Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (4) : 707-716    https://doi.org/10.1007/s11707-016-0560-9
RESEARCH ARTICLE
Accumulation and source of heavy metals in sediment of a reservoir near an industrial park of northwest China
Yuanjie ZHU, Xinwei LU(), Linna YANG, Lijun WANG
School of Tourism and Environment, Shaanxi Normal University, Xi’an 710062, China
 Download: PDF(1373 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The accumulation and source of heavy metals As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in the surface sediment of a reservoir near an industrial park of northwest China were determined by enrichment factor and multivariate statistical analysis. Multivariate statistical analyses, i.e., factor analysis, cluster analysis, and correlation coefficient analysis, were used to identify the possible sources of the heavy metals. The results show that the mean concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in the reservoir sediment are higher than their corresponding concentrations in the control sample, indicating all analyzed heavy metals accumulated in the surface sediments. The values of the mean concentrations of heavy metals in the surface sediment divided by their corresponding concentrations in the control sample increase in the order of Ba= Cr<Co= Pb<V<Ni<Cu= Zn<As<Mn. The enrichment factor values of Ba and Cr in the surface sediment samples are<2, revealing minimal enrichment, while the enrichment factor values of As, Co, Cu, Mn, Ni, Pb, V, and Zn are in the range of 2‒5, displaying moderate enrichment. Combining the results of correlation coefficient analysis, factor analysis, and cluster analysis, three main sources of these heavy metals were identified. As, Co, Cu, Mn, Ni, and V have mixed sources of natural and industrial sources and local consumption residues; Pb and Zn mainly originate from industrial activities, while Ba and Cr primarily originate from natural sources.

Keywords sediment      heavy metal      multivariate statistical analysis      source      reservoir     
Corresponding Author(s): Xinwei LU   
Just Accepted Date: 11 January 2016   Online First Date: 18 February 2016    Issue Date: 04 November 2016
 Cite this article:   
Yuanjie ZHU,Xinwei LU,Linna YANG, et al. Accumulation and source of heavy metals in sediment of a reservoir near an industrial park of northwest China[J]. Front. Earth Sci., 2016, 10(4): 707-716.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0560-9
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I4/707
1 P Blaser, S Zimmermann, J Luster, W Shotyk (2000). Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci Total Environ, 249(1‒3): 257–280
https://doi.org/10.1016/S0048-9697(99)00522-7
2 L Borůvka, O Vacek, J Jehlička (2005). Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128(3‒4): 289–300
https://doi.org/10.1016/j.geoderma.2005.04.010
3 H Chen, X W Lu, L Y Li, T N Gao, Y Y Chang (2014). Metal contamination in campus dust of Xi’an, China: a study based on multivariate statistics and spatial distribution. Sci Total Environ, 484: 27–35
https://doi.org/10.1016/j.scitotenv.2014.03.026
4 T Chen, X M Liu, M Z Zhu, K L Zhao, J J Wu, J M Xu, P M Huang (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban–rural transitional area of Hangzhou, China. Environ Pollut, 151(1): 67–78
https://doi.org/10.1016/j.envpol.2007.03.004
5 X D Chen, X W Lu, G Yang (2012). Sources identification of heavy metals in urban topsoil from inside the Xi’an Second Ringroad, NW China using multivariate statistical methods. Catena, 98: 73–78
https://doi.org/10.1016/j.catena.2012.06.007
6 A Cicek, A S Koparal (2004). Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunçbilek Thermal Power Plant. Chemosphere, 57(8): 1031–1036
https://doi.org/10.1016/j.chemosphere.2004.07.038
7 S Covelli, G Fontolan (1997). Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology, 30(1‒2): 34–45
https://doi.org/10.1007/s002540050130
8 K D Daskalakis, T P O’Connor (1995). Distribution of chemical concentrations in US coastal and estuarine sediment. Mar Environ Res, 40(4): 381–398
https://doi.org/10.1016/0141-1136(94)00150-N
9 N S Duzgoren-Aydin (2007). Sources and characteristics of lead pollution in the urban environment of Guangzhou. Sci Total Environ, 385(1‒3): 182–195
https://doi.org/10.1016/j.scitotenv.2007.06.047
10 A Facchinelli, E Sacchi, L Mallen (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ Pollut, 114(3): 313–324
https://doi.org/10.1016/S0269-7491(00)00243-8
11 W X Fang, Z Y Huang, P W Wu (2003). Contamination of the environmental ecosystems by trace elements from mining activities of Badao bone coal mine in China. Environmental Geology, 44(4): 373–378
https://doi.org/10.1007/s00254-003-0768-3
12 A Farkas, C Erratico, L Viganò (2007). Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 68(4): 761–768
https://doi.org/10.1016/j.chemosphere.2006.12.099
13 H Feng, X F Han, W G Zhang, L Z Yu (2004). A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar Pollut Bull, 49(11‒12): 910–915
https://doi.org/10.1016/j.marpolbul.2004.06.014
14 A V Filgueiras, I Lavilla, C Bendicho (2004). Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study. Sci Total Environ, 330(1‒3): 115–129
https://doi.org/10.1016/j.scitotenv.2004.03.038
15 G P Glasby, P Szefer, J Geldon, J Warzocha (2004). Heavy-metal pollution of sediments from Szczecin Lagoon and the Gdansk Basin, Poland. Sci Total Environ, 330(1‒3): 249–269
https://doi.org/10.1016/j.scitotenv.2004.04.004
16 C González-Macías, I Schifter, D B Lluch-Cota, L Méndez-Rodríguez, S Hernández-Vázquez (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, México. Environ Monit Assess, 118(1‒3): 211–230
https://doi.org/10.1007/s10661-006-1492-8
17 Y M Han, P X Du, J J Cao, E S Posmentier (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ, 355(1‒3): 176–186
https://doi.org/10.1016/j.scitotenv.2005.02.026
18 M J Hsu, K Selvaraj, G Agoramoorthy (2006). Taiwan’s industrial heavy metal pollution threatens terrestrial biota. Environ Pollut, 143(2): 327–334
https://doi.org/10.1016/j.envpol.2005.11.023
19 F Li, J H Huang, G M Zeng, X Z Yuan, X D Li, J Liang, X Y Wang, X J Tang, B Bai (2013). Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor, 132: 75–83
https://doi.org/10.1016/j.gexplo.2013.05.007
20 W X Liu, X D Li, Z G Shen, D C Wang, O W H Wai, Y S Li (2003). Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ Pollut, 121(3): 377–388
https://doi.org/10.1016/S0269-7491(02)00234-8
21 X W Lu, L Y Li, L J Wang, K Lei, J Huang, Y X Zhai (2009). Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos Environ, 43(15): 2489–2496
https://doi.org/10.1016/j.atmosenv.2009.01.048
22 X W Lu, X X Li, P J Yun, D C Luo, L J Wang, C H Ren, C C Chen (2012). Measurement of natural radioactivity and assessment of associated radiation hazards in soil around Baoji second coal-fired thermal power plant, China. Radiat Prot Dosimetry, 148(2): 219–226
https://doi.org/10.1093/rpd/ncr016
23 X W Lu, L J Wang, L Y Li, K Lei, L Huang, D Kang (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater, 173(1‒3): 744–749
https://doi.org/10.1016/j.jhazmat.2009.09.001
24 Y Lu, Z T Gong, G L Zhang, W G Burghardt (2003). Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma, 115(1‒2): 101–111
https://doi.org/10.1016/S0016-7061(03)00079-X
25 A Mandal, D Sengupta (2006). An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environmental Geology, 51(3): 409–420
https://doi.org/10.1007/s00254-006-0336-8
26 D S Manta, M Angelone, A Bellanca, R Neri, M Sprovieri (2002). Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ, 300(1‒3): 229–243
https://doi.org/10.1016/S0048-9697(02)00273-5
27 L J Mao, D W Mo, J H Yang, Y F Jia, Y Y Guo (2013). Concentration and pollution assessment of hazardous metal elements in sediments of the Xiangjiang River, China. J Radioanal Nucl Chem, 295(1): 513–521
https://doi.org/10.1007/s10967-012-1800-4
28 D Meza-Figueroa, M De la O-Villanueva, M L De la Parra (2007). Heavy metal distribution in dust from elementary schools in Hermosillo, Sonora, México. Atmos Environ, 41(2): 276–288
https://doi.org/10.1016/j.atmosenv.2006.08.034
29 M Mil-Homens, R L Stevens, F Abrantes, I Cato (2006). Heavy metal assessment for surface sediments from three areas of the Portuguese continental shelf. Cont Shelf Res, 26(10): 1184–1205
https://doi.org/10.1016/j.csr.2006.04.002
30 S Pen-Mouratov, N Shukurov, Y Steinberger (2008). Influence of industrial heavy metal pollution on soil free-living nematode population. Environ Pollut, 152(1): 172–183
https://doi.org/10.1016/j.envpol.2007.05.007
31 W Rehman, A Zeb, N Noor, M Nawaz (2008). Heavy metal pollution assessment in various industries of Pakistan. Environmental Geology, 55(2): 353–358
https://doi.org/10.1007/s00254-007-0980-7
32 C Reimann, P de Caritat (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol, 34(24): 5084–5091
https://doi.org/10.1021/es001339o
33 C Reimann, P de Caritat (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors. Sci Total Environ, 337(1‒3): 91–107
https://doi.org/10.1016/j.scitotenv.2004.06.011
34 M Saeedi, L Y Li, M Salmanzadeh (2012). Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater, 227–228: 9–17
https://doi.org/10.1016/j.jhazmat.2012.04.047
35 J C Santos Bermejo, R Beltrán, J L Gómez Ariza (2003). Spatial variations of heavy metals contamination in sediments from Odiel River (Southwest Spain). Environ Int, 29(1): 69–77
https://doi.org/10.1016/S0160-4120(02)00147-2
36 A P Sharma, B D Tripathi (2008). Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment. Environ Monit Assess, 138(1‒3): 31–39
https://doi.org/10.1007/s10661-007-9788-x
37 S N Sin, H Chua, W Lo, L M Ng (2001). Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ Int, 26(5‒6): 297–301
https://doi.org/10.1016/S0160-4120(01)00003-4
38 S R Tariq, M H Shah, N Shaheen, A Khalique, S Manzoor, M Jaffar (2006). Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: a case study from Peshawar, Pakistan. J Environ Manage, 79(1): 20–29
https://doi.org/10.1016/j.jenvman.2005.05.009
39 Ş Tokalıoğlu,Ş Kartal (2006). Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey). Atmos Environ, 40(16): 2797–2805
https://doi.org/10.1016/j.atmosenv.2006.01.019
40 P Tume, J Bech, F Reverter, J Bech, L Longan, L Tume, B Sepúlveda (2011). Concentration and distribution of twelve metals in Central Catalonia surface soils. J Geochem Explor, 109(1‒3): 92–103
https://doi.org/10.1016/j.gexplo.2010.10.013
41 A Turner, L Simmonds (2006). Elemental concentrations and metal bioaccessibility in UK household dust. Sci Total Environ, 371(1‒3): 74–81
https://doi.org/10.1016/j.scitotenv.2006.08.011
42 A K Upadhyay, K K Gupta, J K Sircar, M K Deb, G L Mundhara (2006). Heavy metals in freshly deposited sediments of the river Subernarekha, India: an example of lithogenic and anthropogenic effects. Environmental Geology, 50(3): 397–403
https://doi.org/10.1007/s00254-006-0218-0
43 M Varol (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater, 195: 355–364
https://doi.org/10.1016/j.jhazmat.2011.08.051
44 F A Vega, E F Covelo, M L Andrade (2008). Impact of industrial and urban waste on the heavy metal content of salt marsh soils in the southwest of the province of Pontevedra (Galicia, Spain). J Geochem Explor, 96(2‒3): 148–160
https://doi.org/10.1016/j.gexplo.2007.03.004
45 L J Wang, X W Lu, L Y Li, C H Ren, D C Luo, J H Chen (2015). Content, speciation and pollution assessment of Cu, Pb and Zn in soil around the lead-zinc smelting plant of Baoji, NW China. Environmental Earth Sciences, 73(9): 5281–5288
https://doi.org/10.1007/s12665-014-3777-5
46 L J Wang, X W Lu, C H Ren, X X Li, C C Chen (2014b). Contamination assessment and health risk of heavy metals in dust from Changqing industrial park of Baoji, NW China. Environmental Earth Sciences, 71(5): 2095–2104
https://doi.org/10.1007/s12665-013-2613-7
47 L Wang, Y P Wang, W Z Zhang, C X Xu, Z Y An (2014a). Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environmental Earth Sciences, 71(3): 1183–1193
https://doi.org/10.1007/s12665-013-2522-9
48 Z P Yang, W X Lu, Y Q Long, X H Bao, Q C Yang (2011). Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J Geochem Explor, 108(1): 27–38
https://doi.org/10.1016/j.gexplo.2010.09.006
49 C Ye, S Y Li, Y L Zhang, Q F Zhang (2011). Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. J Hazard Mater, 191(1‒3): 366–372
https://doi.org/10.1016/j.jhazmat.2011.04.090
50 M M Zhang, X W Lu, H Chen, P P Gao, Y Fu (2015). Multi-element characterization and source identification of trace metal in road dust from an industrial city in semi-humid area of Northwest China. J Radioanal Nucl Chem, 303(1): 637–646
https://doi.org/10.1007/s10967-014-3300-1
51 Y F Zhao, X Z Shi, B Huang, D S Yu, H J Wang, W X Sun, I Öboern, K Blombäck (2007). Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi, China. Pedosphere, 17(1): 44–51
https://doi.org/10.1016/S1002-0160(07)60006-X
52 W H Zoller, E S Gladney, R A Duce (1974). Atmospheric concentrations and sources of trace metals at the South Pole. Science, 183(4121): 198–200
https://doi.org/10.1126/science.183.4121.198
[1] Fan CHEN, Li CHEN, Wei ZHANG, Jing YUAN, Kanghe ZHANG. Variations in the effective and bankfull discharge for suspended sediment transport due to dam construction[J]. Front. Earth Sci., 2022, 16(2): 446-464.
[2] Peiyuan CHEN, Lina GUO, Chen LI, Yi TONG. Karstification characteristics of the Cenomanian–Turonian Mishrif Formation in the Missan Oil Fields, southeastern Iraq, and their effects on reservoirs[J]. Front. Earth Sci., 2022, 16(2): 435-445.
[3] Gaojian XIAO, Ling HU, Yang LUO, Yujing MENG, Ali Bassam Taher AL-SALAFI, Haoran LIU. Multi-scale fractures formation and distribution in tight sandstones—a case study of Triassic Chang 8 Member in the southwestern Ordos Basin[J]. Front. Earth Sci., 2022, 16(2): 483-498.
[4] Jinkai WANG, Yuxiang FU, Zhaoxun YAN, Jialin FU, Jun XIE, Kaikai LI, Yongfu ZHAO. Influence of sedimentation and diagenesis on reservoir physical properties: a case study of the Funing Formation, Subei Basin, eastern China[J]. Front. Earth Sci., 2021, 15(4): 892-908.
[5] Wei JU, Zhaobiao YANG, Yulin SHEN, Hui YANG, Geoff WANG, Xiaoli ZHANG, Shengyu WANG. Mechanism of pore pressure variation in multiple coal reservoirs, western Guizhou region, South China[J]. Front. Earth Sci., 2021, 15(4): 770-789.
[6] Wancai NIE, Tingshan ZHANG, Xiaopeng ZHENG, Jun LIU. Pressure transient analysis for a fractured well in a stress-sensitive tight multi-medium oil reservoir[J]. Front. Earth Sci., 2021, 15(4): 719-736.
[7] Jinjun XU, Da LOU, Qiang JIN, Lixin FU, Fuqi CHENG, Shuhui ZHOU, Xiuhong WANG, Chao LIANG, Fulai LI. Discriminating hydrocarbon generation potential of coaly source rocks and their contribution: a case study from the Upper Paleozoic of Bohai Bay Basin, China[J]. Front. Earth Sci., 2021, 15(4): 876-891.
[8] Xiaowei HOU, Yang WANG, Yanming ZHU, Jie XIANG. Pore structure complexity and its significance to the petrophysical properties of coal measure gas reservoirs in Qinshui Basin, China[J]. Front. Earth Sci., 2021, 15(4): 860-875.
[9] Ziqiang DU, Rong RONG, Zhitao WU, Hong ZHANG. Examining the efficacy of revegetation practices in ecosystem restoration programs: insights from a hotspot of sandstorm in northern China[J]. Front. Earth Sci., 2021, 15(4): 922-935.
[10] S.M. Talha QADRI, Md Aminul ISLAM, Mohamad Ragab SHALABY, Syed Haroon ALI. Integration of 1D and 3D modeling schemes to establish the Farewell Formation as a self-sourced reservoir in Kupe Field, Taranaki Basin, New Zealand[J]. Front. Earth Sci., 2021, 15(3): 631-648.
[11] Haoran XU, Wei JU, Xiaobing NIU, Shengbin FENG, Yuan YOU, Hui YANG, Sijia LIU, Wenbo LUAN. Prediction of natural fracture in shale oil reservoir based on R/S analysis and conventional logs[J]. Front. Earth Sci., 2021, 15(3): 705-718.
[12] Shikui GAO, Quanzhong GUAN, Dazhong DONG, Fang HUANG. Environmental risks of shale gas exploitation and solutions for clean shale gas production in China[J]. Front. Earth Sci., 2021, 15(2): 406-422.
[13] Bingbing SHI, Xiangchun CHANG, Zhongquan LIU, Ye LIU, Tianchen GE, Pengfei ZHANG, Yongrui WANG, Yue WANG, Lixin MAO. Physical-property cutoffs of tight reservoirs by field and laboratory experiments: a case study from Chang 6, 8–9 in Ordos Basin[J]. Front. Earth Sci., 2021, 15(2): 471-489.
[14] Chao LUO, Ailin JIA, Jianlin GUO, Qing TIAN, Junlei WANG, Hun LIN, Nanxin YIN, Xuanbo GAO. A quantitative study of the scale and distribution of tight gas reservoirs in the Sulige gas field, Ordos Basin, northwest China[J]. Front. Earth Sci., 2021, 15(2): 457-470.
[15] Xin CHEN, Lei CHEN, Xiucheng TAN, Shu JIANG, Chao WANG. Impact of pyrite on shale gas enrichment—a case study of the Lower Silurian Longmaxi Formation in southeast Sichuan Basin[J]. Front. Earth Sci., 2021, 15(2): 332-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed