|
Advances in medical decision support systems for diagnosis of acute graft-versus-host disease: molecular and computational intelligence joint approaches
Maurizio FIASCHé, Maria CUZZOLA, Giuseppe IRRERA, Pasquale IACOPINO, Francesco Carlo MORABITO
Front Biol. 2011, 6 (4): 263-273.
https://doi.org/10.1007/s11515-011-1124-8
Acute graft-versus-host disease (aGVHD) is a serious systemic complication of allogeneic hematopoietic stem cell transplantation (HSCT) causing considerable morbidity and mortality. Acute GVHD occurs when alloreactive donor-derived T cells recognize host-recipient antigens as foreign. These trigger a complex multiphase process that ultimately results in apoptotic injury in target organs. The early events leading to GVHD seem to occur very soon, presumably within hours from the graft infusion. Therefore, when the first signs of aGVHD clinically manifest, the disease has been ongoing for several days at the cellular level, and the inflammatory cytokine cascade is fully activated. So, it comes as no surprise that progress in treatment based on clinical diagnosis of aGVHD has been limited in the past 30 years. It is likely that a pre-emptive strategy using systemic high-dose corticosteroids as early as possible could improve the outcome of aGVHD. Due to the deleterious effects of such treatment particularly in terms of infection risk posed by systemic steroid administration in a population that is already immune-suppressed, it is critical to identify biomarker signatures for approaching this very complex task. Some research groups have begun addressing this issue through molecular and proteomic analyses, combining these approaches with computational intelligence techniques, with the specific aim of facilitating the identification of diagnostic biomarkers in aGVHD. In this review, we focus on the aGVHD scenario and on the more recent state-of-the-art. We also attempt to give an overview of the classical and novel techniques proposed as medical decision support system for the diagnosis of GVHD.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
Heat shock proteins: Molecules with assorted functions
Surajit SARKAR, M. Dhruba SINGH, Renu YADAV, K. P. ARUNKUMAR, Geoffrey W. PITTMAN
Front Biol. 2011, 6 (4): 312-327.
https://doi.org/10.1007/s11515-011-1080-3
Heat shock proteins (Hsps) or molecular chaperones, are highly conserved protein families present in all studied organisms. Following cellular stress, the intracellular concentration of Hsps generally increases several folds. Hsps undergo ATP-driven conformational changes to stabilize unfolded proteins or unfold them for translocation across membranes or mark them for degradation. They are broadly classified in several families according to their molecular weights and functional properties. Extensive studies during the past few decades suggest that Hsps play a vital role in both normal cellular homeostasis and stress response. Hsps have been reported to interact with numerous substrates and are involved in many biological functions such as cellular communication, immune response, protein transport, apoptosis, cell cycle regulation, gametogenesis and aging. The present review attempts to provide a brief overview of various Hsps and summarizes their involvement in diverse biological activities.
Figures and Tables |
References |
Related Articles |
Metrics
|
|
Current development and application of soybean genomics
Lingli HE, Jing ZHAO, Man ZHAO, Chaoying HE
Front Biol. 2011, 6 (4): 337-348.
https://doi.org/10.1007/s11515-011-1116-8
Soybean (BoldItalic), an important domesticated species originated in China, constitutes a major source of edible oils and high-quality plant proteins worldwide. In spite of its complex genome as a consequence of an ancient tetraploidilization, platforms for map-based genomics, sequence-based genomics, comparative genomics and functional genomics have been well developed in the last decade, thus rich repertoires of genomic tools and resources are available, which have been influencing the soybean genetic improvement. Here we mainly review the progresses of soybean (including its wild relative BoldItalic) genomics and its impetus for soybean breeding, and raise the major biological questions needing to be addressed. Genetic maps, physical maps, QTL and EST mapping have been so well achieved that the marker assisted selection and positional cloning in soybean is feasible and even routine. Whole genome sequencing and transcriptomic analyses provide a large collection of molecular markers and predicted genes, which are instrumental to comparative genomics and functional genomics. Comparative genomics has started to reveal the evolution of soybean genome and the molecular basis of soybean domestication process. Microarrays resources, mutagenesis and efficient transformation systems become essential components of soybean functional genomics. Furthermore, phenotypic functional genomics via both forward and reverse genetic approaches has inferred functions of many genes involved in plant and seed development, in response to abiotic stresses, functioning in plant-pathogenic microbe interactions, and controlling the oil and protein content of seed. These achievements have paved the way for generation of transgenic or genetically modified (GM) soybean crops.
References |
Related Articles |
Metrics
|
8 articles
|