Hu, Liqun Chen, Yiguo Wang. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation[J]. Protein Cell, 2019, 10(8): 583-594.
[6] Fenjie Li, Junjun Ding. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression[J]. Protein Cell, 2019, 10(8): 550-565.
[7] Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun[J]. Protein Cell, 2019, 10(3): 161-177.
[8] Yuanlong Ge, Shu Wu, Zepeng Zhang, Xiaocui Li, Feng Li, Siyu Yan, Haiying Liu, Junjiu Huang, Yong Zhao. Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers[J]. Protein Cell, 2019, 10(11): 808-824.
[9] Hongmei Mao, Zaiming Tang, Hua Li, Bo Sun, Mingjia Tan, Shaohua Fan, Yuan Zhu, Yi Sun. Neddylation inhibitor MLN4924 suppresses cilia formation by modulating AKT1[J]. Protein Cell, 2019, 10(10): 726-744.
[10] Boyi Zhang, Fei Chen, Qixia Xu, Liu Han, Jiaqian Xu, Libin Gao, Xiaochen Sun, Yiwen Li, Yan Li, Min Qian, Yu Sun. Revisiting ovarian cancer microenvironment: a friend or a foe?[J]. Protein Cell, 2018, 9(8): 674-692.
[11] Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein Cell, 2018, 9(6): 516-526.
[12] Jia Yang, Jun Yu. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein Cell, 2018, 9(5): 474-487.
[13] Xiao-xiao Xu, Han Wan, Li Nie, Tong Shao, Li-xin Xiang, Jian-zhong Shao. RIG-I: a multifunctional protein beyond a pattern recognition receptor[J]. Protein Cell, 2018, 9(3): 246-253.
[14] Nicole M. Anderson, Patrick Mucka, Joseph G. Kern, Hui Feng. The emerging role and targetability of the TCA cycle in cancer metabolism[J]. Protein Cell, 2018, 9(2): 216-237.
[15] John M. Dean, Irfan J. Lodhi. Structural and functional roles of ether lipids[J]. Protein Cell, 2018, 9(2): 196-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed