Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.
REVIEW
AGRICULTURAL GREEN DEVELOPMENT TO ACHIEVE FOOD SECURITY AND CARBON REDUCTION IN THE CONTEXT OF CHINA’S DUAL CARBON GOALS
Yulong YIN(), Kai HE, Zhong CHEN, Yangyang LI, Fengling REN, Zihan WANG, Yingcheng WANG, Haiqing GONG, Qichao ZHU, Jianbo SHEN, Xuejun LIU, Zhenling CUI
College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions (Ministry of Education), Key Laboratory of Low-carbon Green Agriculture (Ministry of Agriculture and Rural Affairs), China Agricultural University, Beijing 100193, China
 Download: PDF(3052 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● To achieve food security, Chinese agriculture– food system could not achieve C neutrality.

● China’s dual carbon goals has put forward more strict requirements for the green development of agriculture.

● The realization of C mitigation potential lies in the extensive application of existing technologies and technological innovation.

The agricultural sector, a major source of greenhouse gas emissions, and emissions from agriculture must be reduced substantially to achieve carbon (C) neutrality. Based on a literature analysis and other research results, this study investigated the effects and prospects of C reduction in agricultural systems under different scenarios (i.e., methods and approaches) in the context of China’s dual C goals, as those working in the agricultural sector have yet to reach a consensus on how to move forward. Different views, standards, and countermeasures were analyzed to provide a reference for agricultural action supporting China’s C neutrality goal.

Keywords agriculture      carbon neutrality      carbon peak      food security      carbon mitigation strategies     
Corresponding Author(s): Yulong YIN   
Just Accepted Date: 14 April 2023   Online First Date: 26 May 2023   
 Cite this article:   
Yulong YIN,Kai HE,Zhong CHEN, et al. AGRICULTURAL GREEN DEVELOPMENT TO ACHIEVE FOOD SECURITY AND CARBON REDUCTION IN THE CONTEXT OF CHINA’S DUAL CARBON GOALS[J]. Front. Agr. Sci. Eng. , 26 May 2023. [Epub ahead of print] doi: 10.15302/J-FASE-2023496.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2023496
https://academic.hep.com.cn/fase/EN/Y/V/I/0
Fig.1  Theoretical framework of agricultural green development (AGD) in China in the context of dual C goals.
Fig.2  The implementation pathway of agricultural green development (AGD) in China in the context of China’s dual C goals.
Fig.3  Collaborative technological innovation and reduced C emissions and increased food security along the whole agricultural chain.
1 Panel on Climate Change (IPCC) Intergovernmental . Impacts of 1.5 °C global warming on natural and human systems. In: Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Cambridge: Cambridge University Press, 2022, 175–312
2 P, Friedlingstein M, O’sullivan M W, Jones R M, Andrew J, Hauck A, Olsen G P, Peters W, Peters J, Pongratz S, Sitch C L, Quéré J G, Canadell P, Ciais R B, Jackson S, Alin L E O C, Aragão A, Arneth V, Arora N R, Bates M, Becker A, Benoit-Cattin H C, Bittig L, Bopp S, Bultan N, Chandra F, Chevallier L P, Chini W, Evans L, Florentie P M, Forster T, Gasser M, Gehlen D, Gilfillan T, Gkritzalis L, Gregor N, Gruber I, Harris K, Hartung V, Haverd R A, Houghton T, Ilyina A K, Jain E, Joetzjer K, Kadono E, Kato V, Kitidis J I, Korsbakken P, Landschützer N, Lefèvre A, Lenton S, Lienert Z, Liu D, Lombardozzi G, Marland N, Metzl D R, Munro J E M S, Nabel S, Nakaoka Y, Niwa K, O’Brien T, Ono P I, Palmer D, Pierrot B, Poulter L, Resplandy E, Robertson C, Rödenbeck J, Schwinger R, Séférian I, Skjelvan A J P, Smith A J, Sutton T, Tanhua P P, Tans H, Tian B, Tilbrook der Werf G, van N, Vuichard A P, Walker R, Wanninkhof A J, Watson D, Willis A J, Wiltshire W, Yuan X, Yue S Zaehle . Global carbon budget 2020. Earth System Science Data, 2020, 12(4): 3269–3340
https://doi.org/10.5194/essd-12-3269-2020
3 Nations Framework Convention on Climate Change (UNFCCC) United . Durban Platform for Enhanced Action (Decision 1/CP.17). UNFCCC, 2015
4 J, Chen C, Xu M, Gao D Li . Carbon peak and its mitigation implications for China in the post-pandemic era. Scientific Reports, 2022, 12(1): 3473
https://doi.org/10.1038/s41598-022-07283-4 pmid: 35236884
5 D, Guan J, Meng D M, Reiner N, Zhang Y, Shan Z, Mi S, Shao Z, Liu Q, Zhang S J Davis . Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nature Geoscience, 2018, 11(8): 551–555
https://doi.org/10.1038/s41561-018-0161-1
6 D, Tong Q, Zhang F, Liu G, Geng Y, Zheng T, Xue C, Hong R, Wu Y, Qin H, Zhao L, Yan K He . Current emissions and future mitigation pathways of coal-fired power plants in China from 2010 to 2030. Environmental Science & Technology, 2018, 52(21): 12905–12914
https://doi.org/10.1021/acs.est.8b02919 pmid: 30249091
7 D, Tong Q, Zhang Y, Zheng K, Caldeira C, Shearer C, Hong Y, Qin S J Davis . Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature, 2019, 572(7769): 373–377
https://doi.org/10.1038/s41586-019-1364-3 pmid: 31261374
8 of Ecology and Environment of the People’s Republic of China (MEE) Ministry . The Second Update Report on Climate Change of the People’s Republic of China. MEE, 2018 (in Chinese)
9 X, Yan Z, Cai S, Wang P Smith . Direct measurement of soil organic carbon content change in the croplands of China. Global Change Biology, 2011, 17(3): 1487–1496
https://doi.org/10.1111/j.1365-2486.2010.02286.x
10 Y, Huang W Sun . Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chinese Science Bulletin, 2006, 51(15): 1785–1803
https://doi.org/10.1007/s11434-006-2056-6
11 Z, Xie J, Zhu G, Liu G, Cadisch T, Hasegawa C, Chen H, Sun H, Tang Q Zeng . Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 2007, 13(9): 1989–2007
https://doi.org/10.1111/j.1365-2486.2007.01409.x
12 B, Gao T, Huang X, Ju B, Gu W, Huang L, Xu R M, Rees D S, Powlson P, Smith S Cui . Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Global Change Biology, 2018, 24(12): 5590–5606
https://doi.org/10.1111/gcb.14425 pmid: 30118572
13 Y, Zhao M, Wang S, Hu X, Zhang Z, Ouyang G, Zhang B, Huang S, Zhao J, Wu D, Xie B, Zhu D, Yu X, Pan S, Xu X Shi . Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4045–4050
https://doi.org/10.1073/pnas.1700292114 pmid: 29666318
14 Z, Cui H, Zhang X, Chen C, Zhang W, Ma C, Huang W, Zhang G, Mi Y, Miao X, Li Q, Gao J, Yang Z, Wang Y, Ye S, Guo J, Lu J, Huang S, Lv Y, Sun Y, Liu X, Peng J, Ren S, Li X, Deng X, Shi Q, Zhang Z, Yang L, Tang C, Wei L, Jia J, Zhang M, He Y, Tong Q, Tang X, Zhong Z, Liu N, Cao C, Kou H, Ying Y, Yin X, Jiao Q, Zhang M, Fan R, Jiang F, Zhang Z Dou . Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555(7696): 363–366
https://doi.org/10.1038/nature25785 pmid: 29513654
15 G, He Z, Cui H, Ying H, Zheng Z, Wang F Zhang . Managing the trade-offs among yield increase, water resources inputs and greenhouse gas emissions in irrigated wheat production systems. Journal of Cleaner Production, 2017, 164: 567–574
https://doi.org/10.1016/j.jclepro.2017.06.085
16 J D, Harindintwali J, Zhou B, Muhoza F, Wang A, Herzberger X Yu . Integrated eco-strategies towards sustainable carbon and nitrogen cycling in agriculture. Journal of Environmental Management, 2021, 293: 112856
https://doi.org/10.1016/j.jenvman.2021.112856 pmid: 34051535
17 J R, Knapp G L, Laur P A, Vadas W P, Weiss J M Tricarico . Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 2014, 97(6): 3231–3261
https://doi.org/10.3168/jds.2013-7234 pmid: 24746124
18 F, Lu X, Wang B, Han Z, Ouyang X, Duan H, Zheng H Miao . Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland. Global Change Biology, 2009, 15(2): 281–305
https://doi.org/10.1111/j.1365-2486.2008.01743.x
19 V L, Jin M R, Schmer C E, Stewart R B, Mitchell C O, Williams B J, Wienhold G E, Varvel R F, Follett J, Kimble K P Vogel . Management controls the net greenhouse gas outcomes of growing bioenergy feedstocks on marginally productive croplands. Science Advances, 2019, 5(12): eaav9318
https://doi.org/10.1126/sciadv.aav9318 pmid: 31897423
20 J, Shen Z, Cui Y, Miao G, Mi H, Zhang M, Fan C, Zhang R, Jiang W, Zhang H, Li X, Chen X, Li F Zhang . Transforming agriculture in China: from solely high yield to both high yield and high resource use efficiency. Global Food Security, 2013, 2(1): 1–8
https://doi.org/10.1016/j.gfs.2012.12.004
21 J, Zhang C, He L, Chen S Cao . Improving food security in China by taking advantage of marginal and degraded lands. Journal of Cleaner Production, 2018, 171: 1020–1030
https://doi.org/10.1016/j.jclepro.2017.10.110
22 H, Zhao J, Chang P, Havlík Dijk M, van H, Valin H, Janssens L, Ma Z, Bai M, Herrero P, Smith M Obersteiner . China’s future food demand and its implications for trade and environment. Nature Sustainability, 2021, 4(12): 1042–1051
https://doi.org/10.1038/s41893-021-00784-6
23 W, Steffen K, Richardson J, Rockström S E, Cornell I, Fetzer E M, Bennett R, Biggs S R, Carpenter Vries W, de Wit C A, de C, Folke D, Gerten J, Heinke G M, Mace L M, Persson V, Ramanathan B, Reyers S Sörlin . Sustainability. Planetary boundaries: guiding human development on a changing planet. Science, 2015, 347(6223): 1259855
https://doi.org/10.1126/science.1259855 pmid: 25592418
24 Division of the Food and Agriculture Organization of the United Nations (FAOSTAT) Statistics . Food and agriculture data. FAOSTAT, 2021. Available at FAO website on April 13, 2023
25 X, Zhang E A, Davidson D L, Mauzerall T D, Searchinger P, Dumas Y Shen . Managing nitrogen for sustainable development. Nature, 2015, 528(7580): 51–59
https://doi.org/10.1038/nature15743 pmid: 26595273
26 B, Gu Y, Ge S X, Chang W, Luo J Chang . Nitrate in groundwater of China: sources and driving forces. Global Environmental Change, 2013, 23(5): 1112–1121
https://doi.org/10.1016/j.gloenvcha.2013.05.004
27 D, Tilman K G, Cassman P A, Matson R, Naylor S Polasky . Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671–677
https://doi.org/10.1038/nature01014 pmid: 12167873
28 J, Shen Q, Zhu X, Jiao H, Ying H, Wang X, Wen W, Xu T, Li W, Cong X, Liu Y, Hou Z, Cui O, Oenema W J, Davies F Zhang . Agriculture Green Development: a model for China and the world. Frontiers of Agricultural Science and Engineering, 2020, 7(1): 5–13
https://doi.org/10.15302/J-FASE-2019300
29 T, Liu Q, Hu J, Tang C, Li Y, Jiang J, Liu C Cao . Key influencing factors and technical system of carbon sequestration and emission reduction in rice production in the middle and lower reaches of the Yangtze River. Chinese Journal of Eco-Agriculture, 2022, 30(4): 603−615 (in Chinese)
30 X, Jin L, Ma J, Zhang W, Ma S Zhang . Systematic research and quantitative approach for assessing agricultural green development. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1127−1140 (in Chinese)
31 W, Ma L, Ma J, Zhang F Zhang . Theoretical framework and realization pathway of agricultural green development. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1103−1112 (in Chinese)
32 T A, Urmi M M, Rahman M M, Islam M A, Islam N A, Jahan M A B, Mia S, Akhter M H, Siddiqui H M Kalaji . Integrated nutrient management for rice yield, soil fertility, and carbon sequestration. Plants, 2022, 11(1): 138
https://doi.org/10.3390/plants11010138 pmid: 35009141
33 R Lal . Eco-intensification through soil carbon sequestration: harnessing ecosystem services and advancing sustainable development goals. Journal of Soil and Water Conservation, 2019, 74(3): 55A–61A
https://doi.org/10.2489/jswc.74.3.55A
34 R Lal . Digging deeper: a holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, 2018, 24(8): 3285–3301
https://doi.org/10.1111/gcb.14054 pmid: 29341449
35 Q, Liu J, Zhou H, Wu Y, Gu M, Li X, Hong J, Wu H Xiao . Application status of integrated planting-breeding circular agriculture mode in China. Journal of Agriculture, 2022, 12(7): 81−88 (in Chinese)
36 M, Zhao R, Shi L Yao . Analysis on the goals and paths of carbon neutral agriculture in China. Agricultural Economic Problems, 2022, (9): 24−34 (in Chinese)
[1] Yifeng ZHANG, Chunfang YANG, Bright OBUOBI, Martin Kobby GRANT. ENTREPRENEURIAL OPPORTUNITY, VALUE EVOLUTION, AND ORGANIZATIONAL INTEGRATION OF PROFESSIONAL FARMER ENTREPRENEURSHIP: A MULTI-CASE COMPARISON IN CHINA[J]. Front. Agr. Sci. Eng. , 2023, 10(1): 135-148.
[2] Ting MENG, Shenggen FAN. TRANSFORMING CHINESE FOOD AND AGRICULTURE: A SYSTEMS PERSPECTIVE[J]. Front. Agr. Sci. Eng. , 2023, 10(1): 4-15.
[3] Yajuan LI, Qianni HUANG. SMALLHOLDER ADOPTION OF GREEN PRODUCTION TECHNOLOGIES ON THE NORTH CHINA PLAIN: EVIDENCE FROM SCIENCE AND TECHNOLOGY BACKYARDS[J]. Front. Agr. Sci. Eng. , 2022, 9(4): 536-546.
[4] Xiaoxia GUO, Chong WANG, Fusuo ZHANG. CONSTRUCTION OF AN INDEX SYSTEM FOR SUSTAINABILITY ASSESSMENT IN SMALLHOLDER FARMING SYSTEMS[J]. Front. Agr. Sci. Eng. , 2022, 9(4): 511-522.
[5] Yu GUO, Ran LI, Peng NING, Xiaoqiang JIAO. A WAY TO SUSTAINABLE CROP PRODUCTION THROUGH SCIENTIST−FARMER ENGAGEMENT[J]. Front. Agr. Sci. Eng. , 2022, 9(4): 577-587.
[6] Xin ZHANG, Yanyu WANG, Lena SCHULTE-UEBBING, Wim DE VRIES, Tan ZOU, Eric A. DAVIDSON. SUSTAINABLE NITROGEN MANAGEMENT INDEX: DEFINITION, GLOBAL ASSESSMENT AND POTENTIAL IMPROVEMENTS[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 356-365.
[7] Jeroen C. J. GROOT, Xiaolin YANG. TRADE-OFFS IN THE DESIGN OF SUSTAINABLE CROPPING SYSTEMS AT A REGIONAL LEVEL: A CASE STUDY ON THE NORTH CHINA PLAIN[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 295-308.
[8] Hans LAMBERS, Wen-Feng CONG. CHALLENGES PROVIDING MULTIPLE ECOSYSTEM BENEFITS FOR SUSTAINABLE MANAGED SYSTEMS[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 170-176.
[9] Bing-Xin WANG, Anouschka R. HOF, Chun-Sen MA. IMPACTS OF CLIMATE CHANGE ON CROP PRODUCTION, PESTS AND PATHOGENS OF WHEAT AND RICE[J]. Front. Agr. Sci. Eng. , 2022, 9(1): 4-18.
[10] Xiuwei GUO, Manoj Kumar SHUKLA, Di WU, Shichao CHEN, Donghao LI, Taisheng DU. PLANT DENSITY, IRRIGATION AND NITROGEN MANAGEMENT: THREE MAJOR PRACTICES IN CLOSING YIELD GAPS FOR AGRICULTURAL SUSTAINABILITY IN NORTH-WEST CHINA[J]. Front. Agr. Sci. Eng. , 2021, 8(4): 525-544.
[11] Wen-Feng CONG, Chaochun ZHANG, Chunjie LI, Guangzhou WANG, Fusuo ZHANG. DESIGNING DIVERSIFIED CROPPING SYSTEMS IN CHINA: THEORY, APPROACHES AND IMPLEMENTATION[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 362-372.
[12] Hao YANG, Weiping ZHANG, Long LI. INTERCROPPING: FEED MORE PEOPLE AND BUILD MORE SUSTAINABLE AGROECOSYSTEMS[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 373-386.
[13] Qi WANG, Zhanxiang SUN, Wei BAI, Dongsheng ZHANG, Yue ZHANG, Ruonan WANG, Wopke VAN DER WERF, Jochem B. EVERS, Tjeerd-Jan STOMPH, Jianping GUO, Lizhen ZHANG. LIGHT INTERCEPTION AND USE EFFICIENCY DIFFER WITH MAIZE PLANT DENSITY IN MAIZE-PEANUT INTERCROPPING[J]. Front. Agr. Sci. Eng. , 2021, 8(3): 432-446.
[14] Maryna STROKAL, Annette B.G. JANSSEN, Xinping CHEN, Carolien KROEZE, Fan LI, Lin MA, Huirong YU, Fusuo ZHANG, Mengru WANG. GREEN AGRICULTURE AND BLUE WATER IN CHINA: REINTEGRATING CROP AND LIVESTOCK PRODUCTION FOR CLEAN WATER[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 72-80.
[15] Antonius G. T. SCHUT, Emily C. COOLEDGE, Marc MORAINE, Gerrie W. J. VAN DE VEN, Davey L. JONES, David R. CHADWICK. REINTEGRATION OF CROP-LIVESTOCK SYSTEMS IN EUROPE: AN OVERVIEW[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 111-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed