Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (7) : 92    https://doi.org/10.1007/s11783-024-1852-z
New Opportunities for Neutrons in Environmental and Biological Sciences
Alexander Johs(), Shuo Qian(), Leighton Coates, Brian H. Davison, James G. Elkins, Xin Gu, Jennifer Morrell-Falvey, Hugh O’Neill, Jeffrey M. Warren, Eric M. Pierce, Kenneth Herwig
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
 Download: PDF(4556 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Neutrons reveal the structure and dynamics of materials nondestructively.

● Neutron methods probe complex systems across a wide range of length and time scales.

● Advances in instruments and source enable smaller samples and time-resolved studies.

● Multi-modal techniques and deuteration capabilities enable new science.

● Processes in soil, water, plants, microbes from enzymes to organisms.

The use of neutron methods in environmental and biological sciences is rapidly emerging and accelerating with the development of new instruments at neutron user facilities. This article, based on a workshop held at Oak Ridge National Laboratory (ORNL), offers insights into the application of neutron techniques in environmental and biological sciences. We highlight recent advances and identify key challenges and potential future research areas. These include soil and rhizosphere processes, root water dynamics, plant-microbe interactions, structure and dynamics of biological systems, applications in synthetic biology and enzyme engineering, next-generation bioproducts, biomaterials and bioenergy, nanoscale structure, and fluid dynamics of porous materials in geochemistry. We provide an outlook on emerging opportunities with an emphasis on new capabilities that will be enabled at the Spallation Neutron Source Second Target Station currently under design at ORNL. The mission of scientific neutron user facilities worldwide is to enable science using state-of-the-art neutron capabilities. We aim to encourage researchers in the environmental and biological research community to explore the unique capability afforded by neutrons at these facilities.

Keywords Neutrons      Environment      Biology      Neutron imaging      Neutron scattering      Second Target Station (STS)     
Corresponding Author(s): Alexander Johs,Shuo Qian   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 18 April 2024
 Cite this article:   
Alexander Johs,Shuo Qian,Leighton Coates, et al. New Opportunities for Neutrons in Environmental and Biological Sciences[J]. Front. Environ. Sci. Eng., 2024, 18(7): 92.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1852-z
https://academic.hep.com.cn/fese/EN/Y2024/V18/I7/92
Fig.1  (A) Neutron tomography of a lupine root system grown in sandy soil in a 27 mm diameter quartz glass column. Neutrons are able to map the water and root distribution in the root-soil system with little attenuation from soil. Adapted fromT?tzke et al. (2017). (B) An example of contrast matching in neutron scattering. Certain classes of biomolecules can be masked by adjusting the D2O/H2O ratio of the background solution, therefore making certain parts of the sample invisible. (C) An example of unlabeled proteins (pink) masked in 42% D2O enabling the selective study of the deuterated protein component (blue).
InstrumentTechniqueSample type
Structure
 CENTAURSANS/DiffractionBulk materials such as solution, gel, aerosol, wood, fiber, soil, rock
 QIKRReflectometryThin films, interfaces
 CUPI2DImagingBulk materials, environmental samples
 PIONEERDiffractionSingle crystals
 VERDIDiffractionSingle crystals
Dynamics
 BWAVESInverted Geometry SpectrometerBulk materials including liquids and solids
 CHESSDirect Geometry SpectrometerSingle crystals, powders, liquids
 EXPANSENeutron Spin EchoBulk materials including liquids and solids
Tab.1  Overview of STS instruments, neutron techniques, and sample types
Fig.2  The preliminary layout of the eight initial instruments at STS.
Fig.3  Time and length scales covered by the initial STS instruments. Instruments in the lower section of the illustration are “elastic” instruments for structure studies and do not measure changes in the neutron energy in dynamics studies.
1 P AdamsJ F AnknerL M AnovitzA BanerjeeE BegoliR BoehlerS CalderB C ChakoumakosT R CharltonW R Chen, et al.. (2020). First experiments: new science opportunities at the spallation neutron source second target station (abridged). Medium: ED; Size
2 G R Aiken , H Hsu-Kim , J N Ryan . (2011). Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environmental Science & Technology, 45(8): 3196–3201
https://doi.org/10.1021/es103992s
3 J F Ankner , R Ashkar , J F Browning , T R Charlton , M Doucet , C E Halbert , F Islam , A Karim , E Kharlampieva , S M II Kilbey . et al.. (2023). Cinematic reflectometry using QIKR, the quite intense kinetics reflectometer. Review of Scientific Instruments, 94(1): 013302
https://doi.org/10.1063/5.0122279
4 L M AnovitzD R Cole (2018). Analysis of the pore structures of shale using neutron and X-Ray small angle scattering. In: Geological Carbon Storage. Washington, DC: American Geophysical Union (AGU)
5 A F Astner , D G Hayes , S V Pingali , H M O’Neill , K C Littrell , B R Evans , V S Urban . (2020). Effects of soil particles and convective transport on dispersion and aggregation of nanoplastics via small-angle neutron scattering (SANS) and ultra SANS (USANS). PLoS One, 15(7): e0235893
https://doi.org/10.1371/journal.pone.0235893
6 A Brügger , H Z Bilheux , J Y Y Lin , G J Nelson , A M Kiss , J Morris , M J Connolly , A M Long , A S Tremsin , A Strzelec . et al.. (2023). The complex, unique, and powerful imaging instrument for dynamics (CUPI2D) at the spallation neutron source. Review of Scientific Instruments, 94(5): 051301
https://doi.org/10.1063/5.0131778
7 R A Campbell . (2018). Recent advances in resolving kinetic and dynamic processes at the air/water interface using specular neutron reflectometry. Current Opinion in Colloid & Interface Science, 37: 49–60
https://doi.org/10.1016/j.cocis.2018.06.002
8 C L Cheng , M Kang , E Perfect , S Voisin , J Horita , H Z Bilheux , J M Warren , D L Jacobson , D S Hussey . (2012). Average soil water retention curves measured by neutron radiography. Soil Science Society of America Journal, 76(4): 1184–1191
https://doi.org/10.2136/sssaj2011.0313
9 M Delay , F H Frimmel . (2012). Nanoparticles in aquatic systems. Analytical and Bioanalytical Chemistry, 402(2): 583–592
https://doi.org/10.1007/s00216-011-5443-z
10 C Do , R Ashkar , C Boone , W R Chen , G Ehlers , P Falus , A Faraone , J S Gardner , V Graves , T Huegle . et al.. (2022). EXPANSE: a time-of-flight EXPanded angle neutron spin echo spectrometer at the second target station of the spallation neutron source. Review of Scientific Instruments, 93(7): 075107
https://doi.org/10.1063/5.0089349
11 V O Garlea , S Calder , T Huegle , J Y Y Lin , F Islam , A Stoica , V B Graves , B Frandsen , S D Wilson . (2022). VERDI: VERsatile DIffractometer with wide-angle polarization analysis for magnetic structure studies in powders and single crystals. Review of Scientific Instruments, 93(6): 065103
https://doi.org/10.1063/5.0090919
12 S Gautam , T T Liu , G Rother , N Jalarvo , E Mamontov , S Welch , J Sheets , M Droege , D R Cole . (2015). Dynamics of propane in nanoporous silica aerogel: a quasielastic neutron scattering study. Journal of Physical Chemistry C, 119(32): 18188–18195
https://doi.org/10.1021/acs.jpcc.5b03444
13 X Gu , D R Cole , G Rother , D F R Mildner , S L Brantley . (2015). Pores in marcellus shale: a neutron scattering and FIB-SEM study. Energy & Fuels, 29(3): 1295–1308
https://doi.org/10.1021/acs.energyfuels.5b00033
14 E Hand . (2023). Hidden hydrogen. Science, 379(6633): 630–636
https://doi.org/10.1126/science.adh1477
15 D W Hayward , L Chiappisi , S Prévost , R Schweins , M Gradzielski . (2018). A small-angle neutron scattering environment for in-situ observation of chemical processes. Scientific Reports, 8: 7299
https://doi.org/10.1038/s41598-018-24718-z
16 H P Jarvie , H Al-Obaidi , S M King , M J Bowes , M J Lawrence , A F Drake , M A Green , P J Dobson . (2009). Fate of silica nanoparticles in simulated primary wastewater treatment. Environmental Science & Technology, 43(22): 8622–8628
https://doi.org/10.1021/es901399q
17 H P Jarvie , S M King . (2007). Small-angle neutron scattering study of natural aquatic nanocolloids. Environmental Science & Technology, 41(8): 2868–2873
https://doi.org/10.1021/es061912p
18 C M Jeffries , J Ilavsky , A Martel , S Hinrichs , A Meyer , J S Pedersen , A V Sokolova , D I Svergun . (2021). Small-angle X-ray and neutron scattering. Nature Reviews. Methods Primers, 1: 70
https://doi.org/10.1038/s43586-021-00064-9
19 A JohsS QianL CoatesB H DavisonJ G ElkinsX GuJ Morrell-FalveyH O’NeillJ WarrenE M Pierceet al. (2022). ORNL Second Target Station Project: Biological & Environmental Science Workshop. Oak Ridge: Oak Ridge National Laboratory (ORNL)
20 P Klosowski (2019). Neutron Sources Around the World. Available online at the website of ncnr.nist.gov (accessed 2024-03-18)
21 D J Kong , W R Chen , K Q Zeng , L Porcar , Z Wang . (2022). Localized elasticity governs the nonlinear rheology of colloidal supercooled liquids. Physical Review X, 12(4): 041006
https://doi.org/10.1103/PhysRevX.12.041006
22 Y H Liu , H B Cao , S Rosenkranz , M Frost , T Huegle , J Y Y Lin , P Torres , A Stoica , B C Chakoumakos . (2022). PIONEER, a high-resolution single-crystal polarized neutron diffractometer. Review of Scientific Instruments, 93(7): 073901
https://doi.org/10.1063/5.0089524
23 Lucero C L, Bentz D P, Hussey D S, Jacobson D L, Weiss W J (2015). Using neutron radiography to quantify water transport and the degree of saturation in entrained air cement based mortar. In: Proceedings of the 10th world conference on neutron radiography (WCNR-10). Oct 5−10, 2014, Grindelwald, Switzerland
24 C Ma , A Malessa , A J Boersma , K Liu , A Herrmann . (2020). Supercharged proteins and polypeptides. Advanced Materials, 32(20): 1905309
https://doi.org/10.1002/adma.201905309
25 A Maity , S Singh , S Mehta , T G A Youngs , J Bahadur , V Polshettiwar . (2023). Insights into the CO2 capture characteristics within the hierarchical pores of carbon nanospheres using small-angle neutron scattering. Langmuir, 39(12): 4382–4393
https://doi.org/10.1021/acs.langmuir.2c03474
26 E Mamontov , C Boone , M J Frost , K W Herwig , T Huegle , J Y Y Lin , B Mccormick , W Mchargue , A D Stoica , P Torres . et al.. (2022). A concept of a broadband inverted geometry spectrometer for the Second Target Station at the Spallation Neutron Source. Review of Scientific Instruments, 93(4): 045101
https://doi.org/10.1063/5.0086451
27 B J Maranzano , N J Wagner . (2002). Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. Journal of Chemical Physics, 117(22): 10291–10302
https://doi.org/10.1063/1.1519253
28 J McFarlane , L M Anovitz , M C Cheshire , V H Distefano , H Z Bilheux , J C Bilheux , L L Daemen , R E Hale , R L Howard , A Ramirez-Cuesta . et al.. (2021). Water migration and swelling in engineered barrier materials for radioactive waste disposal. Nuclear Technology, 207(8): 1237–1256
https://doi.org/10.1080/00295450.2020.1812348
29 A NakamuraR Iino (2018). Glycobiophysics. Yamaguchi Y, Kato K, eds. Singapore: Springer Singapore, 201–217
30 S Qian , W Heller , W R Chen , A Christianson , C Do , Y Y Wang , J Y Y Lin , T Huegle , C Y Jiang , C Boone . et al.. (2022). CENTAUR-The small- and wide-angle neutron scattering diffractometer/spectrometer for the Second Target Station of the Spallation Neutron Source. Review of Scientific Instruments, 93(7): 075104
https://doi.org/10.1063/5.0090527
31 J D F Ramsay , S W Swanton , J Bunce . (1990). Swelling and dispersion of smectite clay colloids-determination of structure by neutron-diffraction and small-angle neutron-scattering. Journal of the Chemical Society, Faraday Transactions, 86(23): 3919–3926
https://doi.org/10.1039/ft9908603919
32 G Rother , E S Ilton , D Wallacher , T Hauβ , H T Schaef , O Qafoku , K M Rosso , A R Felmy , E G Krukowski , A G Stack , N Grimm , R J Bodnar . (2013). CO2 sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements. Environmental Science & Technology, 47(1): 205–211
https://doi.org/10.1021/es301382y
33 G Sala , M Mourigal , C Boone , N P Butch , A D Christianson , O Delaire , A J Desantis , C L Hart , R P Hermann , T Huegle . et al.. (2022). CHESS: the future direct geometry spectrometer at the second target station. Review of Scientific Instruments, 93(6): 065109
https://doi.org/10.1063/5.0089740
34 R H Shepherd , M D King , A R Rennie , A D Ward , M M Frey , N Brough , J Eveson , Vento S Del , A Milsom , C Pfrang . et al.. (2022). Measurement of gas-phase OH radical oxidation and film thickness of organic films at the air-water interface using material extracted from urban, remote and wood smoke aerosol. Environmental Science: Atmospheres, 2(4): 574–590
https://doi.org/10.1039/D2EA00013J
35 K S W Sing . (1985). Reporting physisorption data for gas solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
36 C Tötzke , N Kardjilov , I Manke , S E Oswald . (2017). Capturing 3D water flow in rooted soil by ultra-fast neutron tomography. Scientific Reports, 7: 6192
https://doi.org/10.1038/s41598-017-06046-w
37 J M Warren , H Bilheux , M S Kang , S Voisin , C L Cheng , J Horita , E Perfect . (2013). Neutron imaging reveals internal plant water dynamics. Plant and Soil, 366(1–2): 683–693
https://doi.org/10.1007/s11104-012-1579-7
38 H R Wenk (2006). Neutron Scattering in Earth Sciences. Berlin, Boston: De Gruyter
39 P Zhang , F H Wittmann , T Zhao , E H Lehmann . (2010). Neutron imaging of water penetration into cracked steel reinforced concrete. Physica B, Condensed Matter, 405(7): 1866–1871
https://doi.org/10.1016/j.physb.2010.01.065
[1] Wei Mao, Xuewu Shen, Lixun Zhang, Yang Liu, Zehao Liu, Yuntao Guan. A review on Bi2WO6-based photocatalysts synthesis, modification, and applications in environmental remediation, life medical, and clean energy[J]. Front. Environ. Sci. Eng., 2024, 18(7): 86-.
[2] Sanggwon An, Sangsoo Choi, Hyeong Rae Kim, Jungho Hwang. Rapid monitoring of indoor airborne influenza and coronavirus with high air flowrate electrostatic sampling and PCR analysis[J]. Front. Environ. Sci. Eng., 2024, 18(7): 85-.
[3] Zhiguo Su, Lyujun Chen, Donghui Wen. Impact of wastewater treatment plant effluent discharge on the antibiotic resistome in downstream aquatic environments: a mini review[J]. Front. Environ. Sci. Eng., 2024, 18(3): 36-.
[4] Timing Jiang, Xiang Wu, Shushan Yuan, Changfei Lai, Shijie Bian, Wenbo Yu, Sha Liang, Jingping Hu, Liang Huang, Huabo Duan, Yafei Shi, Jiakuan Yang. A potential threat from biodegradable microplastics: mechanism of cadmium adsorption and desorption in the simulated gastrointestinal environment[J]. Front. Environ. Sci. Eng., 2024, 18(2): 19-.
[5] Sajjad Haider, Rab Nawaz, Muzammil Anjum, Tahir Haneef, Vipin Kumar Oad, Salah Uddinkhan, Rawaiz Khan, Muhammad Aqif. Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 111-.
[6] Qijun Zhang, Jiayuan Liu, Ning Wei, Congbo Song, Jianfei Peng, Lin Wu, Hongjun Mao. Identify the contribution of vehicle non-exhaust emissions: a single particle aerosol mass spectrometer test case at typical road environment[J]. Front. Environ. Sci. Eng., 2023, 17(5): 62-.
[7] Bin Wang, Liping Heng, Qian Sui, Zheng Peng, Xuezhi Xiao, Minghui Zheng, Jianxin Hu, Heidelore Fiedler, Damià Barceló, Gang Yu. Insight of chemical environmental risk and its management from the vinyl chloride accident[J]. Front. Environ. Sci. Eng., 2023, 17(4): 52-.
[8] Haojun Lei, Kaisheng Yao, Bin Yang, Lingtian Xie, Guangguo Ying. Occurrence, spatial and seasonal variation, and environmental risk of pharmaceutically active compounds in the Pearl River basin, South China[J]. Front. Environ. Sci. Eng., 2023, 17(4): 46-.
[9] Weiyi Liu, Ting Pan, Hang Liu, Mengyun Jiang, Tingting Zhang. Adsorption behavior of imidacloprid pesticide on polar microplastics under environmental conditions: critical role of photo-aging[J]. Front. Environ. Sci. Eng., 2023, 17(4): 41-.
[10] Jaime A. Teixeira da Silva, Panagiotis Tsigaris. The relevance of James Lovelock’s research and philosophy to environmental science and academia[J]. Front. Environ. Sci. Eng., 2023, 17(3): 39-.
[11] Sai Liang, Qiumeng Zhong. Reducing environmental impacts through socioeconomic transitions: critical review and prospects[J]. Front. Environ. Sci. Eng., 2023, 17(2): 24-.
[12] Samal Kaumbekova, Mehdi Amouei Torkmahalleh, Naoya Sakaguchi, Masakazu Umezawa, Dhawal Shah. Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein[J]. Front. Environ. Sci. Eng., 2023, 17(2): 15-.
[13] Fatemeh Mozaffarpour, Nafiseh Hassanzadeh, Ehsan Vahidi. Synthesis, characterization and life cycle assessment of electrochemically exfoliated KOH-activated holey graphene[J]. Front. Environ. Sci. Eng., 2023, 17(12): 155-.
[14] Xingyue Chen, Peng Zhang, Yang Wang, Wei Peng, Zhifeng Ren, Yihong Li, Baoshuai Chu, Qiang Zhu. Research progress on synthesis of zeolites from coal fly ash and environmental applications[J]. Front. Environ. Sci. Eng., 2023, 17(12): 149-.
[15] Muhammad Masood Ashiq, Farhad Jazaei, Kati Bell, Ahmed Shakir Ali Ali, Alireza Bakhshaee, Peyman Babakhani. Abundance, spatial distribution, and physical characteristics of microplastics in stormwater detention ponds[J]. Front. Environ. Sci. Eng., 2023, 17(10): 124-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed