Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (1) : 82-92    https://doi.org/10.1007/s11705-022-2181-z
RESEARCH ARTICLE
Reductive amination of n-hexanol to n-hexylamine over Ni–Ce/γ-Al2O3 catalysts
Pengfei Li, Huijiang Huang, Zheng Wang, Ziying Hong, Yan Xu(), Yujun Zhao()
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(13930 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The amination of alkyl alcohols is one of the most promising paths in synthesis of aliphatic amines. Herein, cerium doped nickel-based catalysts were synthesized and tested in a gas-phase amination of n-hexanol to n-hexylamine. It was found that the activity of the Ni/γ-Al2O3 catalyst is significantly improved by doping an appropriate amount of cerium. The presence of cerium effectively inhibits the agglomeration of nickel particle, resulting in better Ni dispersion. As Ni particle size plays critical role on the catalytic activity, higher turnover frequency of n-hexanol amination was achieved. Cerium doping also improves the reduction ability of nickel and enhances the interactions between Ni and the catalyst support. More weak acid sites were also found in those cerium doped catalysts, which promote another key step—ammonia dissociative adsorption in this reaction system. The overall synergy of Ni nanoparticles and acid sites of this Ni–Ce/γ-Al2O3 catalyst boosts its superior catalytic performance in the amination of n-hexanol.

Keywords amination      alcohol      cerium      nickel      acidity      interaction     
Corresponding Author(s): Yan Xu,Yujun Zhao   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Online First Date: 01 August 2022    Issue Date: 21 February 2023
 Cite this article:   
Pengfei Li,Huijiang Huang,Zheng Wang, et al. Reductive amination of n-hexanol to n-hexylamine over Ni–Ce/γ-Al2O3 catalysts[J]. Front. Chem. Sci. Eng., 2023, 17(1): 82-92.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2181-z
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I1/82
Catalyst Metal loading a)/wt % SBETb)/(m2?g–1) Pore volume/(cm3?g–1) Pore diameter/(m3?g–1) Dispersionc)/% dNid)/nm dCee)/nm
Ni Ce
Ni–0Ce 9.77 0.00 133 0.23 4.7 18.0 3.9
Ni–1Ce 9.83 1.11 117 0.20 4.9 23.5 3.5
Ni–2Ce 9.97 1.96 122 0.20 4.8 24.9 2.7 3.1
Ni–3Ce 10.31 2.98 113 0.20 4.9 23.5 2.8 5.2
Ni–5Ce 9.87 5.26 117 0.19 4.8 21.8 3.2 5.5
Ni/CeO2 9.91 90.09 25 0.07 8.5 38.1 21.1
Tab.1  Texture properties and structure of Ni–Ce and Ni/CeO2
Fig.1  XRD results of the Ni–xCe and Ni/CeO2 catalysts: (a) calcined and (b) reduced.
Fig.2  TEM images of the catalysts: (a) Ni–0Ce; (b) Ni–0Ce; (c) Ni–2Ce; (d) Ni–2Ce.
Fig.3  (a) H2-TPR patterns of catalysts with different Ce contents, and (b) the areas composition of various peaks ascribed to the nickel species and their sums. α corresponding to the NiO that have weak interactions with the support, β corresponding to the NiO that have strong interactions with the support, γ represents NiAl2O4 (Ni–Al spinel).
Catalyst Temperature/°C–Peak area/a.u.
α β γ
Ni–0Ce 422.6–1.40 582.6–4.13 690.0–0.44
Ni–1Ce 414.3–0.83 579.7–3.38 685.6–0.39
Ni–2Ce 384.2–1.14 565.6–4.22 677.4–0.14
Ni–3Ce 391.1–1.15 568.7–3.29 675.9–0.34
Tab.2  The peak temperatures and peak areas characterized by the H2-TPR profiles of Ni–xCe catalysts
Catalyst H2 desorption temperature/°C–H2 desorption amount/(μmol?g–1)
Weak Moderate Strong Total
Ni–0Ce 121.9–92 258.9–239 503.1–118 449
Ni–1Ce 128.2–-83 231.2–208 484.5–389 681
Ni–2Ce 133.2–112 234.9–376 471.0–331 819
Ni–3Ce 130.1–87 226.4–302 486.8–493 882
Tab.3  Results for band deconvolution for H2-TPD profiles measured on the different catalytic formulation
Fig.4  (a) H2-TPD profiles of the Ni–xCe catalysts, and (b) the composition of the various hydrogen desorption peaks, and their sums.
Fig.5  NH3-TPD profiles of the Ni–xCe catalysts.
Catalyst Peak area of acidic sites/a.u.
Weak Strong Total
Ni–0Ce 125 136 262
Ni–1Ce 120 151 272
Ni–2Ce 117 294 365
Ni–3Ce 80 268 347
Tab.4  Results for band deconvolution for NH3-TPD profiles measured on the different catalytic formulation
Catalyst Binding energy/eV XNi0/% XNi2+ b)/%
Ni0 Ni2+ a) Ni2+ b)
Ni–0Ce 852.0 853.2 855.4 857.0 28.1% 16.2%
Ni–2Ce 852.0 853.4 855.4 857.0 30.5% 7.8%
Ni–3Ce 852.3 853.7 855.9 857.3 21.4% 15.0%
Tab.5  Deconvolution results of Ni 2p 3/2 on the surface of catalysts
Fig.6  XPS for (a) Ni 2p 3/2 and (b) Ce 3d.
Catalyst Binding energy/eV XCe3+
Ni–2Ce 885.8 904.0 45.6%
Ni–3Ce 885.3 903.6 49.2%
Tab.6  Deconvolution results of Ce 3d on the surface of catalysts
Fig.7  Catalytic amination performance of Ni–xCe at different GHSV: (a) Ni–0Ce, (b) Ni–1Ce, (c) Ni–2Ce, (d) Ni–3Ce, and (e) Ni–5Ce. Reaction conditions: 0.25 g cat., T = 200 °C, P = 0.1 MPa, hexanol:H2:NH3 = 1:9:11.
Fig.8  Stability of Ni–0Ce and Ni–2Ce: (a) Ni–0Ce and (b) Ni–2Ce. Reaction conditions: 0.25 g cat.,T = 200 °C, P = 0.1 MPa, GHSV = 7.91 min–1, hexanol:H2:NH3= 1:9:11.
Fig.9  The effect of (a) nickel particle size and (b) the number of acid amount on TOF of n-hexanol amination. Reaction conditions: 0.25 g cat., T = 200 °C, P = 0.1 MPa, GHSV = 19.78 min–1, hexanol:H2:NH3= 1:9:11.
  Scheme1 Proposed reaction mechanism for hexanol amination over Ni–xCe catalyst.
1 K Hayes. Industrial process for manufacturing amines. Applied Catalysis A: General, 2001, 221( 1–2): 187– 195
https://doi.org/10.1016/S0926-860X(01)00813-4
2 J P Wolfe, S Wagaw, J F Marcoux, S L Buchwald. Rational development of practical catalysts for aromatic carbon-nitrogen bond formation. Accounts of Chemical Research, 1998, 31( 12): 805– 818
https://doi.org/10.1021/ar9600650
3 M Orlandi, D Brenna, R Harms, S Jost, M Benaglia. Recent developments in the reduction of aromatic and aliphatic nitro compounds to amines. Organic Process Research & Development, 2018, 22( 4): 430– 445
https://doi.org/10.1021/acs.oprd.6b00205
4 D Zhang, L Tao, Q Wang, T Wang. A facile synthesis of cost-effective triphenylamine-containing porous organic polymers using different crosslinkers. Polymer, 2016, 82 : 114– 120
https://doi.org/10.1016/j.polymer.2015.11.041
5 E Bernoud, C Lepori, M Mellah, E Schulz, J Hannedouche. Recent advances in metal free- and late transition metal-catalysed hydroamination of unactivated alkenes. Catalysis Science & Technology, 2015, 5( 4): 2017– 2037
https://doi.org/10.1039/C4CY01716A
6 J B Wen, K Y You, M J Chen, J Jian, F F Zhao, P L Liu, Q H Ai, H A Luo. Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination of cyclohexene with cyclohexylamine to dicyclohexylamine in the vapor phase. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 654– 665
https://doi.org/10.1007/s11705-020-1973-2
7 G Liang, A Wang, L Li, G Xu, N Yan, T Zhang. Production of primary amines by reductive amination of biomass-derived aldehydes/ketones. Angewandte Chemie International Edition, 2017, 56( 11): 3050– 3054
https://doi.org/10.1002/anie.201610964
8 E J Schwoegler, H Adkins. Preparation of certain amines. Journal of the American Chemical Society, 1939, 61( 12): 3499– 3502
https://doi.org/10.1021/ja01267a081
9 M Pera-Titus, F Shi. Catalytic amination of biomass-based alcohols. ChemSusChem, 2014, 7( 3): 720– 722
https://doi.org/10.1002/cssc.201301095
10 C R Ho, V Defalque, S Zheng, A T Bell. Propanol amination over supported nickel catalysts: reaction mechanism and role of the support. ACS Catalysis, 2019, 9( 4): 2931– 2939
https://doi.org/10.1021/acscatal.8b04612
11 G Guillena, D J Ramon, M Yus. Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chemical Reviews, 2010, 110( 3): 1611– 1641
https://doi.org/10.1021/cr9002159
12 V A Veefkind, J A Lercher. On the elementary steps of acid zeolite catalyzed amination of light alcohols. Applied Catalysis A: General, 1999, 181( 2): 245– 255
https://doi.org/10.1016/S0926-860X(98)00408-6
13 G Liang, Y Zhou, J Zhao, A Y Khodakov, V V Ordomsky. Structure-sensitive and insensitive reactions in alcohol amination over nonsupported Ru nanoparticles. ACS Catalysis, 2018, 8( 12): 11226– 11234
https://doi.org/10.1021/acscatal.8b02866
14 L Fang, Z Yan, K Vits, B Southward, M Pera-Titus. Nanoceria-promoted low Pd–Ni catalyst for the synthesis of secondary amines from aliphatic alcohols and ammonia. Catalysis Science & Technology, 2019, 9( 5): 1215– 1230
https://doi.org/10.1039/C8CY01670D
15 C J Yue, K Di, L P Gu, Z W Zhang, L L Ding. Selective amination of 1,2-propanediol over Co/La3O4 catalyst prepared by liquid-phase reduction. Molecular Catalysis, 2019, 477 : 110539
https://doi.org/10.1016/j.mcat.2019.110539
16 J H Cho, J H Park, T S Chang, J E Kim, C H Shin. Reductive amination of 2-propanol to monoisopropylamine over Ni/γ-Al2O3 catalysts. Catalysis Letters, 2013, 143( 12): 1319– 1327
https://doi.org/10.1007/s10562-013-1086-3
17 X Jv, S Sun, Q Zhang, M Du, L Wang, B Wang. Efficient and mild reductive amination of carbonyl compounds catalysed by dual-function palladium nanoparticles. ACS Sustainable Chemistry & Engineering, 2020, 8( 3): 1618– 1626
https://doi.org/10.1021/acssuschemeng.9b06464
18 Z Yan, A Tomer, G Perrussel, M Ousmane, B Katryniok, F Dumeignil, A Ponchel, A Liebens, M Pera-Titus. Pd/CeO2“H2 pump” for the direct amination of alcohols. ChemCatChem, 2016, 8( 21): 3347– 3352
https://doi.org/10.1002/cctc.201600855
19 J Zhang, L Kong, Y Chen, H Huang, H Zhang, Y Yao, Y Xu, Y Xu, S Wang, X Ma, Y Zhao. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15( 3): 666– 678
https://doi.org/10.1007/s11705-020-1982-1
20 D Pan, J H Zhou, B Peng, S P Wang, Y J Zhao, X B Ma. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid. Frontiers of Chemical Science and Engineering, 2022, 16( 3): 397– 407
https://doi.org/10.1007/s11705-021-2076-4
21 S Li, M Wen, H Chen, Z Ni, J Xu, J Shen. Amination of isopropanol to isopropylamine over a highly basic and active Ni/LaAlSiO catalyst. Journal of Catalysis, 2017, 350 : 141– 148
https://doi.org/10.1016/j.jcat.2017.02.009
22 E Hong, S Bang, J H Cho, K D Jung, C H Shin. Reductive amination of isopropanol to monoisopropylamine over Ni–Fe/γ-Al2O3 catalysts: synergetic effect of Ni–Fe alloy formation. Applied Catalysis A: General, 2017, 542 : 146– 153
https://doi.org/10.1016/j.apcata.2017.05.003
23 Z Ma, J Wang, J Li, N Wang, C An, L Sun. Propane dehydrogenation over Al2O3 supported Pt nanoparticles: effect of cerium addition. Fuel Processing Technology, 2014, 128 : 283– 288
https://doi.org/10.1016/j.fuproc.2014.07.031
24 J J Gonzalez, J F Da Costa-Serra, A Chica. Biogas dry reforming over Ni–Ce catalyst supported on nanofibered alumina. International Journal of Hydrogen Energy, 2020, 45( 40): 20568– 20581
https://doi.org/10.1016/j.ijhydene.2020.02.042
25 H Liu, X Zou, X Wang, X Lu, W Ding. Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen. Journal of Natural Gas Chemistry, 2012, 21( 6): 703– 707
https://doi.org/10.1016/S1003-9953(11)60422-2
26 A Tomer, Y Zhen, A Ponchel, M Pera-Titus. Mixed oxides supported low-nickel formulations for the direct amination of aliphatic alcohols with ammonia. Journal of Catalysis, 2017, 356 : 133– 146
https://doi.org/10.1016/j.jcat.2017.08.015
27 D Cheng, Z Wang, Y Xia, Y Wang, W Zhang, W Zhu. Catalytic amination of diethylene glycol with tertiarybutylamine over Ni−Al2O3 catalysts with different Ni/Al ratios. RSC Advances, 2016, 6( 104): 102373– 102380
https://doi.org/10.1039/C6RA21894F
28 K I Shimizu, K Kon, W Onodera, H Yamazaki, J N Kondo. Heterogeneous Ni catalyst for direct synthesis of primary amines from alcohols and ammonia. ACS Catalysis, 2013, 3( 1): 112– 117
https://doi.org/10.1021/cs3007473
29 J Zielinski. Morphology of nickel/alumina catalysts. Journal of Catalysis, 1982, 76( 1): 157– 163
https://doi.org/10.1016/0021-9517(82)90245-7
30 X Li, J Tian, H Liu, C Tang, C Xia, J Chen, Z Huang. Effective synthesis of 5-amino-1-pentanol by reductive amination of biomass-derived 2-hydroxytetrahydropyran over supported Ni catalysts. Chinese Journal of Catalysis, 2020, 41( 4): 631– 641
https://doi.org/10.1016/S1872-2067(19)63471-6
31 D Chrysostomou, J Flowers, F Zaera. The thermal chemistry of ammonia on Ni(110). Surface Science, 1999, 439( 1-3): 34– 48
https://doi.org/10.1016/S0039-6028(99)00458-6
32 D Sima, H Wu, K Tian, S Xie, Y Q Liu. Enhanced low temperature catalytic activity of Ni/Al–Ce0.8Zr0.2O2 for hydrogen production from ammonia decomposition. International Journal of Hydrogen Energy, 2020, 45( 16): 9342– 9352
https://doi.org/10.1016/j.ijhydene.2020.01.209
[1] FCE-22009-OF-LP_suppl_1 Download
[1] Haoxiang Yu, Leiyu Fan, Chenchen Deng, Huihui Yan, Lei Yan, Jie Shu, Zhen-Bo Wang. Enabling nickel ferrocyanide nanoparticles for high-performance ammonium ion storage[J]. Front. Chem. Sci. Eng., 2023, 17(2): 226-235.
[2] Hong Liu, Yi-Min Zhang, Jing Huang, Tao Liu. Vanadium(IV) solvent extraction enhancement in high acidity using di-(2-ethylhexyl)phosphoric acid with [Cl] present: an experimental and theoretical study[J]. Front. Chem. Sci. Eng., 2023, 17(1): 56-67.
[3] Cai-Yue Wang, Meng-Qi Gao, Cheng-Cai Zhao, Li-Min Zhao, Hui Zhao. Metal phosphonate-derived cobalt/nickel phosphide@N-doped carbon hybrids as efficient bifunctional oxygen electrodes for Zn−air batteries[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1367-1376.
[4] Xin Li, Meng Su, Yao Chen, Mehar U. Nisa, Ning Zhao, Xiangning Jiang, Zhenhua Li. The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1224-1236.
[5] Katarzyna Majerczak, Ophelie Squillace, Zhiwei Shi, Zhanping Zhang, Zhenyu J. Zhang. Molecular diffusion in ternary poly(vinyl alcohol) solutions[J]. Front. Chem. Sci. Eng., 2022, 16(6): 1003-1016.
[6] Ping Zhang, Yi-Han Li, Li Chen, Mao-Jie Zhang, Yang Ren, Yan-Xu Chen, Zhi Hu, Qi Wang, Wei Wang, Liang-Yin Chu. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants[J]. Front. Chem. Sci. Eng., 2022, 16(6): 939-949.
[7] Jinian Yang, Xuesong Feng, Shibin Nie, Yuxuan Xu, Zhenyu Li. Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2022, 16(4): 484-497.
[8] Yuxuan Xu, Guanglong Dai, Shibin Nie, Jinian Yang, Song Liu, Hong Zhang, Xiang Dong. Nickel-based metal−organic framework-derived whisker-shaped nickel phyllosilicate toward efficiently enhanced mechanical, flammable and tribological properties of epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1493-1504.
[9] Hui Shang, Chong Guo, Pengfei Ye, Wenhui Zhang. Synthesis of boron modified CoMo/Al2O3 catalyst under different heating methods and its gasoline hydrodesulfurization performance[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1088-1098.
[10] Jinian Yang, Yuxuan Xu, Chang Su, Shibin Nie, Zhenyu Li. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1281-1295.
[11] Chaoli Tong, Jiachang Zuo, Danlu Wen, Weikun Chen, Linmin Ye, Youzhu Yuan. Halide-free carbonylation of methanol with H-MOR supported CuCeOx catalysts[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1075-1087.
[12] Yiyi Fan, Jinyong Li, Saidi Wang, Xiuxia Meng, Yun Jin, Naitao Yang, Bo Meng, Jiaquan Li, Shaomin Liu. Nickel(II) ion-intercalated MXene membranes for enhanced H2/CO2 separation[J]. Front. Chem. Sci. Eng., 2021, 15(4): 882-891.
[13] Wei Xiong, Susu Zhou, Zeyong Zhao, Fang Hao, Zhihui Cai, Pingle Liu, Hailiang Zhang, Hean Luo. Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(4): 998-1007.
[14] Jingbin Wen, Kuiyi You, Minjuan Chen, Jian Jian, Fangfang Zhao, Pingle Liu, Qiuhong Ai, He’an Luo. Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination of cyclohexene with cyclohexylamine to dicyclohexylamine in the vapor phase[J]. Front. Chem. Sci. Eng., 2021, 15(3): 654-665.
[15] Jingwei Zhang, Lingxin Kong, Yao Chen, Huijiang Huang, Huanhuan Zhang, Yaqi Yao, Yuxi Xu, Yan Xu, Shengping Wang, Xinbin Ma, Yujun Zhao. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2021, 15(3): 666-678.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed