Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (1) : 104-111    https://doi.org/10.1007/s11705-011-1166-0
RESEARCH ARTICLE
Recovery of waste heat in cement plants for the capture of CO2
Ruifeng DONG, Zaoxiao ZHANG(), Hongfang LU, Yunsong YU
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(339 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Large amounts of energy are consumed during the manufacturing of cement especially during the calcination process which also emits large amounts of CO2. A large part of the energy used in the making of cement is released as waste heat. A process to capture CO2 by integrating the recovery and utilization of waste heat has been designed. Aspen Plus software was used to calculate the amount of waste heat and the efficiency of energy utilization. The data used in this study was based on a dry process cement plant with a 5-stage preheater and a precalciner with a cement output of 1 Mt/y. According to the calculations: 1) the generating capacity of the waste heat recovery system is 4.9 MW. 2) The overall CO2 removal rate was as high as 78.5%. 3) The efficiency of energy utilization increased after the cement producing process was retrofitted with this integrated design.

Keywords cement industry      waste heat      recovery      utilization      CO2 removal     
Corresponding Author(s): ZHANG Zaoxiao,Email:zhangzx@mail.xjtu.edu.cn   
Issue Date: 05 March 2012
 Cite this article:   
Ruifeng DONG,Zaoxiao ZHANG,Hongfang LU, et al. Recovery of waste heat in cement plants for the capture of CO2[J]. Front Chem Sci Eng, 2012, 6(1): 104-111.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-011-1166-0
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I1/104
Fig.1  General flow diagram for a cement plant
Fig.2  Schematic of a cement plant with post-combustion CO capture integrated with waste heat recovery
ComponentConcentration
CO214%-33% (w/w), 10%-24% (v/v)
NO25%-10% (v/v)of NOx
NOx<200-3000 mg·Nm-3
SO2<10-3500 mg·Nm-3
O28%-14% (v/v)
Tab.1  The components in the exhaust gas from a typical cement plant
Fig.3  The composite curves of a CO capture system with integrated waste heat recovery
Fig.4  The heat exchange network of a CO capture system with integrated waste heat recovery
OptionsUnitCase 1a) [7]Case b)2Case 3 c) [7]Case 4 d)
Fuel and power
Coal feedkt/y63.363.3291.6266.2
Petroleum coke feedkt/y32.932.932.932.9
Average power consumptionMW10.210.742.141.7
Average on-site power generationMW-4.945.043.7
Average net power consumptionMW10.25.8-2.9-2.0
CO2 capture
CO2 capturedkt/y--1067.71017.9
CO2 emitted on-sitekt/y728.4728.4188.4179.5
CO2 emission associated with power

Brown M A, Jackson R, Cox M, Cortes R, Deitchman B, Lapsa M V. Making industry part of the climate solution: policy options to promote energy efficiency. Department of Energy (Internet). May 2011 (cited 2011 June 13). Available from http://www.osti.gov/energycitations/product.biblio.jsp? uery_id=1&page=0&osti_id=1016041

kt/y55.731.7-15.8-10.9
Overall CO2 emissionskt/y784.1760.1172.6168.6
Overall CO2 reduction rate%-3.178.078.5
Tab.2  Calculation results
1 Yu Y S, Li Y, Lu H F, Yan L W, Zhang Z X, Wang G X, Rudolph V. Multi-field synergy study of CO2 capture process by chemical absorption. Chemical Engineering Science , 2010, 65(10): 3279-3292
doi: 10.1016/j.ces.2010.02.025
2 Yu Y S, Li Y, Lu H F, Yan L W, Zhang Z X. Performance improvement for chemical absorption of CO2 by global field synergy optimization. International Journal of Greenhouse Gas Control , 2011, 5(4): 649-658
doi: 10.1016/j.ijggc.2011.03.008
3 Sheinbaum C, Ozawa L. Energy use and CO2 emissions for Mexico’s cement industry. Energy , 1998, 23(9): 725-732
doi: 10.1016/S0360-5442(98)00022-X
4 Liu F, Ross M, Wang S M. Energy efficiency of China’s cement industry. Energy , 1995, 20(7): 669-681
doi: 10.1016/0360-5442(95)00002-X
5 ?zdo?an S, Arikol M. Energy and exergy analyses of selected Turkish industries. Energy , 1995, 20(1): 73-80
doi: 10.1016/0360-5442(94)00054-7
6 Hasanbeigi A, Price L, Lu H Y, Lan W. Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: a case study of 16 cement plants. Energy , 2010, 35(8): 3461-3473
doi: 10.1016/j.energy.2010.04.046
7 Barker D J, Turner S A, Napier-Moore P A, Clark M, Davison J E. CO2 capture in the cement industry. Energy Procedia , 2009, 1(1): 87-94
doi: 10.1016/j.egypro.2009.01.014
8 Hassan S M N. Techno-Economic Study of CO2 Capture Process for Cement Plants. Ontario: University of Waterloo, 2005
9 Qian J R. An equipment for recovering and utilizing the waste heat from cement rotary kiln. CN Patent, 200810059507 . 2008-10-22
10 Bosoaga A, Masek O, Oakey J E. CO2 capture technologies for cement industry. Energy Procedia , 2009, 1(1): 133-140
doi: 10.1016/j.egypro.2009.01.020
11 Madhawa Hettiarachchi H D, Golubovic M, Worek W M, Ikegami Y. Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources. Energy , 2007, 32(9): 1698-1706
doi: 10.1016/j.energy.2007.01.005
12 Ravanchi M T, Sahebdelfar S, Zangeneh F T. Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions. Frontiers of Chemical Science and Engineering , 2011, 5(2): 173-178
doi: 10.1007/s11705-010-0562-1
13 Duke M C, Ladewig B, Smart S, Rudolph V, Costa J C D. Assessment of postcombustion carbon capture technologies for power generation. Frontiers of Chemical Engineering in China , 2010, 4(2): 184-195
doi: 10.1007/s11705-009-0234-1
14 Li Q, Yu Y S, Jiang J, Zhang Z X. CO2 capture by chemical absorption method based on heat pump technology. Journal of Chemical Engineering of Chinese University , 2010, 24(1): 29-34 (in Chinese)
15 Yu Y S, Li Y, Li Q, Jiang J, Zhang Z X. An innovative process for simultaneous removal of CO2 and SO2 from flue gas of a power plant by energy integration. Energy Conversion and Management , 2009, 50(12): 2885-2892
doi: 10.1016/j.enconman.2009.07.003
16 Nakaiwa M, Huang K, Endo A, Ohmori T, Akiya T, Takamatsu T. Internally heat-integrated distillation columns: a review. Chemical Engineering Research & Design , 2003, 81(1): 162-177
doi: 10.1205/026387603321158320
[1] Faraz Montazersadgh, Hao Zhang, Anas Alkayal, Benjamin Buckley, Ben W. Kolosz, Bing Xu, Jin Xuan. Electrolytic cell engineering and device optimization for electrosynthesis of e-biofuels via co-valorisation of bio-feedstocks and captured CO2[J]. Front. Chem. Sci. Eng., 2021, 15(1): 208-219.
[2] Tong Zhang, Shan-Jiang Wang, Xiao-Yang Zhang, Ming Fu, Yi Yang, Wen Chen, Dan Su. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization[J]. Front. Chem. Sci. Eng., 2021, 15(1): 35-48.
[3] Zishuai Liu, Yimin Zhang, Zilin Dai, Jing Huang, Cong Liu. Coextraction of vanadium and manganese from high-manganese containing vanadium wastewater by a solvent extraction-precipitation process[J]. Front. Chem. Sci. Eng., 2020, 14(5): 902-912.
[4] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[5] Petar S. Varbanov, Timothy G. Walmsley, Yee V. Fan, Jiří J. Klemeš, Simon J. Perry. Spatial targeting evaluation of energy and environmental performance of waste-to-energy processing[J]. Front. Chem. Sci. Eng., 2018, 12(4): 731-744.
[6] Timothy G. Walmsley, Nathan S. Lal, Petar S. Varbanov, Jiří J. Klemeš. Automated retrofit targeting of heat exchanger networks[J]. Front. Chem. Sci. Eng., 2018, 12(4): 630-642.
[7] Xuan Wang, Daneel Geysen, Tom Van Gerven, Peter T. Jones, Bart Blanpain, Muxing Guo. Characterization of landfilled stainless steel slags in view of metal recovery[J]. Front. Chem. Sci. Eng., 2017, 11(3): 353-362.
[8] Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions[J]. Front. Chem. Sci. Eng., 2017, 11(3): 308-316.
[9] Ting Yuan, Yakun Guo, Junkai Dong, Tianyi Li, Tong Zhou, Kaiwen Sun, Mei Zhang, Qingyu Wu, Zhen Xie, Yizhi Cai, Limin Cao, Junbiao Dai. Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae[J]. Front. Chem. Sci. Eng., 2017, 11(1): 107-116.
[10] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[11] Olga P. Arsenyeva,Lidija Čuček,Leonid L. Tovazhnyanskyy,Petro O. Kapustenko,Yana A. Savchenko,Sergey K. Kusakov,Oleksandr I. Matsegora. Utilisation of waste heat from exhaust gases of drying process[J]. Front. Chem. Sci. Eng., 2016, 10(1): 131-138.
[12] J. Sargolzaei, A. Hedayati Moghaddam. Predicting the yield of pomegranate oil from supercritical extraction using artificial neural networks and an adaptive-network-based fuzzy inference system[J]. Front Chem Sci Eng, 2013, 7(3): 357-365.
[13] Rongling LIU, Yingjie QIN, Xiaojun LI, Liqiang LIU. Concentrating aqueous hydrochloric acid by multiple-effect membrane distillation[J]. Front Chem Sci Eng, 2012, 6(3): 311-321.
[14] Yulan GAO, Xiangchen FANG, Zhenmin CHENG. Development and application of ex-situ presulfurization technology for hydrotreating catalysts in China[J]. Front Chem Sci Eng, 2011, 5(3): 287-296.
[15] S. ASADI, M. PAKIZEH, M. POURAFSHARI CHENAR. An investigation of reaction furnace temperatures and sulfur recovery[J]. Front Chem Sci Eng, 2011, 5(3): 362-371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed