Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (3) : 30    https://doi.org/10.1007/s11783-024-1790-y
RESEARCH ARTICLE
Underestimated benefits of NOx control in reducing SNA and O3 based on missing heterogeneous HONO sources
Shuping Zhang1,2,3, Haotian Zheng1, Jun Liu3, Yao Shi1, Tianzeng Chen3, Chaoyang Xue3, Fenfen Zhang1, Yueqi Jiang1, Xiangping Zhang4, Shovan Kumar Sahu5, Biwu Chu3(), Jia Xing1()
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. China Academy of Civil Aviation Science and Technology, Beijing 100028, China
3. State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
4. Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
5. Centre for Climate Research Singapore, Meteorological Service Singapore, Singapore 537054, Singapore
 Download: PDF(2686 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Heterogeneous HONO reactions significantly improve HONO simulation in summer.

● Heterogeneous HONO reactions increase the formation of winter SNA and summer O3.

● NO x emission reduction in BTH both cut down winter SNA and summer MDA8 O3.

● HONO heterogeneous reactions improve NO x reduction benefits in SNA and O3 control.

Substantial NOx emission mitigation is crucial for the synergistic reduction of particulate matter and ozone (O3) pollution in China. The traditional air quality model does not consider heterogeneous HONO chemistry, leading to uncertainties in estimating the benefits of NOx control. Previous studies have shown that the parameterization of heterogeneous HONO formation increases both the simulated value of sulfate–nitrate–ammonium (SNA) and that of O3, thus adding the heterogeneous reactions of HONO into air quality models inevitably leads to changes in the estimated benefits of NOx abatement. Here we investigated the changes in SNA and O3 concentrations from NOx emission reduction before and after adding heterogeneous HONO reactions in the Community Multi-Scale Air Quality (CMAQ) model. Including heterogeneous HONO reactions in the simulation improved the benefits of NOx reduction in terms of SNA control in winter. With 80% NOx reduction, the reduction in SNA increased from 36.9% without considering heterogeneous HONO reactions to 42.8% with heterogeneous HONO chemistry. The reduction in the maximum daily 8h average (MDA8) O3 in summer caused by NOx reduction increased slightly from 4.7% to 5.2% after adding heterogeneous HONO reactions. The results in this study highlight the enhanced effectiveness of NOx controls for the reduction of SNA and O3 after considering heterogeneous HONO formation in a complex chemical ambient, demonstrating the importance of NOx controls in reducing PM2.5 and O3 pollution in China.

Keywords Heterogeneous HONO      NOx reduction      PM2.5      O3     
Corresponding Author(s): Biwu Chu,Jia Xing   
Issue Date: 04 December 2023
 Cite this article:   
Shuping Zhang,Haotian Zheng,Jun Liu, et al. Underestimated benefits of NOx control in reducing SNA and O3 based on missing heterogeneous HONO sources[J]. Front. Environ. Sci. Eng., 2024, 18(3): 30.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1790-y
https://academic.hep.com.cn/fese/EN/Y2024/V18/I3/30
Fig.1  Observed and simulated concentrations from the original and revised CMAQ in Beijing in summer: (a) time series of HONO; (b) diurnal variation of HONO; (c) diurnal variation of NO2.
Fig.2  Relative contributions of default and revised HONO reactions in CMAQ in summer, 2018.
Fig.3  Differences in the spatial distribution of monthly averaged SNA and MDA8 O3 concentrations between two simulations (REV and ORI).
Fig.4  A comparison of simulated SNA concentrations before and after NOx reduction at different PM2.5 levels: (a) without heterogeneous HONO reactions; (b) with heterogeneous HONO reactions.
Fig.5  A comparison of simulated maximum daily average 8h O3 concentrations before and after NOx reduction: (a) without heterogeneous HONO reactions; (b) with heterogeneous HONO reactions
Fig.6  Changes in emission reductions of SNA (a) and O3 (b) in the presence and absence of HONO heterogeneous reactions.
1 J An , Y Li , Y Chen , J Li , Y Qu , Y Tang . (2013). Enhancements of major aerosol components due to additional HONO sources in the North China Plain and implications for visibility and haze. Advances in Atmospheric Sciences, 30(1): 57–66
https://doi.org/10.1007/s00376-012-2016-9
2 R Atkinson , J Arey . (2003). Atmospheric degradation of volatile organic compounds. Chemical Reviews, 103(12): 4605–4638
https://doi.org/10.1021/cr0206420
3 R Atkinson , D L Baulch , R A Cox , J N Crowley , R F Hampson , R G Hynes , M E Jenkin , M J Rossi , J Troe . (2006). Evaluated kinetic and photochemical data for atmospheric chemistry: volume II―Gas phase reactions of organic species. Atmospheric Chemistry and Physics, 6(11): 3625–4055
https://doi.org/10.5194/acp-6-3625-2006
4 V Balamurugan , J Chen , Z Qu , X Bi , F N Keutsch . (2022). Secondary PM2.5 decreases significantly less than NO2 emission reductions during COVID lockdown in Germany. Atmospheric Chemistry and Physics, 22(11): 7105–7129
https://doi.org/10.5194/acp-22-7105-2022
5 C L Blanchard , G M Hidy . (2005). Effects of SO2 and NOx emission reductions on PM2.5 mass concentrations in the southeastern United States. Journal of the Air & Waste Management Association, 55(3): 265–272
https://doi.org/10.1080/10473289.2005.10464624
6 T J Butler , F M Vermeylen , M Rury , G E Likens , B Lee , G E Bowker , L Mccluney . (2011). Response of ozone and nitrate to stationary source NOx emission reductions in the eastern USA. Atmospheric Environment, 45(5): 1084–1094
https://doi.org/10.1016/j.atmosenv.2010.11.040
7 D Byun , K L Schere . (2006). Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Applied Mechanics Reviews, 59(2): 51–77
https://doi.org/10.1115/1.2128636
8 Y Cao , Q Ma , B Chu , H He . (2022). Homogeneous and heterogeneous photolysis of nitrate in the atmosphere: state of the science, current research needs, and future prospects. Frontiers of Environmental Science & Engineering, 17(4): 48
9 S Chang , W Zeng , Y Zheng , L Wang , Z Song , Q Zhu , Y Luo , P Li , Y Li , C Liao . et al.. (2022). Emission mitigation pathways to achieve PM2.5 interim target III of the world health organization in the Pearl River Delta in 2035. Atmospheric Research, 269: 106050
https://doi.org/10.1016/j.atmosres.2022.106050
10 T Chen , J Liu , Y Liu , Q Ma , Y Ge , C Zhong , H Jiang , B Chu , P Zhang , J Ma . et al.. (2020). Chemical characterization of submicron aerosol in summertime Beijing: a case study in southern suburbs in 2018. Chemosphere, 247: 125918
https://doi.org/10.1016/j.chemosphere.2020.125918
11 T Chen , P Zhang , Q Ma , B Chu , J Liu , Y Ge , H He . (2022). Smog chamber study on the role of NOx in SOA and O3 formation from aromatic hydrocarbons. Environmental Science & Technology, 56(19): 13654–13663
https://doi.org/10.1021/acs.est.2c04022
12 B Chu , Q Ma , J Liu , J Ma , P Zhang , T Chen , Q Feng , C Wang , N Yang , H Ma . et al.. (2020). Air pollutant correlations in China: secondary air pollutant responses to NOx and SO2 control. Environmental Science & Technology Letters, 7(10): 695–700
https://doi.org/10.1021/acs.estlett.0c00403
13 M J Cooper , R V Martin , M S Hammer , P F Levelt , P Veefkind , L N Lamsal , N A Krotkov , J R Brook , C A Mclinden . (2022). Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature, 601(7893): 380–387
https://doi.org/10.1038/s41586-021-04229-0
14 L L Cui , R Li , Y C Zhang , Y Meng , H B Fu , J M Chen . (2018). An observational study of nitrous acid (HONO) in Shanghai, China: the aerosol impact on HONO formation during the haze episodes. Science of the Total Environment, 630: 1057–1070
https://doi.org/10.1016/j.scitotenv.2018.02.063
15 D Ding , J Xing , S Wang , Z Dong , F Zhang , S Liu , J Hao . (2022). Optimization of a NO and VOC cooperative control strategy based on clean air benefits. Environmental Science & Technology, 56(2): 739–749
https://doi.org/10.1021/acs.est.1c04201
16 Z Dong , J Xing , F Zhang , S Wang , D Ding , H Wang , C Huang , H Zheng , Y Jiang , J Hao . (2023). Synergetic PM2.5 and O3 control strategy for the Yangtze River Delta, China. Journal of Environmental Sciences (China), 123: 281–291
https://doi.org/10.1016/j.jes.2022.04.008
17 C EmeryE TaiG Yarwood (2001). Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes. Novato: Air Sciences ENVIRON International Corporation
18 X Fu , T Wang , L Zhang , Q Y Li , Z Wang , M Xia , H Yun , W H Wang , C Yu , D L Yue . et al.. (2019). The significant contribution of HONO to secondary pollutants during a severe winter pollution event in southern China. Atmospheric Chemistry and Physics, 19(1): 1–14
https://doi.org/10.5194/acp-19-1-2019
19 M Gen , R Zhang , D D Huang , Y Li , C K Chan . (2019). Heterogeneous SO2 oxidation in sulfate formation by photolysis of particulate nitrate. Environmental Science & Technology Letters, 6(2): 86–91
https://doi.org/10.1021/acs.estlett.8b00681
20 Y Jiang , J Xing , S Wang , X Chang , S Liu , A Shi , B Liu , S K Sahu . (2020). Understand the local and regional contributions on air pollution from the view of human health impacts. Frontiers of Environmental Science & Engineering, 15(5): 1–11
21 H He , Y Wang , Q Ma , J Ma , B Chu , D Ji , G Tang , C Liu , H Zhang , J Hao . (2014). Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports, 4(1): 4172
https://doi.org/10.1038/srep04172
22 X Hong , K Yang , H Liang , Y Shi . (2022). Characteristics of water-soluble inorganic ions in PM2.5 in typical urban areas of Beijing, China. ACS Omega, 7(40): 35575–35585
https://doi.org/10.1021/acsomega.2c02919
23 T Le , Y Wang , L Liu , J Yang , Y L Yung , G Li , J H Seinfeld . (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369(6504): 702–706
https://doi.org/10.1126/science.abb7431
24 A Li , Q Zhou , Q Xu . (2021a). Prospects for ozone pollution control in China: an epidemiological perspective. Environmental Pollution, 285: 117670
https://doi.org/10.1016/j.envpol.2021.117670
25 X Li , N Bei , B Hu , J Wu , Y Pan , T Wen , Z Liu , L Liu , R Wang , G Li . (2021b). Mitigating NOx emissions does not help alleviate wintertime particulate pollution in Beijing−Tianjin−Hebei, China. Environmental Pollution, 279: 116931
https://doi.org/10.1016/j.envpol.2021.116931
26 Y Liu , K Lu , X Li , H Dong , Z Tan , H Wang , Q Zou , Y Wu , L Zeng , M Hu . et al.. (2019). A comprehensive model test of the HONO sources constrained to field measurements at rural North China plain. Environmental Science & Technology, 53(7): 3517–3525
https://doi.org/10.1021/acs.est.8b06367
27 A A Olajire , L Azeez . (2014). Source apportionment and ozone formation potential of volatile organic compounds in Lagos (Nigeria). Chemistry and Ecology, 30(2): 156–168
https://doi.org/10.1080/02757540.2013.844796
28 U Platt , D Perner , G W Harris , A M Winer , J N Jr Pitts . (1980). Observations of nitrous acid in an urban atmosphere by differential optical absorption. Nature, 285(5763): 312–314
https://doi.org/10.1038/285312a0
29 V Praveena , M L J Martin . (2018). A review on various after treatment techniques to reduce NOx emissions in a CI engine. Journal of the Energy Institute, 91(5): 704–720
https://doi.org/10.1016/j.joei.2017.05.010
30 C Ren , X Huang , Z Wang , P Sun , X Chi , Y Ma , D Zhou , J Huang , Y Xie , J Gao . et al.. (2021). Nonlinear response of nitrate to NOx reduction in China during the COVID-19 pandemic. Atmospheric Environment, 264: 118715
https://doi.org/10.1016/j.atmosenv.2021.118715
31 G Sarwar , S J Roselle , R Mathur , W Appel , R L Dennis , B Vogel . (2008). A comparison of CMAQ HONO predictions with observations from the northeast oxidant and particle study. Atmospheric Environment, 42(23): 5760–5770
https://doi.org/10.1016/j.atmosenv.2007.12.065
32 D H SeherM ReicheltS Wickert (2003). Control Strategy for NOx-Emission Reduction with SCR. Fort Worth, Texas, USA: SAE Technical Paper, 1–7
33 D Shang , J Peng , S Guo , Z Wu , M Hu . (2020). Secondary aerosol formation in winter haze over the Beijing–Tianjin–Hebei Region, China. Frontiers of Environmental Science & Engineering, 15(2): 34
34 W Song , Y L Wang , W Yang , X C Sun , Y D Tong , X M Wang , C Q Liu , Z P Bai , X Y Liu . (2019). Isotopic evaluation on relative contributions of major NOx sources to nitrate of PM2.5 in Beijing. Environmental Pollution, 248: 183–190
https://doi.org/10.1016/j.envpol.2019.01.081
35 F Spataro , A Ianniello . (2014). Sources of atmospheric nitrous acid: state of the science, current research needs, and future prospects. Journal of the Air & Waste Management Association, 64(11): 1232–1250
https://doi.org/10.1080/10962247.2014.952846
36 H Su , Y Cheng , R Oswald , T Behrendt , I Trebs , F X Meixner , M O Andreae , P Cheng , Y Zhang , U Pöschl . (2011). Soil nitrite as a source of atmospheric HONO and OH radicals. Science, 333(6049): 1616–1618
https://doi.org/10.1126/science.1207687
37 G Tang , Y Liu , J Zhang , B Liu , Q Li , J Sun , Y Wang , Y Xuan , Y Li , J Pan , X Li , Y Wang . (2021). Bypassing the NOx titration trap in ozone pollution control in Beijing. Atmospheric Research, 249: 105333
https://doi.org/10.1016/j.atmosres.2020.105333
38 P Thunis , A Clappier , M Beekmann , J P Putaud , C Cuvelier , J Madrazo , A De Meij . (2021). Non-linear response of PM2.5 to changes in NOx and NH3 emissions in the Po basin (Italy): consequences for air quality plans. Atmospheric Chemistry and Physics, 21(12): 9309–9327
https://doi.org/10.5194/acp-21-9309-2021
39 U.S. EPA (2019). CMAQv5.3. Washington, DC: United States Environmental Protection Agency
40 T C VandenBoer , C J Young , R K Talukdar , M Z Markovic , S S Brown , J M Roberts , J G Murphy . (2015). Nocturnal loss and daytime source of nitrous acid through reactive uptake and displacement. Nature Geoscience, 8(1): 55–60
https://doi.org/10.1038/ngeo2298
41 J Wang , J Li , J Ye , J Zhao , Y Wu , J Hu , D Liu , D Nie , F Shen , X Huang . et al.. (2020). Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications, 11(1): 2844
https://doi.org/10.1038/s41467-020-16683-x
42 S Wang , J Xing , B Zhao , C Jang , J Hao . (2014). Effectiveness of national air pollution control policies on the air quality in metropolitan areas of China. Journal of Environmental Sciences (China), 26(1): 13–22
https://doi.org/10.1016/S1001-0742(13)60381-2
43 T Wang , L Xue , P Brimblecombe , Y F Lam , L Li , L Zhang . (2017). Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment, 575: 1582–1596
https://doi.org/10.1016/j.scitotenv.2016.10.081
44 X Wang , W Wei , S Cheng , S Yao , H Zhang , C Zhang . (2019). Characteristics of PM2.5 and SNA components and meteorological factors impact on air pollution through 2013–2017 in Beijing, China. Atmospheric Pollution Research, 10(6): 1976–1984
https://doi.org/10.1016/j.apr.2019.09.004
45 Y Wang , E A Yaluk , H Chen , S Jiang , L Huang , A Zhu , S Xiao , J Xue , G Lu , J Bian . et al.. (2022). The importance of NOx control for peak ozone mitigation based on a sensitivity study using CMAQ-HDDM-3D model during a typical episode over the Yangtze River Delta Region, China. Journal of Geophysical Research: Atmospheres, 127(19): e2022JD036555
https://doi.org/10.1029/2022JD036555
46 X Xie , J Hu , M Qin , S Guo , M Hu , H Wang , S Lou , J Li , J Sun , X Li . et al.. (2022). Modeling particulate nitrate in China: current findings and future directions. Environment International, 166: 107369
https://doi.org/10.1016/j.envint.2022.107369
47 J Xing , R Mathur , J Pleim , C Hogrefe , C M Gan , D C Wong , C Wei , J Wang . (2015). Air pollution and climate response to aerosol direct radiative effects: a modeling study of decadal trends across the northern hemisphere. Journal of Geophysical Research: Atmospheres, 120(23): 212221–212236
48 J Xing , S X Wang , C Jang , Y Zhu , J M Hao . (2011). Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology. Atmospheric Chemistry and Physics, 11(10): 5027–5044
https://doi.org/10.5194/acp-11-5027-2011
49 G Xu , H Wang , Y Yu , H He . (2021). Role of silver species in H2–NH3-SCR of NOx over Ag/Al2O3 catalysts: operando spectroscopy and DFT calculations. Journal of Catalysis, 395: 1–9
https://doi.org/10.1016/j.jcat.2020.12.025
50 Z Xu , T Wang , J Wu , L Xue , J Chan , Q Zha , S Zhou , P K K Louie , C W Y Luk . (2015). Nitrous acid (HONO) in a polluted subtropical atmosphere: seasonal variability, direct vehicle emissions and heterogeneous production at ground surface. Atmospheric Environment, 106: 100–109
https://doi.org/10.1016/j.atmosenv.2015.01.061
51 H Xuan , Y Zhao , Q Ma , T Chen , J Liu , Y Wang , C Liu , Y Wang , Y Liu , Y Mu . et al.. (2023). Formation mechanisms and atmospheric implications of summertime nitrous acid (HONO) during clean, ozone pollution and double high-level PM2.5 and O3 pollution periods in Beijing. Science of the Total Environment, 857: 159538
https://doi.org/10.1016/j.scitotenv.2022.159538
52 C Xue , C Zhang , C Ye , P Liu , V Catoire , G Krysztofiak , H Chen , Y Ren , X Zhao , J Wang . et al.. (2020). HONO budget and its role in nitrate formation in the rural north China plain. Environmental Science & Technology, 54(18): 11048–11057
https://doi.org/10.1021/acs.est.0c01832
53 S Zhai , D J Jacob , X Wang , Z Liu , T Wen , V Shah , K Li , J M Moch , K H Bates , S Song . et al.. (2021). Control of particulate nitrate air pollution in China. Nature Geoscience, 14(6): 389–395
https://doi.org/10.1038/s41561-021-00726-z
54 S P Zhang , G Sarwar , J Xing , B W Chu , C Y Xue , A Sarav , D A Ding , H T Zheng , Y J Mu , F K Duan . et al.. (2021). Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China. Atmospheric Chemistry and Physics, 21(20): 15809–15826
https://doi.org/10.5194/acp-21-15809-2021
55 Z Zhang , J Jiang , B Lu , X Meng , H Herrmann , J Chen , X Li . (2022). Attributing increases in ozone to accelerated oxidation of volatile organic compounds at reduced nitrogen oxides concentrations. PNAS Nexus, 1(5): pgac266
https://doi.org/10.1093/pnasnexus/pgac266
56 B Zhao , W J Wu , S X Wang , J Xing , X Chang , K N Liou , J H Jiang , Y Gu , C Jang , J S Fu . et al.. (2017). A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing–Tianjin–Hebei region. Atmospheric Chemistry and Physics, 17(19): 12031–12050
https://doi.org/10.5194/acp-17-12031-2017
57 H Zheng , B Zhao , S Wang , T Wang , D Ding , X Chang , K Liu , J Xing , Z Dong , K Aunan . et al.. (2019). Transition in source contributions of PM2.5 exposure and associated premature mortality in China during 2005–2015. Environment International, 132: 105111
https://doi.org/10.1016/j.envint.2019.105111
[1] FSE-23086-OF-ZSP_suppl_1 Download
[1] Junge Xu, Dong Wang, Die Hu, Ziwei Zhang, Junhong Chen, Yingmu Wang, Yifeng Zhang. Magnetic Co-doped 1D/2D structured γ-Fe2O3/MoS2 effectively activated peroxymonosulfate for efficient abatement of bisphenol A via both radical and non-radical pathways[J]. Front. Environ. Sci. Eng., 2024, 18(3): 37-.
[2] Qiyue Wu, Yun Geng, Xinyuan Wang, Dongsheng Wang, ChangKyoo Yoo, Hongbin Liu. A novel deep learning framework with variational auto-encoder for indoor air quality prediction[J]. Front. Environ. Sci. Eng., 2024, 18(1): 8-.
[3] Yang Xie, Hua Zhong, Zhixiong Weng, Xinbiao Guo, Satbyul Estella Kim, Shaowei Wu. PM2.5 concentration declining saves health expenditure in China[J]. Front. Environ. Sci. Eng., 2023, 17(7): 90-.
[4] Yanfei Wang, Xiaona Zheng, Guangxue Wu, Yuntao Guan. Removal of ammonium and nitrate through Anammox and FeS-driven autotrophic denitrification[J]. Front. Environ. Sci. Eng., 2023, 17(6): 74-.
[5] Meiling Chen, Mengjie Yin, Yuetan Su, Ruizhe Li, Kezhou Liu, Zhongbiao Wu, Xiaole Weng. Atmospheric heterogeneous reaction of chlorobenzene on mineral α-Fe2O3 particulates: a chamber experiment study[J]. Front. Environ. Sci. Eng., 2023, 17(11): 134-.
[6] Yali Chang, Jianwei Cao, Wenfeng Song, Zhi Wang, Chenyang Xu, Mengzhuo Long. Effects of sulfur on variations in the chemical speciation of heavy metals from fly ash glass[J]. Front. Environ. Sci. Eng., 2023, 17(10): 128-.
[7] Cheng Hou, Xinbai Jiang, Na Li, Zhenhua Zhang, Qian Zhang, Jinyou Shen, Xiaodong Liu. Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism[J]. Front. Environ. Sci. Eng., 2022, 16(8): 98-.
[8] Peng Wang, Shengqiang Zhu, Mihalis Vrekoussis, Guy P. Brasseur, Shuxiao Wang, Hongliang Zhang. Is atmospheric oxidation capacity better in indicating tropospheric O3 formation?[J]. Front. Environ. Sci. Eng., 2022, 16(5): 65-.
[9] Yue Wang, Mengshuang Shi, Zhaofeng Lv, Huan Liu, Kebin He. Local and regional contributions to PM2.5 in the Beijing 2022 Winter Olympics infrastructure areas during haze episodes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 140-.
[10] Aifang Gao, Junyi Wang, Jianfei Luo, Aiguo Li, Kaiyu Chen, Pengfei Wang, Yiyi Wang, Jingyi Li, Jianlin Hu, Hongliang Zhang. Temporal variation of PM2.5-associated health effects in Shijiazhuang, Hebei[J]. Front. Environ. Sci. Eng., 2021, 15(5): 82-.
[11] Yueqi Jiang, Jia Xing, Shuxiao Wang, Xing Chang, Shuchang Liu, Aijun Shi, Baoxian Liu, Shovan Kumar Sahu. Understand the local and regional contributions on air pollution from the view of human health impacts[J]. Front. Environ. Sci. Eng., 2021, 15(5): 88-.
[12] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[13] Caihong Xu, Jianmin Chen, Zhikai Wang, Hui Chen, Hao Feng, Lujun Wang, Yuning Xie, Zhenzhen Wang, Xingnan Ye, Haidong Kan, Zhuohui Zhao, Abdelwahid Mellouki. Diverse bacterial populations of PM2.5 in urban and suburb Shanghai, China[J]. Front. Environ. Sci. Eng., 2021, 15(3): 37-.
[14] Yapeng Song, Hui Gong, Jianbing Wang, Fengmin Chang, Kaijun Wang. Enhanced triallyl isocyanurate (TAIC) degradation through application of an O3/UV process: Performance optimization and degradation pathways[J]. Front. Environ. Sci. Eng., 2020, 14(4): 64-.
[15] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed