Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (4) : 46    https://doi.org/10.1007/s11705-024-2407-3
Fabrication of surface passivated two-dimensional MFI zeolite for alkylation between toluene with methanol
Zhenyuan Zou1, Shengzhi Gan1, Ting Pu1, Xingxing Zeng1, Yi Huang2, Baoyu Liu1()
1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
2. School of Engineering, Institute for Materials & Processes, the University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
 Download: PDF(8880 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The fabrication of suitable MFI zeolites to effectively produce para-xylene through the alkylation between toluene and methanol is highly desired. Here, the two-dimensional pillared MFI zeolite was modified by silicalite-1, and its morphology and structure were systematically investigated by tuning the concentration of Si species during the secondary crystallization process. The MFI zeolites were characterized by X-ray diffraction, transmission electron microscopy, pyridine-infrared and N2 adsorption-desorption isotherms. The characterization results showed that the external Brønsted acid sites of surface passivated P-MFI-x samples have been successfully shielded. Interestingly, the P-MFI-23 showed long lifetime and high selectivity of para-xylene (about 35%) based on the cooperation between opened interlamellar structure and passivated silicalite-1 layer. It was found that the accumulated hard coke in the interior of MFI zeolites not only blocked the channels of zeolites but also covered the acidic sites, resulting in the deactivation of catalyst. Furthermore, the highest selectivity of para-xylene (about 48%) can be achieved for P-MFI-30 under harsh reaction condition, which also exhibited excellent regeneration property in the alkylation reaction between toluene and methanol. The strategy described in present research may open a window for the design of other advanced materials.

Keywords alkylation      MFI      nanosheets      catalysis     
Corresponding Author(s): Baoyu Liu   
Just Accepted Date: 12 January 2024   Issue Date: 15 March 2024
 Cite this article:   
Zhenyuan Zou,Shengzhi Gan,Ting Pu, et al. Fabrication of surface passivated two-dimensional MFI zeolite for alkylation between toluene with methanol[J]. Front. Chem. Sci. Eng., 2024, 18(4): 46.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2407-3
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I4/46
  Scheme1 Schematic diagram of the preparation process for P-MFI-x.
Fig.1  Low-angle and high-angle XRD patterns of various zeolites.
Fig.2  TEM-HRTEM images of (a–c) P-MFI-23, (d–f) P-MFI-26 and (g–i) P-MFI-30, respectively.
CatalystsSBETa)/(m2·g?1)Sextb)/(m2·g?1)Smicroc)/(m2·g?1)Vtold)/(cm3·g?1)Vmicroe)/(cm3·g?1)Vmesof)/(cm3·g?1)
P-MFI6895351540.6340.0790.555
P-MFI-234661403260.2440.1290.115
P-MFI-264441343100.2330.1230.110
P-MFI-303591262330.2160.1230.093
Tab.1  Texture properties of various zeolites
Fig.3  (a) N2 adsorption-desorption isotherms and (b) pore size distributions of BJH of various zeolites.
  Scheme2 Process diagram of passivating P-MFI with silicalite-1.
CatalystsSi/Ala)Total Br?nsted acid sitesb)/(mmol·g?1)External Br?nsted acid sitesc)/(mmol·g?1)fBd)
P-MFI520.0740.05980%
P-MFI-23910.049
P-MFI-26930.035
P-MFI-301030.035
Tab.2  Acidity of various zeolites
Fig.4  (a) FTIR spectra for pyridine and (b) 2,6-di-tert-butylpyridine adsorbed on various zeolites.
Fig.5  (a) Toluene conversion and (b) para-xylene selectivity of various zeolites.
CatalystsSBETa)/(m2·g?1)Sextb)/(m2·g?1)Smicroc)/(m2·g?1)Vtold)/(cm3·g?1)Vmicroe)/(cm3·g?1)Vmesof)/(cm3·g?1)
P-MFI6895351540.6340.0790.555
Spent P-MFI3532521010.4320.0520.380
P-MFI-303591262330.2160.1230.093
Spent P-MFI-3011391040.0700.0550.015
Tab.3  Texture properties of fresh and spent zeolites
CatalystsP-MFISpent P-MFIP-MFI-30Spent P-MFI-30
Total Br?nsted acid sitesa) /(mmol·g?1)0.0740.0120.0350.001
Tab.4  Acidity of various zeolites
Fig.6  TG profiles of spent zeolites.
  Scheme3 Coke distribution on the (a) interior lamellar space and (b) exterior silicalite-1 channels for spent P-MFI-x.
CatalystsSample weight/mgSoft cokea)/mgHard cokeb)/mgAverage coke ratec)/(mg·h?1)
P-MFI-239.430.0490.9040.041
P-MFI-269.370.0610.7910.066
P-MFI-308.660.0510.8180.082
Tab.5  Coke deposit of spent zeolites
CatalystsSBETa)/(m2·g?1)Sextb)/(m2·g?1)Smicroc)/(m2·g?1)Vtold)/(cm3·g?1)Vmicroe)/(cm3·g?1)Vmesof)/(cm3·g?1)
P-MFI6895351540.6340.0790.555
R-P-MFI4643281360.5040.0710.433
P-MFI-303591262330.2160.1230.093
R-P-MFI-303291222070.2490.1090.140
Tab.6  Textural properties of fresh and regenerated zeolites
Fig.7  N2 adsorption-desorption isotherms and BJH Pore size distributions of regenerated zeolites.
Fig.8  (a) Toluene conversion and (b) para-xylene selectivity of fresh and regenerated zeolites.
1 H Han , A F Zhang , L M Ren , X W Nie , M Liu , Y Liu , C Shi , H Yang , C S Song , X W Guo . Coke-resistant (Pt + Ni)/ZSM-5 catalyst for shape-selective alkylation of toluene with methanol to para-xylene. Chemical Engineering Science, 2022, 252: 117529
https://doi.org/10.1016/j.ces.2022.117529
2 R A F Tomás , J C M Bordado , J F P Gomes . p-xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development. Chemical Reviews, 2013, 113(10): 7421–7469
https://doi.org/10.1021/cr300298j
3 H Han , H Yang , A F Zhang , L M Ren , X W Nie , C Q Chen , M Liu , C A Shi , C S Song , X W Guo . Design of highly stable metal/ZSM-5 catalysts for the shape-selective alkylation of toluene with methanol to para-xylene. Inorganic Chemistry Frontiers, 2022, 9(13): 3348–3358
https://doi.org/10.1039/D2QI00686C
4 M T Ashraf , R Chebbi , N A Darwish . Process of p-xylene production by highly selective methylation of toluene. Industrial & Engineering Chemistry Research, 2013, 52(38): 13730–13737
https://doi.org/10.1021/ie401156x
5 W Vermeiren , J P Gilson . Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161
https://doi.org/10.1007/s11244-009-9271-8
6 A M Niziolek , O Onel , C A Floudas . Production of benzene, toluene, and xylenes from natural gas via methanol: process synthesis and global optimization. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(5): 1531–1556
https://doi.org/10.1002/aic.15144
7 T Li , T Shoinkhorova , J Gascon , J Ruiz-Martínez . Aromatics production via methanol-mediated transformation routes. ACS Catalysis, 2021, 11(13): 7780–7819
https://doi.org/10.1021/acscatal.1c01422
8 S Ilias , A Bhan . The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: What are the aromatic precursors to light olefins?. Journal of Catalysis, 2014, 311: 6–16
https://doi.org/10.1016/j.jcat.2013.11.003
9 J Čejka , B Wichterlová . Acid-catalyzed synthesis of mono- and dialkyl benzenes over zeolites: active sites, zeolite topology, and reaction mechanisms. Catalysis Reviews. Science and Engineering, 2002, 44(3): 375–421
https://doi.org/10.1081/CR-120005741
10 B Xue , J Chen , N Liu , J Guo , J Xu , C F Xu , Q M Shen , Y X Li . Role of complex equilibrium in the shape-selective performances of MgO/MCM-22 catalysts prepared by complexing impregnation. Catalysis Communications, 2014, 56: 174–178
https://doi.org/10.1016/j.catcom.2014.07.019
11 C Lee , S Lee , W Kim , R Ryoo . High utilization of methanol in toluene methylation using MFI zeolite nanosponge catalyst. Catalysis Today, 2018, 303: 143–149
https://doi.org/10.1016/j.cattod.2017.09.056
12 Y R Wang , M Liu , A F Zhang , Y Zuo , F S Ding , Y Chang , C S Song , X W Guo . Methanol usage in toluene methylation over Pt modified ZSM-5 catalyst: effects of total pressure and carrier gas. Industrial & Engineering Chemistry Research, 2017, 56(16): 4709–4717
https://doi.org/10.1021/acs.iecr.7b00318
13 J H Li , H Xiang , M Liu , Q L Wang , Z R Zhu , Z H Hu . The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol. Catalysis Science & Technology, 2014, 4(8): 2639–2649
https://doi.org/10.1039/c4cy00095a
14 C Jo , K Cho , J Kim , R Ryoo . MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis. Chemical Communications, 2014, 50(32): 4175–4177
https://doi.org/10.1039/C4CC01070A
15 J L Sotelo , M A Uguina , J L Valverde , D P Serrano . Deactivation of toluene alkylation with methanol over magnesium-modified ZSM-5 Shape selectivity changes induced by coke formation. Applied Catalysis A, General, 1994, 114(2): 273–285
https://doi.org/10.1016/0926-860X(94)80179-7
16 P Dong , Z Y Li , D L Wang , X R Wang , Y Q Guo , G X Li , D Q Zhang . Alkylation of benzene by methanol: thermodynamics analysis for designing and designing for enhancing the selectivity of toluene and para-xylene. Catalysis Letters, 2019, 149(1): 248–258
https://doi.org/10.1007/s10562-018-2590-2
17 S Ren , C Tian , Y H Yue , W Zou , W M Hua , Z Gao . Selective alkylation of benzene with methanol to toluene and xylene over sheet-like ZSM-5 with controllable b-oriented length. Catalysis Letters, 2023, 4: 352–361
https://doi.org/10.1007/s10562-023-04352-9
18 F Xiong , C Ji , S Z Gan , P Liang , Y Huang , J Shang , B Y Liu , J X Dong . Tuning the mesoscopically structured ZSM-5 nanosheets for the alkylation between toluene and methanol. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(6): e18054
https://doi.org/10.1002/aic.18054
19 C F Wang , Q Zhang , Y F Zhu , D K Zhang , J Y Chen , F K Chiang . p-Xylene selectivity enhancement in methanol toluene alkylation by separation of catalysis function and shape-selective function. Molecular Catalysis, 2017, 433: 242–249
https://doi.org/10.1016/j.mcat.2016.12.007
20 J Prech , P Pizarro , D P Serrano , J Cejka . From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47(22): 8263–8306
https://doi.org/10.1039/C8CS00370J
21 X L Shao , S Q Wang , Y H Zhou , X Zhang , H Z Tian , Z Wang , Z Y Yuan , H T Wang . Synthesis of multilamellar ZSM-5 nanosheets with tailored b-axis thickness. Microporous and Mesoporous Materials, 2022, 345: 112252
https://doi.org/10.1016/j.micromeso.2022.112252
22 X H Meng , C H Lin , Y H Zhang , H B Qin , S Cao , L H Duan . Mass transfer behavior of benzene in hierarchically structured ZSM-5. Frontiers in Chemistry, 2019, 7: 502
https://doi.org/10.3389/fchem.2019.00502
23 M Choi , K Na , J Kim , Y Sakamoto , O Terasaki , R Ryoo . Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
https://doi.org/10.1038/nature08288
24 K Na , M Choi , W Park , Y Sakamoto , O Terasaki , R Ryoo . Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177
https://doi.org/10.1021/ja908382n
25 X F Shen , W T Mao , Y H Ma , D D Xu , P Wu , O Terasaki , L Han , S N Che . A hierarchical MFI zeolite with a two-dimensional square mesostructure. Angewandte Chemie International Edition, 2018, 57(3): 724–728
https://doi.org/10.1002/anie.201710748
26 B Y Liu , C Wattanaprayoon , S C Oh , L Emdadi , D X Liu . Synthesis of organic pillared MFI zeolite as bifunctional acid-base catalyst. Chemistry of Materials, 2015, 27(5): 1479–1487
https://doi.org/10.1021/cm5033833
27 D D Xu , Y H Ma , Z F Jing , L Han , B Singh , J Feng , X F Shen , F L Cao , P Oleynikov , H Sun . et al.. π–π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets. Nature Communications, 2014, 5(1): 4262
https://doi.org/10.1038/ncomms5262
28 J Hao , D G Cheng , F Q Chen , X L Zhan . n-heptane catalytic cracking on ZSM-5 zeolite nanosheets: effect of nanosheet thickness. Microporous and Mesoporous Materials, 2021, 310: 110647
https://doi.org/10.1016/j.micromeso.2020.110647
29 L Wei , K C Song , W Wu , S Holdren , G H Zhu , E Shulman , W J Shang , H Y Chen , M R Zachariah , D X Liu . Vapor-phase strategy to pillaring of two-dimensional zeolite. Journal of the American Chemical Society, 2019, 141(22): 8712–8716
https://doi.org/10.1021/jacs.9b03479
30 W Park , D Yu , K Na , K E Jelfs , B Slater , Y Sakamoto , R Ryoo . Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets. Chemistry of Materials, 2011, 23(23): 5131–5137
https://doi.org/10.1021/cm201709q
31 X F Shen , W T Mao , Y H Ma , H G Peng , D D Xu , P Wu , L Han , S A Che . Mesoporous MFI zeolite with a 2D square structure directed by surfactants with an azobenzene tail group. Chemistry, 2018, 24(34): 8615–8623
https://doi.org/10.1002/chem.201800307
32 K S W Sing . Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
33 P Morales-Pacheco , F Alvarez , L Bucio , J M Domínguez . Synthesis and structural properties of zeolitic nanocrystals II: FAU-type zeolites. Journal of Physical Chemistry C, 2009, 113(6): 2247–2255
https://doi.org/10.1021/jp8070713
34 Y Q Huang , F Xiong , Z Y Zou , Y Huang , Z X Zhao , B Y Liu , J X Dong . Fabrication of β-zeolite nanocrystal aggregates for the alkylation of benzene and cyclohexene. Industrial & Engineering Chemistry Research, 2023, 62(1): 190–198
https://doi.org/10.1021/acs.iecr.2c03417
35 Y Q Huang , M N Wang , Y Huang , J Shang , B Y Liu . Mesoporous beta zeolites with controlled distribution of bronsted acid sites for alkylation of benzene with cyclohexene. Results in Engineering, 2023, 19: 101377
https://doi.org/10.1016/j.rineng.2023.101377
[1] FCE-23086-OF-ZZ_suppl_1 Download
[1] Yi Chen, Shaowei Chen, Yan Shao, Cui Quan, Ningbo Gao, Xiaolei Fan, Huanhao Chen. Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis[J]. Front. Chem. Sci. Eng., 2024, 18(7): 77-.
[2] Tauseef Munawar, Ambreen Bashir, Khalid Mujasam Batoo, Saman Fatima, Faisal Mukhtar, Sajjad Hussain, Sumaira Manzoor, Muhammad Naeem Ashiq, Shoukat Alim Khan, Muammer Koc, Faisal Iqbal. Construction of robust and durable Cu2Se–V2O5 nanosheet electrocatalyst for alkaline oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2024, 18(6): 65-.
[3] Junjie Li, Chuang Liu, Zhenlong Jia, Yingchun Ye, Dawei Lan, Wei Meng, Jianqiang Wang, Zhendong Wang, Yongfeng Hu, Weimin Yang. Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene[J]. Front. Chem. Sci. Eng., 2024, 18(4): 45-.
[4] Ziyi Chu, Boyu Zhang, Zhenhua Wu, Jiaxu Zhang, Yiran Cheng, Xueying Wang, Jiafu Shi, Zhongyi Jiang. Dendrimer-induced synthesis of porous organosilica capsules for enzyme encapsulation[J]. Front. Chem. Sci. Eng., 2024, 18(4): 39-.
[5] Wei Lan, Maodi Wang, Huicong Dai, Qihua Yang. Recent progress in photocatalytic NAD(P)H regeneration for photocatalytic-enzymatic-coupling system[J]. Front. Chem. Sci. Eng., 2024, 18(4): 37-.
[6] Zulfiqar Ali, Jiliang Ma, Dongnv Jin, Rui Cui, Runcang Sun. Clean production of lactic acid by selective carbon-carbon bond cleavage of biomass feedstock over a novel carbon-bismuth oxychloride photocatalyst[J]. Front. Chem. Sci. Eng., 2024, 18(2): 17-.
[7] Yuxin Li, Junxin Guo, Rui Han, Zhao Wang. Plasma-exfoliated g-C3N4 with oxygen doping: tailoring photocatalytic properties[J]. Front. Chem. Sci. Eng., 2024, 18(2): 15-.
[8] Ying Wang, Yue Han, Ruiyang Zhao, Jishu Han, Lei Wang. Efficient flower-like ZnSe/Cu0.08Zn0.92S photocatalyst for hydrogen production application[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1301-1310.
[9] Xianglin Pei, Siyu Long, Lingyu Zhang, Zhuoyue Liu, Wei Gong, Aiwen Lei, Dongdong Ye. Pd nano-catalyst supported on biowaste-derived porous nanofibrous carbon microspheres for efficient catalysis[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1289-1300.
[10] Guodong Tian, Chao Duan, Bingxu Zhou, Chaochao Tian, Qiang Wang, Jiachuan Chen. Lignin-based electrospun nanofiber membrane decorated with photo-Fenton Ag@MIF-100(Fe) heterojunctions for complex wastewater remediation[J]. Front. Chem. Sci. Eng., 2023, 17(7): 930-941.
[11] Rui Cui, Dongnv Jin, Gaojie Jiao, Zhendong Liu, Jiliang Ma, Runcang Sun. Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for efficient photocatalytic degradation of methylene blue[J]. Front. Chem. Sci. Eng., 2023, 17(7): 918-929.
[12] Shangcong Zhang, Qian Liu, Xinyue Tang, Zhiming Zhou, Tieyan Fan, Yingmin You, Qingcheng Zhang, Shusheng Zhang, Jun Luo, Xijun Liu. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes[J]. Front. Chem. Sci. Eng., 2023, 17(6): 726-734.
[13] Lili Cheng, Xiaoyao Yu, Danyao Huang, Hao Wang, Ying Wu. Piezocatalytic performance of Fe2O3−Bi2MoO6 catalyst for dye degradation[J]. Front. Chem. Sci. Eng., 2023, 17(6): 716-725.
[14] Xiao Han, Xiaoxuan Wang, Jiafang Wang, Yingjie Xie, Cuiwei Du, Chongfei Yu, Jinglan Feng, Jianhui Sun, Shuying Dong. Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight[J]. Front. Chem. Sci. Eng., 2023, 17(4): 449-459.
[15] Meiyu Zheng, Zhenzhen Cui, Jing Zhang, Jing Fu, Zhiwen Wang, Tao Chen. Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis[J]. Front. Chem. Sci. Eng., 2023, 17(4): 425-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed