Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (12) : 2074-2087    https://doi.org/10.1007/s11705-023-2342-8
RESEARCH ARTICLE
Effect of polyethylene glycol on the crystallization, rheology and foamability of poly(lactic acid) containing in situ generated polyamide 6 nanofibrils
Yuhui Qiao1,2,3, Qian Li3, Amirjalal Jalali4, Dongsheng Yu1,2, Xichan He1,2, Xiaofeng Wang3, Jing Jiang5(), Zhiyu Min1()
1. Department of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
2. Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
3. National Center for International Research of Micro-Nano Molding Technology, Zhengzhou 450001, China
4. Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
5. School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou 450001, China
 Download: PDF(6655 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, the rheological properties, crystallization and foaming behavior of poly(lactic acid) with polyamide 6 nanofibrils were examined with polyethylene glycol as a compatibilizer. Polyamide 6 particles were deformed into nanofibrils during drawing. For the 10% polyamide 6 case, polyethylene glycol addition reduced the polyamide 6 fibril diameter from 365.53 to 254.63 nm, owing to the smaller polyamide 6 particle size and enhanced interface adhesion. Rheological experiments revealed that the viscosity and storage modulus of the composites were increased, which was associated with the three-dimensional entangled network of polyamide 6 nanofibrils. The presence of higher aspect ratio polyamide 6 nanofibrils substantially enhanced the melt strength of the composites. The isothermal crystallization kinetics results suggested that the polyamide 6 nanofibrils and polyethylene glycol had a synergistic effect on accelerating poly(lactic acid) crystallization. With the polyethylene glycol, the crystallization half-time reduced from 103.6 to 62.2 s. Batch foaming results indicated that owing to higher cell nucleation efficiency, the existence of polyamide 6 nanofibrils led to a higher cell density and lower expansion ratio. Furthermore, the poly(lactic acid)/polyamide 6 foams exhibited a higher cell density and expansion ratio than that of the foams without polyethylene glycol.

Keywords poly(lactic acid)      foaming      microfibrillation      rheological property      crystallization     
Corresponding Author(s): Jing Jiang,Zhiyu Min   
Just Accepted Date: 07 July 2023   Online First Date: 16 August 2023    Issue Date: 30 November 2023
 Cite this article:   
Yuhui Qiao,Qian Li,Amirjalal Jalali, et al. Effect of polyethylene glycol on the crystallization, rheology and foamability of poly(lactic acid) containing in situ generated polyamide 6 nanofibrils[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2074-2087.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2342-8
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I12/2074
BlendsPLA content /(wt %)PA6 content /(wt %)PEG content /(wt %)
Neat PLA10000
5% PEG9505
5% PA6/PEG9055
10% PA690100
10% PA6/PEG85105
20% PA6/PEG75205
Tab.1  Concentration of PLA, PA6, and PEG for the blends
Fig.1  Schematic of PLA/PA6/PEG microfibrillated composite foam preparation: (a) fibrillation process; (b) batch foaming.
Fig.2  SEM images of PA6 fibrils for drawn PLA/PA6/PEG blends after the PLA matrix was etched: (a) 5% PA6/PEG (F), (b) 10% PA6/PEG (F), and (c) 20% PA6/PEG (F); (d) statistics analysis of PA6 fibril diameter of PLA/PA6/PEG microfibrillated composites; (e) SEM images of 10% PA6 fibrils; (f) statistics analysis of diameter of PA6 fibrils in the 10% PA6 (F) and 10% PA6/PEG (F) composites. (S) and (F) represent the spherical and nanofibrillar PA6 domains, respectively.
Fig.3  Mechanism of PEG’s effect on the microfibrillation of PLA/PA6: (a) 10% PA6 (F), and (b) 10% PA6/PEG (F).
Fig.4  Viscoelastic behavior of the neat PLA and its blends: (a1) and (b1) complex viscosity vs. frequency; (a2) and (b2) storage modulus vs. frequency; (a3) and (b3) tanδ vs. frequency. (S) and (F) represent the spherical and nanofibrillar PA6 domains, respectively.
Fig.5  POM images of PLA and its composites isothermally crystallized at 130 °C.
Fig.6  Isothermal crystallization behavior of neat PLA and PLA/PA6/PEG blends with spherical and nanofibrillar PA6 domains: (a1) and (b1) heat flow curve; (a2) and (b2) relative crystallinity, Xt vs. time; (a3) and (b3) fitted plots based on the Avrami equation. (S) and (F) indicate that PA6 exists in the form of spherical particles and nanofibrils, respectively.
SamplesnK/(s?n)t1/2/s
Neat PLA2.451.42 × 10?9767.40
5% PEG (S)1.922.15 × 10?8119.59
10% PA6 (S)3.680.76 × 10?8135.00
10% PA6/PEG (S)3.652.48 × 10?8103.60
10% PA6 (F)3.201.07 × 10?798.00
10% PA6/PEG (F)2.757.79 × 10?662.20
Tab.2  Effect of PEG on the isothermal crystallization kinetics of undrawn and drawn 10% PA6 bends
Fig.7  Foam characterization of neat PLA and PLA/PA6/PEG blends before and after drawing: (a) cell diameter, (b) cell density, and (c) expansion ratio as a function of PA6 content; SEM images of neat PLA foams and its blend foams before and after drawing: (d1) 10% PA6 (S), (d2) 10% PA6 (F), (e1) 10% PA6/PEG (S), and (e2) 10% PA6/PEG (F); effect of PEG on (f) cell diameter, (g) cell density, and (h) expansion ratio of drawn and undrawn 10% PA6 blend foams. (S) and (F) indicate that PA6 exists in the form of spherical particles and nanofibrils, respectively.
1 M Batool, A Abid, S Khurshid, T Bashir, M A Ismail, M A Razaq, M jamil, M jamil. Quality control of nano-food packing material for grapes (Vitis vinifera) based on ZnO and polylactic acid (PLA) biofilm. Arabian Journal for Science and Engineering, 2022, 47(1): 319–331
https://doi.org/10.1007/s13369-021-05361-9
2 I Karakurt, K Ozaltin, H Pištěková, D Vesela, J Michael-Lindhard, P Humpolícek, M Mozetič, M Lehocky. Effect of saccharides coating on antibacterial potential and drug loading and releasing capability of plasma treated polylactic acid films. International Journal of Molecular Sciences, 2022, 23(15): 8821
https://doi.org/10.3390/ijms23158821
3 M Ledda, M Merco, A Sciortino, E Scatena, A Convertino, A Lisi, C Del Gaudio. Biological response to bioinspired microporous 3D-printed scaffolds for bone tissue engineering. International Journal of Molecular Sciences, 2022, 23(10): 5383
https://doi.org/10.3390/ijms23105383
4 A Jalali, S Romero-Diez, M Nofar, C B Park. Entirely environment-friendly polylactide composites with outstanding heat resistance and superior mechanical performance fabricated by spunbond technology: exploring the role of nanofibrillated stereocomplex polylactide crystals. International Journal of Biological Macromolecules, 2021, 193: 2210–2220
https://doi.org/10.1016/j.ijbiomac.2021.11.052
5 S E Atalay, B Bezci, B Özdemir, Y A Göksu, A Ghanbari, A Jalali, M Nofar. Thermal and environmentally induced degradation behaviors of amorphous and semicrystalline plas through rheological analysis. Journal of Polymers and the Environment, 2021, 29(10): 3412–3426
https://doi.org/10.1007/s10924-021-02128-z
6 H Zhou, M Zhao, Z Qu, J Mi, X Wang, Y Deng. Thermal and rheological properties of poly(lactic acid)/low-density polyethylene blends and their supercritical CO2 foaming behavior. Journal of Polymers and the Environment, 2018, 26(9): 3564–3573
https://doi.org/10.1007/s10924-018-1240-5
7 M Nofar, A Tabatabaei, C B Park. Effects of nano/micro-sized additives on the crystallization behaviors of PLA and PLA/CO2 mixtures. Polymer, 2013, 54(9): 2382–2391
https://doi.org/10.1016/j.polymer.2013.02.049
8 T R Kuang, H Y Mi, D J Fu, X Jing, B Y Chen, W J Mou, X F Peng. Fabrication of poly(lactic acid)/graphene oxide foams with highly oriented and elongated cell structure via unidirectional foaming using supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 2015, 54(2): 758–768
https://doi.org/10.1021/ie503434q
9 Y M Corre, A Maazouz, J Duchet, J Reignier. Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure. Journal of Supercritical Fluids, 2011, 58(1): 177–188
https://doi.org/10.1016/j.supflu.2011.03.006
10 A Jalali, M A Huneault, M Nofar, P C Lee, C B Park. Effect of branching on flow-induced crystallization of poly(lactic acid). European Polymer Journal, 2019, 119: 410–420
https://doi.org/10.1016/j.eurpolymj.2019.07.045
11 Y W Di, S Iannace, E D Maio, L Nicolais. Poly(lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing. Journal of Polymer Science. Part B, Polymer Physics, 2005, 43(6): 689–698
https://doi.org/10.1002/polb.20366
12 X D Wang, H F Zhou, B G Liu, Z J Du, H Q Li. Chain extension and foaming behavior of poly(lactic acid) by functionalized multiwalled carbon nanotubes and chain extender. Advances in Polymer Technology, 2014, 33(S1): 21444
https://doi.org/10.1002/adv.21444
13 M Nofar, R Salehiyan, U Ciftci, A Jalali, A Durmus. Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. Composites. Part B, Engineering, 2020, 182: 107661
https://doi.org/10.1016/j.compositesb.2019.107661
14 R E Lee, T Azdast, G Wang, X Wang, P C Lee. Highly expanded fine-cell foam of polylactide/polyhydroxyalkanoate/nano-fibrillated polytetrafluoroethylene composites blown with mold-opening injection molding. International Journal of Biological Macromolecules, 2020, 155: 286–292
https://doi.org/10.1016/j.ijbiomac.2020.03.212
15 D F Xu, K J Yu, K Qian, C B Park. Foaming behavior of microcellular poly(lactic acid)/TPU composites in supercritical CO2. Journal of Thermoplastic Composite Materials, 2018, 31(1): 61–78
https://doi.org/10.1177/0892705716679480
16 M Nofar, B S Yenigul, B Ozdemir, C Y Kovanci, A Jalali. Mechanical and viscoelastic properties of polyethylene-based microfibrillated composites from 100% recycled resources. Journal of Applied Polymer Science, 2021, 138(32): e50793
https://doi.org/10.1002/app.50793
17 J N Yang, S B Nie, Y H Qiao, Y Liu, G J Cheng. Crystallization and rheological properties of the eco-friendly composites based on poly(lactic acid) and precipitated barium sulfate. Journal of Polymers and the Environment, 2019, 27(12): 2739–2755
https://doi.org/10.1007/s10924-019-01557-1
18 Y H Qiao, A Jalali, J Yang, Y Chen, S Wang, Y Jiang, J Hou, J Jiang, Q Li, C B Park. Non-isothermal crystallization kinetics of polypropylene/polytetrafluoroethylene fibrillated composites. Journal of Materials Science, 2021, 56(4): 3562–3575
https://doi.org/10.1007/s10853-020-05328-5
19 A Jalali, J H Kim, A M Zolali, I Soltani, M Nofar, E Behzadfar, C B Park. Peculiar crystallization and viscoelastic properties of polylactide/polytetrafluoroethylene composites induced by in-situ formed 3D nanofiber network. Composites. Part B, Engineering, 2020, 200: 108361
https://doi.org/10.1016/j.compositesb.2020.108361
20 A Huang, X F Peng, L S Turng. In-situ fibrillated polytetrafluoroethylene (PTFE) in thermoplastic polyurethane (TPU) via melt blending: effect on rheological behavior, mechanical properties, and microcellular foamability. Polymer, 2018, 134: 263–274
https://doi.org/10.1016/j.polymer.2017.11.053
21 J Zhao, Q Zhao, C Wang, B Guo, C B Park, G Wang. High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Materials & Design, 2017, 131: 1–11
https://doi.org/10.1016/j.matdes.2017.05.093
22 J Chai, G Wang, A Zhang, S Li, J Zhao, G Zhao, C B Park. Ultra-ductile and strong in-situ fibrillated PLA/PTFE nanocomposites with outstanding heat resistance derived by CO2 treatment. Composites. Part A, Applied Science and Manufacturing, 2022, 155: 106849
https://doi.org/10.1016/j.compositesa.2022.106849
23 A Huang, H Kharbas, T Ellingham, H Mi, L S Turng, X Peng. Mechanical properties, crystallization characteristics, and foaming behavior of polytetrafluoroethylene-reinforced poly(lactic acid) composites. Polymer Engineering and Science, 2017, 57(5): 570–580
https://doi.org/10.1002/pen.24454
24 T Yokohara, S Nobukawa, M Yamaguchi. Rheological properties of polymer composites with flexible fine fibers. Journal of Rheology, 2011, 55(6): 1205–1218
https://doi.org/10.1122/1.3626414
25 M Shahnooshi, A Javadi, H Nazockdast, V Altstadt. Development of in situ nanofibrillar poly(lactic acid)/poly(butylene terephthalate) composites: non-isothermal crystallization and crystal morphology. European Polymer Journal, 2020, 125: UNSP 109489
26 A R Kakroodi, Y Kazemi, M Nofar, C B Park. Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chemical Engineering Journal, 2017, 308: 772–782
https://doi.org/10.1016/j.cej.2016.09.130
27 N D Mao, H Jeong, Nguyen T K Ngan, Nguyen T M Loan, Do T V Vi, Thuc C N Ha, P Perré, S C Ko, H G Kim, D T Tran. Polyethylene glycol functionalized graphene oxide and its influences on properties of poly(lactic acid) biohybrid materials. Composites. Part B, Engineering, 2019, 161: 651–658
https://doi.org/10.1016/j.compositesb.2018.12.152
28 X Yi, L Xu, Y L Wang, G J Zhong, X Ji, Z M Li. Morphology and properties of isotactic polypropylene/poly(ethylene terephthalate) in situ microfibrillar reinforced blends: influence of viscosity ratio. European Polymer Journal, 2010, 46(4): 719–730
https://doi.org/10.1016/j.eurpolymj.2009.12.027
29 M Kuzmanović, L Delva, D Mi, C I Martins, L Cardon, K Ragaert. Development of crystalline morphology and its relationship with mechanical properties of PP/PET microfibrillar composites containing POE and POE-g-MA. Polymers, 2018, 10(3): 291
https://doi.org/10.3390/polym10030291
30 A Jalali, M A Huneault, S Elkoun. Effect of molecular weight on the nucleation efficiency of poly(lactic acid) crystalline phases. Journal of Polymer Research, 2017, 24(11): 182
https://doi.org/10.1007/s10965-017-1337-x
31 J M Zhang, S W Wang, Y H Qiao, Q Li. Effect of morphology designing on the structure and properties of PLA/PEG/ABS blends. Colloid & Polymer Science, 2016, 294(11): 1779–1787
https://doi.org/10.1007/s00396-016-3940-5
32 M F P La, M Ceraulo, G Giacchi, M C Mistretta, L Botta. Effect of a compatibilizer on the morphology and properties of polypropylene/polyethylentherephthalate spun fibers. Polymers, 2017, 9(2): 47
33 Z Kulinski, E Piorkowska. Crystallization, structure and properties of plasticized poly(L-lactide). Polymer, 2005, 46(23): 10290–10300
https://doi.org/10.1016/j.polymer.2005.07.101
34 M M F Ferrarezi, Oliveira Taipina M de, da Silva L C E Escobar, M D Gonçalves. Poly(ethylene glycol) as a compatibilizer for poly(lactic acid)/thermoplastic starch blends. Journal of Polymers and the Environment, 2013, 21(1): 151–159
https://doi.org/10.1007/s10924-012-0480-z
35 F T Trouton. On the coefficient of viscous traction and its relation to that of viscosity. Proceedings of the Royal Society of London. Series A, 1906, 77(519): 426–440
36 D S Bangarusampath, H Ruckdäschel, V Altstädt, J K W Sandler, D Garray, M S P Shaffer. Rheology and properties of melt-processed poly(ether ether ketone)/multi-wall carbon nanotube composites. Polymer, 2009, 50(24): 5803–5811
https://doi.org/10.1016/j.polymer.2009.09.061
37 Y H Qiao, Q Li, A Jalali, J Yang, X Wang, N Zhao, Y Jiang, S Wang, J Hou, J Jiang. In-situ microfibrillated poly(ε-caprolactone)/poly(lactic acid) composites with enhanced rheological properties, crystallization kinetics and foaming ability. Composites. Part B, Engineering, 2021, 208: 108594
https://doi.org/10.1016/j.compositesb.2020.108594
38 A Rizvi, C B Park. Dispersed polypropylene fibrils improve the foaming ability of a polyethylene matrix. Polymer, 2014, 55(16): 4199–4205
https://doi.org/10.1016/j.polymer.2014.06.014
39 A Jalali, S Shahbikian, M A Huneault, S Elkoun. Effect of molecular weight on the shear-induced crystallization of poly(lactic acid). Polymer, 2017, 112: 393–401
https://doi.org/10.1016/j.polymer.2017.02.017
40 A Jalali, M A Huneault, S Elkoun. Effect of thermal history on nucleation and crystallization of poly(lactic acid). Journal of Materials Science, 2016, 51(16): 7768–7779
https://doi.org/10.1007/s10853-016-0059-5
41 A Rizvi, C B Park, B D Favis. Tuning viscoelastic and crystallization properties of polypropylene containing in-situ generated high aspect ratio polyethylene terephthalate fibrils. Polymer, 2015, 68: 83–91
https://doi.org/10.1016/j.polymer.2015.04.081
42 M Avrami. Kinetics of phase change. I. General theory. Journal of Chemical Physics, 1939, 7(12): 1103–1112
https://doi.org/10.1063/1.1750380
43 M Avrami. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. Journal of Chemical Physics, 1940, 8(2): 212–224
https://doi.org/10.1063/1.1750631
44 H Liu, Y Huang, L Yuan, P He, Z Cai, Y Shen, Y Xu, Y Yu, H Xiong. Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohydrate Polymers, 2010, 79(3): 513–519
https://doi.org/10.1016/j.carbpol.2009.08.037
45 H E Naguib, C B Park, N Reichelt. Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004, 91(4): 2661–2668
https://doi.org/10.1002/app.13448
[1] FCE-23021-OF-QY_suppl_1 Download
[1] Xiu Gao, Beining Luo, Yanping Hong, Peihang He, Zedong Zhang, Guoqiang Wu. Controllable synthesis of a large TS-1 catalyst for clean epoxidation of a C=C double bond under mild conditions[J]. Front. Chem. Sci. Eng., 2023, 17(6): 772-783.
[2] Qiao Chen, Mingdong Zhang, Yuanhui Ji. Theoretical insights into influence of additives on sulfamethoxazole crystal growth kinetics and mechanisms[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1503-1515.
[3] Mengyuan Wu, Zhijie Yuan, Yuchao Niu, Yingshuang Meng, Gaohong He, Xiaobin Jiang. Interfacial induction and regulation for microscale crystallization process: a critical review[J]. Front. Chem. Sci. Eng., 2022, 16(6): 838-853.
[4] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[5] Siming Chen, Yue Wu, Geoffrey W. Stevens, Guoping Hu, Wenshou Sun, Kathryn A. Mumford. Precipitation study of CO2-loaded glycinate solution with the introduction of ethanol as an antisolvent[J]. Front. Chem. Sci. Eng., 2020, 14(3): 415-424.
[6] Peng Luo, Yejun Guan, Hao Xu, Mingyuan He, Peng Wu. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions[J]. Front. Chem. Sci. Eng., 2020, 14(2): 258-266.
[7] Xiaobin Jiang, Linghan Tuo, Dapeng Lu, Baohong Hou, Wei Chen, Gaohong He. Progress in membrane distillation crystallization: Process models, crystallization control and innovative applications[J]. Front. Chem. Sci. Eng., 2017, 11(4): 647-662.
[8] Fatima Mameri, Ouahiba Koutchoukali, Mohamed Bouhelassa, Anne Hartwig, Leila Nemdili, Joachim Ulrich. The feasibility of coating by cooling crystallization on ibuprofen naked tablets[J]. Front. Chem. Sci. Eng., 2017, 11(2): 211-219.
[9] Dae Hwan Shin, Yu Tong Tam, Glen S. Kwon. Polymeric micelle nanocarriers in cancer research[J]. Front. Chem. Sci. Eng., 2016, 10(3): 348-359.
[10] Weixia Wang, Shuai Zhou, Zhong Xin, Yaoqi Shi, Shicheng Zhao. Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene[J]. Front. Chem. Sci. Eng., 2016, 10(3): 396-404.
[11] Wen Zhang,Jack W. Szostak,Zhen Huang. Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom[J]. Front. Chem. Sci. Eng., 2016, 10(2): 196-202.
[12] Ahmed ABOUZEID,Sandra PETERSEN,Joachim ULRICH. Utilizing melt crystallization fundamentals in the development of a new tabletting technology[J]. Front. Chem. Sci. Eng., 2014, 8(3): 346-352.
[13] Xingfu SONG, Kefeng TONG, Shuying SUN, Ze SUN, Jianguo YU. Preparation and crystallization kinetics of micron-sized Mg(OH)2 in a mixed suspension mixed product removal crystallizer[J]. Front Chem Sci Eng, 2013, 7(2): 130-138.
[14] J. Ulrich, P. Frohberg. Problems, potentials and future of industrial crystallization[J]. Front Chem Sci Eng, 2013, 7(1): 1-8.
[15] Ali SALEEMI, I.I. ONYEMELUKWE, Zoltan NAGY. Effects of a structurally related substance on the crystallization of paracetamol[J]. Front Chem Sci Eng, 2013, 7(1): 79-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed