Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (11) : 146    https://doi.org/10.1007/s11783-022-1581-0
SHORT COMMUNICATION
Self-catalytic pyrolysis thermodynamics of waste printed circuit boards with co-existing metals
Shuyu Chen, Run Li, Yaqi Shen, Lu Zhan(), Zhenming Xu
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(4601 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● The co-existing metals in WPCBs has positive catalytic influence in pyrolysis.

● Cu, Fe, Ni can promote reaction progress and reduce the apparent activation energy.

● Ni play better role in promoting WPCB pyrolysis reaction.

Waste printed circuit boards (WPCBs) are generated increasingly recent years with the rapid replacement of electric and electronic products. Pyrolysis is considered to be a potential environmentally-friendly technology for recovering organic and metal resources from WPCBs. Thermogravimetric analysis and kinetic analysis of WPCBs were carried out in this study. It showed that the co-existing metals (Cu, Fe, Ni) in WPCBs have positive self-catalytic influence during the pyrolysis process. To illustrate their catalytic effects, the apparent activation energy was calculated by differential model. Contributions of different reactions during catalytic pyrolysis process was studied and the mechanism function was obtained by Šesták-Berggren model. The results showed that Cu, Fe, Ni can promote the reaction progress and reduce the apparent activation energy. Among the three metals, Ni plays better catalytic role than Cu, then Fe. This work provides theoretical base for understanding the three metals’ catalytic influence during the pyrolysis of non-metal powders in WPCBs.

Keywords Waste printed circuit board      Catalyst      Pyrolysis      Kinetics     
Corresponding Author(s): Lu Zhan   
Issue Date: 15 June 2022
 Cite this article:   
Shuyu Chen,Run Li,Yaqi Shen, et al. Self-catalytic pyrolysis thermodynamics of waste printed circuit boards with co-existing metals[J]. Front. Environ. Sci. Eng., 2022, 16(11): 146.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1581-0
https://academic.hep.com.cn/fese/EN/Y2022/V16/I11/146
Fig.1  Comparison of thermogravimetric and differential thermogravimetric curves of NMPs with different metals (a, b) with a heating rate of 10 °C/min, TG and DTG curves of NMPs with different metals at different heating rates (c?f).
Fig.2  Comparisons among NMPs and metal-NMPs.
Fig.3  Model contributions of NMPs (a), Cu-NMPs (b), Fe-NMPs (c) and Ni-NMPs (d).
1 R Alenezi , F Al-Fadhli . (2018). Thermal degradation kinetics of waste printed circuit boards. Chemical Engineering Research & Design, 130 : 87– 94
https://doi.org/10.1016/j.cherd.2017.12.005
2 L Ali H A Mousa M Al-Harahsheh S Al-Zuhair B Abu-Jdayil M Al-Marzouqi M Altarawneh ( 2022). Removal of Bromine from the non-metallic fraction in printed circuit board via its Co-pyrolysis with alumina. Waste Management (New York, N.Y.), 137: 283– 293
pmid: 34823135
3 M Altarawneh , O H Ahmed , Z T Jiang , B Z Dlugogorski . (2016). Thermal recycling of brominated flame retardants with Fe2O3. Journal of Physical Chemistry A, 120( 30): 6039– 6047
https://doi.org/10.1021/acs.jpca.6b04910
4 W Chen , Y Chen , Y Shu , Y He , J Wei . (2021). Characterization of solid, liquid and gaseous products from waste printed circuit board pyrolysis. Journal of Cleaner Production, 313 : 127881
https://doi.org/10.1016/j.jclepro.2021.127881
5 X Chen , Y Liu , J Zhuo , C Jiao , Y Qian . (2015). Influence of organic-modified iron–montmorillonite on smoke-suppression properties and combustion behavior of intumescent flame-retardant epoxy composites. High Performance Polymers, 27( 2): 233– 246
https://doi.org/10.1177/0954008314544341
6 Y Chen , J Yang , Y Zhang , K Liu , S Liang , X Xu , J Hu , H Yao , B Xiao . (2018). Kinetic simulation and prediction of pyrolysis process for non-metallic fraction of waste printed circuit boards by discrete distributed activation energy model compared with isoconversional method. Environmental Science and Pollution Research International, 25( 4): 3636– 3646
https://doi.org/10.1007/s11356-017-0763-y
7 S Du , D Gamliel , M Giotto , J Valla , G Bollas . (2016). Coke formation of model compounds relevant to pyrolysis bio-oil over ZSM-5. Applied Catalysis A: General, 513 : 67– 81
https://doi.org/10.1016/j.apcata.2015.12.022
8 H Duan , J Hu , W Yuan , Y Wang , D Yu , Q Song , J Li . (2016). Characterizing the environmental implications of the recycling of non-metallic fractions from waste printed circuit boards. Journal of Cleaner Production, 137 : 546– 554
https://doi.org/10.1016/j.jclepro.2016.07.131
9 P Evangelopoulos , E Kantarelis , W Yang . (2015). Investigation of the thermal decomposition of printed circuit boards (PCBs) via thermogravimetric analysis (TGA) and analytical pyrolysis (Py–GC/MS). Journal of Analytical and Applied Pyrolysis, 115 : 337– 343
https://doi.org/10.1016/j.jaap.2015.08.012
10 P Evangelopoulos , E Kantarelis , W Yang . (2017). Experimental investigation of the influence of reaction atmosphere on the pyrolysis of printed circuit boards. Applied Energy, 204 : 1065– 1073
https://doi.org/10.1016/j.apenergy.2017.04.087
11 R Gao , B Liu , L Zhan , J Guo , J Zhang , Z Xu . (2021). Catalytic effect and mechanism of coexisting copper on conversion of organics during pyrolysis of waste printed circuit boards. Journal of Hazardous Materials, 403 : 123465
https://doi.org/10.1016/j.jhazmat.2020.123465
12 J Jaber , S Probert . (1999). Pyrolysis and gasification kinetics of Jordanian oil-shales. Applied Energy, 63( 4): 269– 286
https://doi.org/10.1016/S0306-2619(99)00033-1
13 S Lam , R Liew , A Jusoh , C Chong , F Ani , H Chase . (2016). Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renewable & Sustainable Energy Reviews, 53 : 741– 753
https://doi.org/10.1016/j.rser.2015.09.005
14 Y Li , D Han , Y Arai , X Fu , X Li , W Huang . (2019). Kinetics and mechanisms of debromination of tetrabromobisphenol A by Cu coated nano zerovalent iron. Chemical Engineering Journal, 373 : 95– 103
https://doi.org/10.1016/j.cej.2019.04.182
15 Y Lv , X Cao , H Jiang , W Song , C Chen , J Zhao . (2016). Rapid photocatalytic debromination on TiO 2 with in-situ formed copper co-catalyst: Enhanced adsorption and visible light activity. Applied Catalysis B: Environmental, 194 : 150– 156
https://doi.org/10.1016/j.apcatb.2016.04.053
16 C Ma , T Kamo . (2018). Two-stage catalytic pyrolysis and debromination of printed circuit boards: effect of zero-valent Fe and Ni metals. Journal of Analytical and Applied Pyrolysis, 134 : 614– 620
https://doi.org/10.1016/j.jaap.2018.08.012
17 C Ma , T Kamo . (2019). Enhanced debromination by Fe particles during the catalytic pyrolysis of non-metallic fractions of printed circuit boards over ZSM-5 and Ni/SiO2-Al2O3 catalyst. Journal of Analytical and Applied Pyrolysis, 138 : 170– 177
https://doi.org/10.1016/j.jaap.2018.12.021
18 H Ma , J Sun , D Du , M Wang , G Yang . (2011). Kinetic model of printed circuit boards from typical waste life electro-equipments. In: Proceedings of the third International Conference on Measuring Technology and Mechatronics Automation. Shanghai: Institute of Electric and Electronic Engineers, 459– 462
19 Z Ma , D Chen , J Gu , B Bao , Q Zhang . (2015). Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Conversion and Management, 89 : 251– 259
https://doi.org/10.1016/j.enconman.2014.09.074
20 I Natori , S Natori . (2006). Thermal degradation of poly (1,3-cyclohexadiene) and its dehydrogenated derivatives: influence of a controlled microstructure. Macromolecular Chemistry and Physics, 207( 15): 1387– 1393
https://doi.org/10.1002/macp.200600183
21 C Quan A Li N Gao ( 2009). Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management (New York, N.Y.), 29( 8): 2353– 2360
pmid: 19398318
22 C Quan , A Li , N Gao , Z Dan . (2010). Characterization of products recycling from PCB waste pyrolysis. Journal of Analytical and Applied Pyrolysis, 89( 1): 102– 106
https://doi.org/10.1016/j.jaap.2010.06.002
23 J Šesták , G Berggren . (1971). Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochimica Acta, 3( 1): 1– 12
https://doi.org/10.1016/0040-6031(71)85051-7
24 F Wang , Y Liu , R Hai . (2011). Pyrolysis kinetics of anti-Br printed circuit boards made epoxy resin. CIESC Journal, 62( 10): 2945– 2950
25 J Wang , Z Xu . (2015). Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control. Environmental Science & Technology, 49( 2): 721– 733
https://doi.org/10.1021/es504833y
26 M Wang , Q Tan , J Chiang , J Li . (2017). Recovery of rare and precious metals from urban mines: A review. Frontiers of Environmental Science & Engineering, 11( 5): 1
https://doi.org/10.1007/s11783-017-0963-1
27 Z Wu , W Yuan , J Li , X Wang , L Liu , J Wang . (2017). A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy. Frontiers of Environmental Science & Engineering, 11( 5): 8– 14
https://doi.org/10.1007/s11783-017-0995-6
28 L Zhan , Z Xu . (2014). State-of-the-art of recycling e-wastes by vacuum metallurgy separation. Environmental Science & Technology, 48( 24): 14092– 14102
https://doi.org/10.1021/es5030383
29 C Zhao X Zhang L Shi ( 2017). Catalytic pyrolysis characteristics of scrap printed circuit boards by TG-FTIR. Waste Management (New York, N.Y.), 61: 354– 361
pmid: 28024895
[1] Jinyong Liu, Jinyu Gao. Catalytic reduction of water pollutants: knowledge gaps, lessons learned, and new opportunities[J]. Front. Environ. Sci. Eng., 2023, 17(2): 26-.
[2] Xiaoxiao Yin, Junyu Tao, Guanyi Chen, Xilei Yao, Pengpeng Luan, Zhanjun Cheng, Ning Li, Zhongyue Zhou, Beibei Yan. Prediction of high-density polyethylene pyrolysis using kinetic parameters based on thermogravimetric and artificial neural networks[J]. Front. Environ. Sci. Eng., 2023, 17(1): 6-.
[3] Qian Li, Zhaoping Zhong, Haoran Du, Xiang Zheng, Bo Zhang, Baosheng Jin. Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals[J]. Front. Environ. Sci. Eng., 2022, 16(7): 85-.
[4] Shengqi Zhang, Chengsong Ye, Wenjun Zhao, Lili An, Xin Yu, Lei Zhang, Hongjie Sun, Mingbao Feng. Product identification and toxicity change during oxidation of methotrexate by ferrate and permanganate in water[J]. Front. Environ. Sci. Eng., 2022, 16(7): 93-.
[5] Lihui Gao, Yijun Cao, Lizhang Wang, Shulei Li. A review on sustainable reuse applications of Fenton sludge during wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(6): 77-.
[6] Yi Xiong, Boya Wang, Chao Zhou, Huan Chen, Gang Chen, Youneng Tang. Determination of growth kinetics of microorganisms linked with 1,4-dioxane degradation in a consortium based on two improved methods[J]. Front. Environ. Sci. Eng., 2022, 16(5): 62-.
[7] Shuangyang Zhao, Chengxin Chen, Jie Ding, Shanshan Yang, Yani Zang, Nanqi Ren. One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B[J]. Front. Environ. Sci. Eng., 2022, 16(3): 36-.
[8] Wanpeng Chen, Jiahui Song, Shaojie Jiang, Qiang He, Jun Ma, Xiaoliu Huangfu. Influence of extracellular polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles[J]. Front. Environ. Sci. Eng., 2022, 16(2): 16-.
[9] Yang Yang, Xiuzhen Zheng, Wei Ren, Jiafang Liu, Xianliang Fu, Sugang Meng, Shifu Chen, Chun Cai. Recent advances in special morphologic photocatalysts for NOx removal[J]. Front. Environ. Sci. Eng., 2022, 16(11): 137-.
[10] Lujun Zhao, Jiaming Shao, Li Xiang, Yiping Feng, Zhihua Wang, Fawei Lin. Co-pyrolysis of oil sludge with hydrogen-rich plastics in a vertical stirring reactor: Kinetic analysis, emissions, and products[J]. Front. Environ. Sci. Eng., 2022, 16(10): 135-.
[11] Tao Yan, Qianqian Yang, Rui Feng, Xiang Ren, Yanxia Zhao, Meng Sun, Liangguo Yan, Qin Wei. Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation over an urchin-like oxygen-doped MoS2/ZnIn2S4 composite[J]. Front. Environ. Sci. Eng., 2022, 16(10): 131-.
[12] Xiaoqiang Wang, Yanye Zhu, Yue Liu, Xiaole Weng, Zhongbiao Wu. Tailoring the simultaneous abatement of methanol and NOx on Sb-Ce-Zr catalysts via copper modification[J]. Front. Environ. Sci. Eng., 2022, 16(10): 130-.
[13] Shiguan Yang, Xinrui Fan, Ji Liu, Wei Zhao, Bin Hu, Qiang Lu. Mechanism insight into the formation of H2S from thiophene pyrolysis: A theoretical study[J]. Front. Environ. Sci. Eng., 2021, 15(6): 120-.
[14] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[15] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed