Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (10) : 136    https://doi.org/10.1007/s11783-022-1571-2
REVIEW ARTICLE
Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment
Yanhui Dai1, Jian Zhao1,2(), Chunxiao Sun1, Diying Li1, Xia Liu1, Zhenyu Wang3, Tongtao Yue1, Baoshan Xing4()
1. Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
2. Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
3. Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
4. Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
 Download: PDF(4499 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Adsorption of PFASs on MPs and its mechanisms are critically reviewed.

● MPs could alter the transport and transformation of PFASs in aquatic environments.

● Combined toxicity of MPs and PFASs at organismal and molecular levels is discussed.

Microplastics (MPs) are recognized as vectors for the transport of organic contaminants in aquatic environments in addition to their own adverse effects on aquatic organisms. Per- and polyfluoroalkyl substances (PFASs) are widely present in aquatic environments due to their widespread applications, and thus coexist with MPs. Therefore, we focus on the interaction of MPs and PFASs and related combined toxicity in aquatic environments in this work. The adsorption of PFASs on MPs is critically reviewed, and new mechanisms such as halogen bonding, π-π interaction, cation-π interactions, and micelle formation are proposed. Moreover, the effect of MPs on the transport and transformation of PFASs in aquatic environments is discussed. Based on four typical aquatic organisms (shellfish, Daphnia, algae, and fish), the toxicity of MPs and/or PFASs at the organismal or molecular levels is also evaluated and summarized. Finally, challenges and research perspectives are proposed, and the roles of the shapes and aging process of MPs on PFAS biogeochemical processes and toxicity, especially on PFAS substitutes, are recommended for further investigation. This review provides a better understanding of the interactions and toxic effects of coexisting MPs and PFASs in aquatic environments.

Keywords Microplastics      Per- and Polyfluoroalkyl substances      Adsorption      Transport      Transformation     
Corresponding Author(s): Jian Zhao,Baoshan Xing   
Just Accepted Date: 02 April 2022   Issue Date: 29 April 2022
 Cite this article:   
Yanhui Dai,Jian Zhao,Chunxiao Sun, et al. Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment[J]. Front. Environ. Sci. Eng., 2022, 16(10): 136.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1571-2
https://academic.hep.com.cn/fese/EN/Y2022/V16/I10/136
Fig.1  Adsorption mechanisms of PFASs on MPs. Electrostatic and hydrophobic interactions are confirmed mechanisms in the literature, while micelles formation, π- π interaction, cation-π interaction, halogen bonding and hydrogen bonding are proposed mechanisms which need to be verified. “R” group represents C-F chain.
Fig.2  Effects of MPs on the transport and transformation of PFASs. Process I and II: MPs increase the horizontal and vertical transport of PFASs in water, respectively. Process III: MPs enhance the PFAS dispersion by organism excretion and food chain transfer. Process IV and V: MPs promote the transformation of PFASs through photodegradation and microbial decomposition, respectively.
Fig.3  Ecotoxicological effects of MPs and PFASs on the four selected aquatic organisms. The bars with dark and light colors represent the toxicity of PFASs and MPs, respectively. Numbers indicate the frequency percentage (%) of this subject in the total selected papers. The total papers of MPs in shellfish, Daphnia, algae and fish are 11, 13, 5, and 28, respectively, while those of PFASs are 7, 7, 5 and 58, respectively.
Fig.4  Distribution (A) and toxicity (B) of MPs and PFASs to fish. The endpoint number indicates the frequency in the papers of fish. The total papers of MPs and PFASs in fish are 28 and 58, respectively.
Fig.5  Effects of MPs on PFAS toxicity to aquatic organisms. Processes I: MPs and PFASs result in antagonistic effect on microorganisms. Process II: MPs decrease the accumulation and toxicity of PFASs to organisms in the upper water layer. Process III: MPs increase the accumulation and toxicity of PFASs to benthic organisms. Process IV: MPs increase the toxicity of PFASs to fish.
1 S Abarghouei , A Hedayati , M Raeisi , B S Hadavand , H Rezaei , A Abed-Elmdoust . (2021). Size-dependent effects of microplastic on uptake, immune system, related gene expression and histopathology of goldfish (Carassius auratus). Chemosphere, 276 : 129977
https://doi.org/10.1016/j.chemosphere.2021.129977
2 L Ahrens , M Bundschuh . (2014). Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environmental Toxicology and Chemistry, 33( 9): 1921– 1929
https://doi.org/10.1002/etc.2663
3 S Allen , D Allen , V R Phoenix , Roux G Le , Jiménez P Durántez , A Simonneau , S Binet , D Galop . (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12( 5): 339– 344
https://doi.org/10.1038/s41561-019-0335-5
4 T Atugoda , M Vithanage , H Wijesekara , N Bolan , A K Sarmah , M S Bank , S You , Y S Ok . (2021). Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment International, 149 : 106367
https://doi.org/10.1016/j.envint.2020.106367
5 X Bai , Y Son . (2021). Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. Science of the Total Environment, 751 : 141622
https://doi.org/10.1016/j.scitotenv.2020.141622
6 A Bakir , M Desender , T Wilkinson , N Van Hoytema , R Amos , S Airahui , J Graham , T Maes . (2020). Occurrence and abundance of meso and microplastics in sediment, surface waters, and marine biota from the South Pacific region. Marine Pollution Bulletin, 160 : 111572
https://doi.org/10.1016/j.marpolbul.2020.111572
7 M Bergmann , S Mützel , S Primpke , M B Tekman , J Trachsel , G Gerdts . (2019). White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances, 5( 8): eaax1157
https://doi.org/10.1126/sciadv.aax1157
8 G Bhagwat , T K A Tran , D Lamb , K Senathirajah , I Grainge , W O’Connor , A Juhasz , T Palanisami . (2021). Biofilms enhance the adsorption of toxic contaminants on plastic microfibers under environmentally relevant conditions. Environmental Science & Technology, 55( 13): 8877– 8887
https://doi.org/10.1021/acs.est.1c02012
9 S B Borrelle , J Ringma , K L Law , C C Monnahan , L Lebreton , A McGivern , E Murphy , J Jambeck , G H Leonard , M A Hilleary , M Eriksen , H P Possingham , H de Frond , L R Gerber , B Polidoro , A Tahir , M Bernard , N Mallos , M Barnes , C M Rochman . (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369( 6510): 1515– 1518
https://doi.org/10.1126/science.aba3656
10 R C Buck , J Franklin , U Berger , J M Conder , I T Cousins , P de Voogt , A A Jensen , K Kannan , S A Mabury , S P J van Leeuwen . (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated Environmental Assessment and Management, 7( 4): 513– 541
https://doi.org/10.1002/ieam.258
11 Y Chae D Kim Y J An ( 2019). Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio . Aquatic Toxicology (Amsterdam, Netherlands), 216: 105296
pmid: 31541944
12 S Che , B Jin , Z Liu , Y Yu , J Liu , Y Men . (2021). Structure-specific aerobic defluorination of short-chain fluorinated carboxylic acids by activated sludge communities. Environmental Science & Technology Letters, 8( 8): 668– 674
https://doi.org/10.1021/acs.estlett.1c00511
13 H Chen , X Wang , C Zhang , R Sun , J Han , G Han , W Yang , X He . (2017). Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea, China. Environmental Pollution, 221 : 234– 243
https://doi.org/10.1016/j.envpol.2016.11.070
14 J Chen , L Tang , W Q Chen , G F Peaslee , D Jiang . (2020a). Flows, stock, and emissions of poly- and perfluoroalkyl substances in California carpet in 2000–2030 under different scenarios. Environmental Science & Technology, 54( 11): 6908– 6918
https://doi.org/10.1021/acs.est.9b06956
15 L Chen , J Li , Y Tang , S Wang , X Lu , Z Cheng , X Zhang , P Wu , X Chang , Y Xia . (2021). Typhoon-induced turbulence redistributed microplastics in coastal areas and reformed plastisphere community. Water Research, 204 : 117580
https://doi.org/10.1016/j.watres.2021.117580
16 W Chen , D Yuan , M Shan , Z Yang , C Liu . (2020b). Single and combined effects of amino polystyrene and perfluorooctane sulfonate on hydrogen-producing thermophilic bacteria and the interaction mechanisms. Science of the Total Environment, 703 : 135015
https://doi.org/10.1016/j.scitotenv.2019.135015
17 X Chen , X Xia , X Wang , J Qiao , H Chen . (2011). A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere, 83( 10): 1313– 1319
https://doi.org/10.1016/j.chemosphere.2011.04.018
18 Y Cheng , L Mai , X Lu , Z Li , Y Guo , D Chen , F Wang . (2021). Occurrence and abundance of poly- and perfluoroalkyl substances (PFASs) on microplastics (MPs) in Pearl River Estuary (PRE) region: Spatial and temporal variations. Environmental Pollution, 281 : 117025
https://doi.org/10.1016/j.envpol.2021.117025
19 M Cole , P Lindeque , C Halsband , T S Galloway . (2011). Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin, 62( 12): 2588– 2597
https://doi.org/10.1016/j.marpolbul.2011.09.025
20 J Colomer , M F Müller , A Barcelona , T Serra . (2019). Mediated food and hydrodynamics on the ingestion of microplastics by Daphnia magna. Environmental Pollution, 251 : 434– 441
https://doi.org/10.1016/j.envpol.2019.05.034
21 P L Corcoran , S L Belontz , K Ryan , M J Walzak . (2020). Factors controlling the distribution of microplastic particles in benthic sediment of the Thames River, Canada. Environmental Science & Technology, 54( 2): 818– 825
https://doi.org/10.1021/acs.est.9b04896
22 Sá L C de M Oliveira F Ribeiro T L Rocha M N Futter ( 2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of the Total Environment, 645: 1029− 1039
pmid: 30248828" target="_blank">30248828
23 Silva P P G de , C R Nobre , P Resaffe , C D S Pereira , F Gusmão . (2016). Leachate from microplastics impairs larval development in brown mussels. Water Research, 106 : 364– 370
https://doi.org/10.1016/j.watres.2016.10.016
24 S Deng , Q Zhang , Y Nie , H Wei , B Wang , J Huang , G Yu , B Xing . (2012). Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environmental Pollution, 168 : 138– 144
https://doi.org/10.1016/j.envpol.2012.03.048
25 G Ding , M Wouterse , R Baerselman , W J G M Peijnenburg . (2012). Toxicity of polyfluorinated and perfluorinated compounds to lettuce (Lactuca sativa) and green algae (Pseudokirchneriella subcapitata). Archives of Environmental Contamination and Toxicology, 62( 1): 49– 55
https://doi.org/10.1007/s00244-011-9684-9
26 H Dong , L Wang , X Wang , L Xu , M Chen , P Gong , C Wang . (2021). Microplastics in a remote lake basin of the Tibetan Plateau: Impacts of atmospheric transport and glacial melting. Environmental Science & Technology, 55( 19): 12951– 12960
https://doi.org/10.1021/acs.est.1c03227
27 Z Du , S Deng , Y Bei , Q Huang , B Wang , J Huang , G Yu . (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents: A review. Journal of Hazardous Materials, 274 : 443– 454
https://doi.org/10.1016/j.jhazmat.2014.04.038
28 Z Duan , S Zhao , L Zhao , X Duan , S Xie , H Zhang , Y Liu , Y Peng , C Liu , L Wang . (2020). Microplastics in Yellow River Delta wetland: Occurrence, characteristics, human influences, and marker. Environmental Pollution, 258 : 113232
https://doi.org/10.1016/j.envpol.2019.113232
29 F Dubaish G Liebezeit ( 2013). Suspended microplastics and black carbon particles in the jade system, southern North Sea. Water, Air, & Soil Pollution, 224( 2): 1352
30 O O Fadare , B Wan , K Liu , Y Yang , L Zhao , L H Guo . (2020). Eco-corona vs protein corona: Effects of humic substances on corona formation and nanoplastic particle toxicity in Daphnia magna. Environmental Science & Technology, 54( 13): 8001– 8009
https://doi.org/10.1021/acs.est.0c00615
31 X Feng , M Ye , Y Li , J Zhou , B Sun , Y Zhu , L Zhu . (2020). Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea. Journal of Hazardous Materials, 389 : 122124
https://doi.org/10.1016/j.jhazmat.2020.122124
32 N J M Fitzgerald , M F Simcik , P J Novak . (2018a). Perfluoroalkyl substances increase the membrane permeability and quorum sensing response in Aliivibrio fischeri. Environmental Science & Technology Letters, 5( 1): 26– 31
https://doi.org/10.1021/acs.estlett.7b00518
33 N J M Fitzgerald , A Wargenau , C Sorenson , J Pedersen , N Tufenkji , P J Novak , M F Simcik . (2018b). Partitioning and accumulation of perfluoroalkyl substances in model lipid bilayers and bacteria. Environmental Science & Technology, 52( 18): 10433– 10440
https://doi.org/10.1021/acs.est.8b02912
34 S Gaballah , A Swank , J R Sobus , X M Howey , J Schmid , T Catron , J McCord , E Hines , M Strynar , T Tal . (2020). Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environmental Health Perspectives, 128( 4): 047005
https://doi.org/10.1289/EHP5843
35 J M Gove , J L Whitney , M A McManus , J Lecky , F C Carvalho , J M Lynch , J Li , P Neubauer , K A Smith , J E Phipps , D R Kobayashi , K B Balagso , E A Contreras , M E Manuel , M A Merrifield , J J Polovina , G P Asner , J A Maynard , G J Williams . (2019). Prey-size plastics are invading larval fish nurseries. Proceedings of the National Academy of Sciences of the United States of America, 116( 48): 24143– 24149
https://doi.org/10.1073/pnas.1907496116
36 J Grbić , P Helm , S Athey , C M Rochman . (2020). Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Research, 174 : 115623
https://doi.org/10.1016/j.watres.2020.115623
37 C Gremmel , T Frömel , T P Knepper . (2016). Systematic determination of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in outdoor jackets. Chemosphere, 160 : 173– 180
https://doi.org/10.1016/j.chemosphere.2016.06.043
38 H Gu , S Wang , X Wang , X Yu , M Hu , W Huang , Y Wang . (2020). Nanoplastics impair the intestinal health of the juvenile large yellow croaker Larimichthys crocea. Journal of Hazardous Materials, 397 : 122773
https://doi.org/10.1016/j.jhazmat.2020.122773
39 X Guo , S Zhang , S Lu , B Zheng , P Xie , J Chen , G Li , C Liu , Q Wu , H Cheng , N Sang . (2018). Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos. Environmental Pollution, 241 : 1018– 1026
https://doi.org/10.1016/j.envpol.2018.06.013
40 A Hagenaars , L Vergauwen , W De Coen , D Knapen . (2011). Structure-activity relationship assessment of four perfluorinated chemicals using a prolonged zebrafish early life stage test. Chemosphere, 82( 5): 764– 772
https://doi.org/10.1016/j.chemosphere.2010.10.076
41 K C Harding-Marjanovic , E F Houtz , S Yi , J A Field , D L Sedlak , L Alvarez-Cohen . (2015). Aerobic biotransformation of fluorotelomer thioether amido sulfonate (Lodyne) in AFFF-amended microcosms. Environmental Science & Technology, 49( 13): 7666– 7674
https://doi.org/10.1021/acs.est.5b01219
42 D Herzke , E Olsson , S Posner . (2012). Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway: A pilot study. Chemosphere, 88( 8): 980– 987
https://doi.org/10.1016/j.chemosphere.2012.03.035
43 C P Higgins , R G Luthy . (2006). Sorption of perfluorinated surfactants on sediments. Environmental Science & Technology, 40( 23): 7251– 7256
https://doi.org/10.1021/es061000n
44 H Holmquist , S Schellenberger , I van der Veen , G M Peters , P E G Leonards , I T Cousins . (2016). Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. Environment International, 91 : 251– 264
https://doi.org/10.1016/j.envint.2016.02.035
45 R Hosseini , M H Sayadi , J Aazami , M Savabieasfehani . (2020). Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea, Iran. Marine Pollution Bulletin, 160 : 111682
https://doi.org/10.1016/j.marpolbul.2020.111682
46 L Hu , M Chernick , D E Hinton , H Shi . (2018). Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China. Environmental Science & Technology, 52( 15): 8885– 8893
https://doi.org/10.1021/acs.est.8b02279
47 X C Hu , B Ge , B J Ruyle , J Sun , E M Sunderland . (2021). A statistical approach for identifying private wells susceptible to perfluoroalkyl Substances (PFAS) contamination. Environmental Science & Technology Letters, 8( 7): 596– 602
https://doi.org/10.1021/acs.estlett.1c00264
48 C E Jantzen K M Annunziato K R Cooper ( 2016). Behavioral, morphometric, and gene expression effects in adult zebrafish ( Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA . Aquatic Toxicology (Amsterdam, Netherlands), 180: 123− 130
pmid: 27710860
49 M P Johansen , T Cresswell , J Davis , D L Howard , N R Howell , E Prentice . (2019). Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: Use of spectroscopy, microscopy and radiotracer methods. Water Research, 158 : 392– 400
https://doi.org/10.1016/j.watres.2019.04.029
50 S Kahkashan , X Wang , J Chen , Y Bai , M Ya , Y Wu , Y Cai , S Wang , M Saleem , J Aftab , A Inam . (2019). Concentration, distribution and sources of perfluoroalkyl substances and organochlorine pesticides in surface sediments of the northern Bering Sea, Chukchi Sea and adjacent Arctic Ocean. Chemosphere, 235 : 959– 968
https://doi.org/10.1016/j.chemosphere.2019.06.219
51 J S Kang , T G Ahn , J W Park . (2019). Perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes). Journal of Hazardous Materials, 368 : 97– 103
https://doi.org/10.1016/j.jhazmat.2019.01.034
52 S Kashiwada . (2006). Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental Health Perspectives, 114( 11): 1697– 1702
https://doi.org/10.1289/ehp.9209
53 A J Kokalj , U Kunej , T Skalar . (2018). Screening study of four environmentally relevant microplastic pollutants: Uptake and effects on Daphnia magna and Artemia franciscana. Chemosphere, 208 : 522– 529
https://doi.org/10.1016/j.chemosphere.2018.05.172
54 A Kolomijeca , J Parrott , H Khan , K Shires , S Clarence , C Sullivan , L Chibwe , D Sinton , C M Rochman . (2020). Increased temperature and turbulence alter the effects of leachates from tire particles on fathead minnow (Pimephales promelas). Environmental Science & Technology, 54( 3): 1750– 1759
https://doi.org/10.1021/acs.est.9b05994
55 L Lahens , E Strady , T C Kieu-Le , R Dris , K Boukerma , E Rinnert , J Gasperi , B Tassin . (2018). Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environmental Pollution, 236 : 661– 671
https://doi.org/10.1016/j.envpol.2018.02.005
56 J W Lee , K Choi , K Park , C Seong , S D Yu , P Kim . (2020c). Adverse effects of perfluoroalkyl acids on fish and other aquatic organisms: A review. Science of the Total Environment, 707 : 135334
https://doi.org/10.1016/j.scitotenv.2019.135334
57 J W Lee , H K Lee , J E Lim , H B Moon . (2020a). Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in the coastal environment of Korea: Occurrence, spatial distribution, and bioaccumulation potential. Chemosphere, 251 : 126633
https://doi.org/10.1016/j.chemosphere.2020.126633
58 J W Lee , J W Lee , Y J Shin , J E Kim , T K Ryu , J Ryu , J Lee , P Kim , K Choi , K Park . (2017). Multi-generational xenoestrogenic effects of Perfluoroalkyl acids (PFAAs) mixture on Oryzias latipes using a flow-through exposure system. Chemosphere, 169 : 212– 223
https://doi.org/10.1016/j.chemosphere.2016.11.035
59 Y M Lee , J Y Lee , M K Kim , H Yang , J E Lee , Y Son , Y Kho , K Choi , K D Zoh . (2020b). Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of Korea. Journal of Hazardous Materials, 381 : 120909
https://doi.org/10.1016/j.jhazmat.2019.120909
60 B Li , W Liang , Q X Liu , S Fu , C Ma , Q Chen , L Su , N J Craig , H Shi . (2021). Fish ingest microplastics unintentionally. Environmental Science & Technology, 55( 15): 10471– 10479
https://doi.org/10.1021/acs.est.1c01753
61 X Li , J J Pignatello , Y Wang , B Xing . (2013). New insight into adsorption mechanism of ionizable compounds on carbon nanotubes. Environmental Science & Technology, 47( 15): 8334– 8341
https://doi.org/10.1021/es4011042
62 Y Li , X Feng , J Zhou , L Zhu . (2020a). Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River basin in China using receptor models and isomeric fingerprints. Water Research, 168 : 115145
https://doi.org/10.1016/j.watres.2019.115145
63 Z Li , C Feng , Y Wu , X Guo . (2020b). Impacts of nanoplastics on bivalve: Fluorescence tracing of organ accumulation, oxidative stress and damage. Journal of Hazardous Materials, 392 : 122418
https://doi.org/10.1016/j.jhazmat.2020.122418
64 R Liang , J He , Y Shi , Z Li , S Sarvajayakesavalu , Y Baninla , F Guo , J Chen , X Xu , Y Lu . (2017). Effects of Perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna. Chemosphere, 168 : 1613– 1618
https://doi.org/10.1016/j.chemosphere.2016.11.147
65 L Lin , L Z Zuo , J P Peng , L Q Cai , L Fok , Y Yan , H X Li , X R Xu . (2018). Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Science of the Total Environment, 644 : 375– 381
https://doi.org/10.1016/j.scitotenv.2018.06.327
66 C Liu , V W C Chang , K Y H Gin , V T Nguyen . (2014). Genotoxicity of perfluorinated chemicals (PFCs) to the green mussel (Perna viridis). Science of the Total Environment, 487 : 117– 122
https://doi.org/10.1016/j.scitotenv.2014.04.017
67 G Liu , R Jiang , J You , D C G Muir , E Y Zeng . (2020a). Microplastic impacts on microalgae growth: Effects of size and humic acid. Environmental Science & Technology, 54( 3): 1782– 1789
https://doi.org/10.1021/acs.est.9b06187
68 Y Liu , M Junaid , P Xu , W Zhong , B Pan , N Xu . (2020b). Suspended sediment exacerbates perfluorooctane sulfonate mediated toxicity through reactive oxygen species generation in freshwater clam Corbicula fluminea. Environmental Pollution, 267 : 115671
https://doi.org/10.1016/j.envpol.2020.115671
69 Y Liu , Y Zhang , J Li , N Wu , W Li , Z Niu . (2019). Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China. Environmental Pollution, 246 : 34– 44
https://doi.org/10.1016/j.envpol.2018.11.113
70 Z Liu , M J Bentel , Y Yu , C Ren , J Gao , V F Pulikkal , M Sun , Y Men , J Liu . (2021). Near-quantitative defluorination of perfluorinated and fluorotelomer carboxylates and sulfonates with integrated oxidation and reduction. Environmental Science & Technology, 55( 10): 7052– 7062
https://doi.org/10.1021/acs.est.1c00353
71 M Llorca , G Schirinzi , M Martínez , D Barceló , M Farré . (2018). Adsorption of perfluoroalkyl substances on microplastics under environmental conditions. Environmental Pollution, 235 : 680– 691
https://doi.org/10.1016/j.envpol.2017.12.075
72 P Logeshwaran , A K Sivaram , A Surapaneni , K Kannan , R Naidu , M Megharaj . (2021). Exposure to perfluorooctanesulfonate (PFOS) but not perflurorooctanoic acid (PFOA) at ppb concentration induces chronic toxicity in Daphnia carinata. Science of the Total Environment, 769 : 144577
https://doi.org/10.1016/j.scitotenv.2020.144577
73 M Long , B Moriceau , M Gallinari , C Lambert , A Huvet , J Raffray , P Soudant . (2015). Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Marine Chemistry, 175 : 39– 46
https://doi.org/10.1016/j.marchem.2015.04.003
74 Y Lu , Y Zhang , Y Deng , W Jiang , Y Zhao , J Geng , L Ding , H Ren . (2016). Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environmental Science & Technology, 50( 7): 4054– 4060
https://doi.org/10.1021/acs.est.6b00183
75 M MacLeod , H P H Arp , M B Tekman , A Jahnke . (2021). The global threat from plastic pollution. Science, 373( 6550): 61– 65
https://doi.org/10.1126/science.abg5433
76 T Mani , P Blarer , F R Storck , M Pittroff , T Wernicke , P Burkhardt-Holm . (2019). Repeated detection of polystyrene microbeads in the Lower Rhine River. Environmental Pollution, 245 : 634– 641
https://doi.org/10.1016/j.envpol.2018.11.036
77 T Mani , P Burkhardt-Holm . (2020). Seasonal microplastics variation in nival and pluvial stretches of the Rhine River: From the Swiss catchment towards the North Sea. Science of the Total Environment, 707 : 135579
https://doi.org/10.1016/j.scitotenv.2019.135579
78 J Marchiandi , D Szabo , S Dagnino , M P Green , B O Clarke . (2021). Occurrence and fate of legacy and novel per- and polyfluoroalkyl substances (PFASs) in freshwater after an industrial fire of unknown chemical stockpiles. Environmental Pollution, 278 : 116839
https://doi.org/10.1016/j.envpol.2021.116839
79 F Menger , J Pohl , L Ahrens , G Carlsson , S Örn . (2020). Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere, 245 : 125573
https://doi.org/10.1016/j.chemosphere.2019.125573
80 K Min , J D Cuiffi , R T Mathers . (2020). Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nature Communications, 11( 1): 727
https://doi.org/10.1038/s41467-020-14538-z
81 L H Morais , H L 4th Schreiber , S K Mazmanian . (2021). The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews. Microbiology, 19( 4): 241– 255
https://doi.org/10.1038/s41579-020-00460-0
82 J Mu , S Zhang , L Qu , F Jin , C Fang , X Ma , W Zhang , J Wang . (2019). Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Marine Pollution Bulletin, 143 : 58– 65
https://doi.org/10.1016/j.marpolbul.2019.04.023
83 D Muir , L T Miaz . (2021). Spatial and temporal trends of perfluoroalkyl substances in global ocean and coastal waters. Environmental Science & Technology, 55( 14): 9527– 9537
https://doi.org/10.1021/acs.est.0c08035
84 A Nickerson , A E Rodowa , D T Adamson , J A Field , P R Kulkarni , J J Kornuc , C P Higgins . (2021). Spatial trends of anionic, zwitterionic, and cationic PFASs at an AFFF-impacted site. Environmental Science & Technology, 55( 1): 313– 323
https://doi.org/10.1021/acs.est.0c04473
85 K Pabortsava , R S Lampitt . (2020). High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nature Communications, 11( 1): 4073
https://doi.org/10.1038/s41467-020-17932-9
86 C G Pan , J L Zhao , Y S Liu , Q Q Zhang , Z F Chen , H J Lai , F J Peng , S S Liu , G G Ying . (2014). Bioaccumulation and risk assessment of per- and polyfluoroalkyl substances in wild freshwater fish from rivers in the Pearl River Delta region, South China. Ecotoxicology and Environmental Safety, 107 : 192– 199
https://doi.org/10.1016/j.ecoenv.2014.05.031
87 Y Pan , H Zhang , Q Cui , N Sheng , L W Y Yeung , Y Guo , Y Sun , J Dai . (2017). First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid: An emerging concern. Environmental Science & Technology, 51( 17): 9553– 9560
https://doi.org/10.1021/acs.est.7b02259
88 Y Pan , H Zhang , Q Cui , N Sheng , L W Y Yeung , Y Sun , Y Guo , J Dai . (2018). Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water. Environmental Science & Technology, 52( 14): 7621– 7629
https://doi.org/10.1021/acs.est.8b00829
89 N Paragot J Bečanová P Karásková R Prokeš J Klánová G Lammel C Degrendele ( 2020). Multi-year atmospheric concentrations of per- and polyfluoroalkyl substances (PFASs) at a background site in central Europe. Environmental Pollution, 265(Pt B): 114851
pmid: 32474357
90 I Paul-Pont , C Lacroix , Fernández C González , H Hégaret , C Lambert , Goïc N Le , L Frère , A L Cassone , R Sussarellu , C Fabioux , J Guyomarch , M Albentosa , A Huvet , P Soudant . (2016). Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environmental Pollution, 216 : 724– 737
https://doi.org/10.1016/j.envpol.2016.06.039
91 A F Pedersen , K Gopalakrishnan , A G Boegehold , N J Peraino , J A Westrick , D R Kashian . (2020). Microplastic ingestion by quagga mussels, Dreissena bugensis, and its effects on physiological processes. Environmental Pollution, 260 : 113964
https://doi.org/10.1016/j.envpol.2020.113964
92 A Rebelein I Int-Veen U Kammann J P Scharsack( 2021). Microplastic fibers-Underestimated threat to aquatic organisms? Science of the Total Environment, 777: 146045
pmid: 33684771" target="_blank">33684771
93 A Rotander A Kärrman ( 2019). Microplastics in södertälje: From lake mälaren to the baltic sea. Örebro: Örebro Universitet
94 C D Rummel , A Jahnke , E Gorokhova , D Kühnel , M Schmitt-Jansen . (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environmental Science & Technology Letters, 4( 7): 258– 267
https://doi.org/10.1021/acs.estlett.7b00164
95 R G Santos , G E Machovsky-Capuska , R Andrades . (2021). Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science, 373( 6550): 56– 60
https://doi.org/10.1126/science.abh0945
96 S Schellenberger , C Jönsson , P Mellin , O A Levenstam , I Liagkouridis , A Ribbenstedt , A C Hanning , L Schultes , M M Plassmann , C Persson , I T Cousins , J P Benskin . (2019). Release of side-chain fluorinated polymer-containing microplastic fibers from functional textiles during washing and first estimates of perfluoroalkyl acid emissions. Environmental Science & Technology, 53( 24): 14329– 14338
https://doi.org/10.1021/acs.est.9b04165
97 I Schrank B Trotter J Dummert B M Scholz-Böttcher M G J Löder C Laforsch ( 2019). Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna. Environmental Pollution, 255(Pt 2): 113233
pmid: 31610509
98 S H Seo , M H Son , E S Shin , S D Choi , Y S Chang . (2019). Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. Journal of Hazardous Materials, 364 : 19– 27
https://doi.org/10.1016/j.jhazmat.2018.10.012
99 G Shi Q Cui Y Pan N Sheng Y Guo J Dai ( 2017a). 6:2 fluorotelomer carboxylic acid (6:2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis. Aquatic Toxicology (Amsterdam, Netherlands), 190: 53− 61
pmid: 28688371
100 G Shi Q Cui Y Pan N Sheng S Sun Y Guo J Dai( 2017b). 6:2 Chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos. Aquatic Toxicology (Amsterdam, Netherlands), 185: 67− 75
pmid: 28187362
101 G Shi H Guo N Sheng Q Cui Y Pan J Wang Y Guo J Dai( 2018a). Two-generational reproductive toxicity assessment of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B, a novel alternative to perfluorooctane sulfonate) in zebrafish. Environmental Pollution, 243(Pt B): 1517− 1527
pmid: 30292160
102 Y Shi , X Song , Q Jin , W Li , S He , Y Cai . (2020). Tissue distribution and bioaccumulation of a novel polyfluoroalkyl benzenesulfonate in crucian carp. Environment International, 135 : 105418
https://doi.org/10.1016/j.envint.2019.105418
103 Y Shi , R Vestergren , T H Nost , Z Zhou , Y Cai . (2018b). Probing the differential tissue distribution and bioaccumulation behavior of per- and polyfluoroalkyl substances of varying chain-lengths, isomeric structures and functional groups in Crucian Carp. Environmental Science & Technology, 52( 8): 4592– 4600
https://doi.org/10.1021/acs.est.7b06128
104 K Silvestrova , N Stepanova . (2021). The distribution of microplastics in the surface layer of the Atlantic Ocean from the subtropics to the equator according to visual analysis. Marine Pollution Bulletin, 162 : 111836
https://doi.org/10.1016/j.marpolbul.2020.111836
105 L Su , H Deng , B Li , Q Chen , V Pettigrove , C Wu , H Shi . (2019). The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. Journal of Hazardous Materials, 365 : 716– 724
https://doi.org/10.1016/j.jhazmat.2018.11.024
106 X Sun J Liang M Zhu Y Zhao B Zhang ( 2018). Microplastics in seawater and zooplankton from the Yellow Sea. Environmental Pollution, 242(Pt A): 585− 595
pmid: 30014936
107 P Supreeyasunthorn S K Boontanon N (2016) Boontanon. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 51( 6): 472− 477
pmid: 26864911
108 R Tenorio , J Liu , X Xiao , A Maizel , C P Higgins , C E Schaefer , T J Strathmann . (2020). Destruction of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF) with UV-sulfite photoreductive treatment. Environmental Science & Technology, 54( 11): 6957– 6967
https://doi.org/10.1021/acs.est.0c00961
109 R Treilles , J Gasperi , R Tramoy , R Dris , A Gallard , C Partibane , B Tassin . (2022). Microplastic and microfiber fluxes in the Seine River: Flood events versus dry periods. Science of the Total Environment, 805 : 150123
https://doi.org/10.1016/j.scitotenv.2021.150123
110 W Tu , R Martínez , L Navarro-Martin , D J Kostyniuk , C Hum , J Huang , M Deng , Y Jin , H M Chan , J A Mennigen . (2019). Bioconcentration and metabolic effects of emerging PFOS alternatives in developing zebrafish. Environmental Science & Technology, 53( 22): 13427– 13439
https://doi.org/10.1021/acs.est.9b03820
111 M Ulhaq , G Carlsson , S Örn , L Norrgren . (2013). Comparison of developmental toxicity of seven perfluoroalkyl acids to zebrafish embryos. Environmental Toxicology and Pharmacology, 36( 2): 423– 426
https://doi.org/10.1016/j.etap.2013.05.004
112 S Umamaheswari , S Priyadarshinee , M Bhattacharjee , K Kadirvelu , M Ramesh . (2021). Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). Chemosphere, 281 : 128592
https://doi.org/10.1016/j.chemosphere.2020.128592
113 M Van Melkebeke , C Janssen , S De Meester . (2020). Characteristics and sinking behavior of typical microplastics including the potential effect of biofouling: Implications for remediation. Environmental Science & Technology, 54( 14): 8668– 8680
https://doi.org/10.1021/acs.est.9b07378
114 C Wang , J Zhao , B Xing . (2021a). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407 : 124357
https://doi.org/10.1016/j.jhazmat.2020.124357
115 F Wang , K M Shih , X Y Li . (2015). The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere, 119 : 841– 847
https://doi.org/10.1016/j.chemosphere.2014.08.047
116 J Wang M Wang S Ru X (2019a) Liu. High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China. Science of the Total Environment, 651(Pt 2): 1661− 1669
pmid: 30316086
117 S Wang , M Liu , J Wang , J Huang , J Wang . (2020a). Polystyrene nanoplastics cause growth inhibition, morphological damage and physiological disturbance in the marine microalga Platymonas helgolandica. Marine Pollution Bulletin, 158 : 111403
https://doi.org/10.1016/j.marpolbul.2020.111403
118 X Wang , M Chen , P Gong , C Wang . (2019b). Perfluorinated alkyl substances in snow as an atmospheric tracer for tracking the interactions between westerly winds and the Indian Monsoon over western China. Environment International, 124 : 294– 301
https://doi.org/10.1016/j.envint.2018.12.057
119 X Wang , W Huang , S Wei , Y Shang , H Gu , F Wu , Z Lan , M Hu , H Shi , Y Wang . (2020b). Microplastics impair digestive performance but show little effects on antioxidant activity in mussels under low pH conditions. Environmental Pollution, 258 : 113691
https://doi.org/10.1016/j.envpol.2019.113691
120 X Wang , H Zheng , J Zhao , X Luo , Z Wang , B Xing . (2020c). Photodegradation elevated the toxicity of polystyrene microplastics to grouper (Epinephelus moara) through disrupting hepatic lipid homeostasis. Environmental Science & Technology, 54( 10): 6202– 6212
https://doi.org/10.1021/acs.est.9b07016
121 Y Wang , Y Yang , X Liu , J Zhao , R Liu , B Xing . (2021b). Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption and toxicity. Environmental Science & Technology, 55( 23): 15579– 15595
https://doi.org/10.1021/acs.est.1c04509
122 W Wen , X Xia , D Hu , D Zhou , H Wang , Y Zhai , H Lin . (2017). Long-chain perfluoroalkyl acids (PFAAs) affect the bioconcentration and tissue distribution of short-chain PFAAs in zebrafish (Danio rerio). Environmental Science & Technology, 51( 21): 12358– 12368
https://doi.org/10.1021/acs.est.7b03647
123 D Wu Z Liu M Cai Y Jiao Y Li Q Chen Y Zhao ( 2019a). Molecular characterisation of cytochrome P450 enzymes in waterflea ( Daphnia pulex) and their expression regulation by polystyrene nanoplastics . Aquatic Toxicology (Amsterdam, Netherlands), 217: 105350
pmid: 31730932
124 P Wu Z Cai H Jin Y Tang ( 2019b). Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Science of the Total Environment, 650(Pt 1): 671− 678
pmid: 30212696
125 Y Wu , J Huang , M Deng , Y Jin , H Yang , Y Liu , Q Cao , J A Mennigen , W Tu . (2019c). Acute exposure to environmentally relevant concentrations of Chinese PFOS alternative F-53B induces oxidative stress in early developing zebrafish. Chemosphere, 235 : 945– 951
https://doi.org/10.1016/j.chemosphere.2019.07.016
126 Y Wu G Z Miller J Gearhart G Peaslee M Venier ( 2021). Side-chain fluorotelomer-based polymers in children car seats. Environmental Pollution, 268(Pt B): 115477
pmid: 33221613
127 F Xiao . (2017). Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature. Water Research, 124 : 482– 495
https://doi.org/10.1016/j.watres.2017.07.024
128 F Xiao , B Jin , S A Golovko , M Y Golovko , B Xing . (2019). Sorption and desorption mechanisms of cationic and zwitterionic per- and polyfluoroalkyl substances in natural soils: Thermodynamics and hysteresis. Environmental Science & Technology, 53( 20): 11818– 11827
https://doi.org/10.1021/acs.est.9b05379
129 F Xiao , X Zhang , L Penn , J S Gulliver , M F Simcik . (2011). Effects of monovalent cations on the competitive adsorption of perfluoroalkyl acids by kaolinite: Experimental studies and modeling. Environmental Science & Technology, 45( 23): 10028– 10035
https://doi.org/10.1021/es202524y
130 D Xu , C Li , H Chen , B Shao . (2013). Cellular response of freshwater green algae to perfluorooctanoic acid toxicity. Ecotoxicology and Environmental Safety, 88 : 103– 107
https://doi.org/10.1016/j.ecoenv.2012.10.027
131 H Yang , H Lai , J Huang , L Sun , J A Mennigen , Q Wang , Y Liu , Y Jin , W Tu . (2020). Polystyrene microplastics decrease F-53B bioaccumulation but induce inflammatory stress in larval zebrafish. Chemosphere, 255 : 127040
https://doi.org/10.1016/j.chemosphere.2020.127040
132 Y Yao , S Chang , H Sun , Z Gan , H Hu , Y Zhao , Y Zhang . (2016). Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China). Environmental Pollution, 212 : 449– 456
https://doi.org/10.1016/j.envpol.2016.02.023
133 C Zhang X Chen J Wang L Tan ( 2017a). Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae . Environmental Pollution, 220(Pt B): 1282− 1288
pmid: 27876228
134 W Zhang , S Pang , Z Lin , S Mishra , P Bhatt , S Chen . (2021). Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. Environmental Pollution, 272 : 115908
https://doi.org/10.1016/j.envpol.2020.115908
135 W Zhang S Zhang J Wang Y Wang J Mu P Wang X Lin D (2017b) Ma. Microplastic pollution in the surface waters of the Bohai Sea, China. Environmental Pollution, 231(Pt 1): 541− 548
pmid: 28843202
136 X Zhang , R Lohmann , E M Sunderland . (2019). Poly- and perfluoroalkyl substances in seawater and plankton from the Northwestern Atlantic Margin. Environmental Science & Technology, 53( 21): 12348– 12356
https://doi.org/10.1021/acs.est.9b03230
137 P Zhao , X Xia , J Dong , N Xia , X Jiang , Y Li , Y Zhu . (2016). Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river. Science of the Total Environment, 568 : 57– 65
https://doi.org/10.1016/j.scitotenv.2016.05.221
138 Z Zhao J Tang L Mi C Tian G Zhong G Zhang S Wang Q Li R Ebinghaus Z Xie H Sun ( 2017). Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary. Science of the Total Environment, 599–600: 114− 123
pmid: 28472695
139 Z Zhao , Z Xie , J Tang , R Sturm , Y Chen , G Zhang , R Ebinghaus . (2015). Seasonal variations and spatial distributions of perfluoroalkyl substances in the rivers Elbe and lower Weser and the North Sea. Chemosphere, 129 : 118– 125
https://doi.org/10.1016/j.chemosphere.2014.03.050
140 H Zhong , M Zheng , Y Liang , Y Wang , W Gao , Y Wang , G Jiang . (2021). Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: Occurrence, source apportionment and environmental risk assessment. Chemosphere, 282 : 131042
https://doi.org/10.1016/j.chemosphere.2021.131042
141 K Zhu , H Jia , Y Sun , Y Dai , C Zhang , X Guo , T Wang , L Zhu . (2020). Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species. Water Research, 173 : 115564
https://doi.org/10.1016/j.watres.2020.115564
142 L Zimmermann , S Göttlich , J Oehlmann , M Wagner , C Völker . (2020). What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environmental Pollution, 267 : 115392
https://doi.org/10.1016/j.envpol.2020.115392
[1] FSE-22005-OF-DYH_suppl_1 Download
[1] Weiyi Liu, Ting Pan, Hang Liu, Mengyun Jiang, Tingting Zhang. Adsorption behavior of imidacloprid pesticide on polar microplastics under environmental conditions: critical role of photo-aging[J]. Front. Environ. Sci. Eng., 2023, 17(4): 41-.
[2] Mei Shi, Xiao Wang, Mengying Shao, Lun Lu, Habib Ullah, Hao Zheng, Fengmin Li. Resource utilization of typical biomass wastes as biochars in removing plasticizer diethyl phthalate from water: characterization and adsorption mechanisms[J]. Front. Environ. Sci. Eng., 2023, 17(1): 5-.
[3] Han Qu, Hongting Diao, Jiajun Han, Bin Wang, Gang Yu. Understanding and addressing the environmental risk of microplastics[J]. Front. Environ. Sci. Eng., 2023, 17(1): 12-.
[4] Wenwen Gong, Yu Xing, Lihua Han, Anxiang Lu, Han Qu, Li Xu. Occurrence and distribution of micro- and mesoplastics in the high-latitude nature reserve, northern China[J]. Front. Environ. Sci. Eng., 2022, 16(9): 113-.
[5] Yingchao Zhang, Hongqiong Zhang, Xinwei Dong, Dongbei Yue, Ling Zhou. Effects of oxidizing environment on digestate humification and identification of substances governing the dissolved organic matter (DOM) transformation process[J]. Front. Environ. Sci. Eng., 2022, 16(8): 99-.
[6] Jie Wu, Jian Lu, Jun Wu. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(8): 104-.
[7] Ning Wang, Jiangtao Feng, Wei Yan, Luohong Zhang, Yonghong Liu, Ruihua Mu. Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO2 hydrate: Adsorption behaviors, sites and mechanisms[J]. Front. Environ. Sci. Eng., 2022, 16(8): 105-.
[8] Xue Bai, Chang Li, Lingyu Ma, Pei Xin, Fengjie Li, Zhenjia Xu. Quantitative analysis of microplastics in coastal tidal-flat reclamation in Dongtai, China[J]. Front. Environ. Sci. Eng., 2022, 16(8): 107-.
[9] Ying Cai, Jun Wu, Jian Lu, Jianhua Wang, Cui Zhang. Fate of microplastics in a coastal wastewater treatment plant: Microfibers could partially break through the integrated membrane system[J]. Front. Environ. Sci. Eng., 2022, 16(7): 96-.
[10] Yanlin Li, Bo Wang, Lei Zhu, Yixing Yuan, Lujun Chen, Jun Ma. Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides[J]. Front. Environ. Sci. Eng., 2022, 16(6): 68-.
[11] Feng Chen, Shihao Guo, Yihao Wang, Lulu Ma, Bing Li, Zhimin Song, Lei Huang, Wen Zhang. Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon adsorbent derived from loofah sponge[J]. Front. Environ. Sci. Eng., 2022, 16(5): 57-.
[12] Jinkai Xue, Seyed Hesam-Aldin Samaei, Jianfei Chen, Ariana Doucet, Kelvin Tsun Wai Ng. What have we known so far about microplastics in drinking water treatment? A timely review[J]. Front. Environ. Sci. Eng., 2022, 16(5): 58-.
[13] Mahsa Kheirandish, Chunjiang An, Zhi Chen, Xiaolong Geng, Michel Boufadel. Numerical simulation of benzene transport in shoreline groundwater affected by tides under different conditions[J]. Front. Environ. Sci. Eng., 2022, 16(5): 61-.
[14] Xuemei Hu, Shijie You, Fang Li, Yanbiao Liu. Recent advances in antimony removal using carbon-based nanomaterials: A review[J]. Front. Environ. Sci. Eng., 2022, 16(4): 48-.
[15] Allan Gomez-Flores, Gukhwa Hwang, Sadia Ilyas, Hyunjung Kim. A CFD study of the transport and fate of airborne droplets in a ventilated office: The role of droplet−droplet interactions[J]. Front. Environ. Sci. Eng., 2022, 16(3): 31-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed