Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ    2011, Vol. 5 Issue (1) : 104-114    https://doi.org/10.1007/s11708-011-0138-x
RESEARCH ARTICLE
Combustion and emission characteristics of a turbo-charged common rail diesel engine fuelled with diesel-biodiesel-DEE blends
Ni ZHANG, Zuohua HUANG(), Xiangang WANG, Bin ZHENG
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(599 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The combustion and emission characteristics of a turbo-charged, common rail diesel engine fuelled with diesel-biodiesel-DEE blends were investigated. The study reports that the brake-specific fuel consumption of diesel-biodiesel-DEE blends increases with increase of oxygenated fuel fractions in the blends. Brake thermal efficiency shows little variation when operating on different diesel-biodiesel-DEE blends. At a low load, the NOx emission of the diesel-biodiesel-DEE blends exhibits little variation in comparison with the biodiesel fraction. The NOx emission slightly increases with increase in the biodiesel fraction in diesel-biodiesel-DEE blends at medium load. However, the NOx emission increases remarkably with increase of the biodiesel fraction at high load. Particle mass concentration decreases significantly with increase of the oxygenated-fuels fraction at all engine speeds and loads; particle number concentration decreases remarkably with increase of the oxygenated-fuels fraction. HC and CO emissions decrease with increasing oxygenated-fuels fraction in these blends.

Keywords Combustion      particulate emissions      diesel-biodiesel-DEE blend      diesel engine     
Corresponding Author(s): HUANG Zuohua,Email:zhhuang@mail.xjtu.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Ni ZHANG,Zuohua HUANG,Xiangang WANG, et al. Combustion and emission characteristics of a turbo-charged common rail diesel engine fuelled with diesel-biodiesel-DEE blends[J]. Front Energ, 2011, 5(1): 104-114.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-011-0138-x
https://academic.hep.com.cn/fie/EN/Y2011/V5/I1/104
Fig.1  Schematic diagram of the experimental setup
ItemParameter
TypeIn line 4-cylinder
Injection systemCommon rail
Compression ratio17.2∶1
Rated torque/(N·m) (speed/(r·min-1))70±3 (3600)
Maximum torque/(N.m) (speed/(r·min-1))225±5 (1600–2600)
Stroke/mm102
Bore/mm93
Displacement/L2.771
Type of injectorsBOSCH CR1P2
Type of common railBOSCH LWR
Maximum injection pressure/MPa135
Injection modeSplit injection Main-injection
Tab.1  Specifications of the engine
ItemParameterStageD50%/m
Particle size range (with filter stage)/ m0.007-101310
Number of size classes12126.8
Sample flow rate (L·min-1)10114.4
Impactor dimensions/(mm × mm)?65 × 300102.5
ELPI dimensions/(mm × mm × mm)H570 × W400 × D23091.6
Collection plate diameter/mm2581
Unit weight/kg3570.65
Lowest stage pressure/kPa1060.4
Operating temperature/°C5-4050.26
Operating humidity/%0-9040.17
Time resolution/Hz130.108
Pump requirements7 m3/h at 10 kPa20.06
10.03
Tab.2  Specifications of ELPI
FuelDensity/ (kg·m-3)Viscosity/ (mm2·s-1)Oxygen/ %Carbon/%Hydrogen/%Cetane numberT50/ °CT90/ °CLatent heat of vaporization/(kJ·kg-1)Low heating value/(MJ·kg-1)
Diesel853.83.22386.7012.7145~327~34629042.4
Biodiesel881.44.26910.9777.1011.8151.5~336~34037.4
DEE713.40.326621.664.913.5>125351.1633.9
Tab.3  Specifications of fuels 4.269
Fig.2  BSFC versus biodiesel percentage at different speeds and loads
(a) When engine speed is 1600 r/min; (b) when engine speed is 2600 r/min
Fig.3  BTE versus biodiesel percentage at different speeds and loads
(a) When engine speed is 1600 r/min; (b) when engine speed is 2600 r/min
Fig.4  NO versus biodiesel percentage at different speeds and loads
Fig.5  Cylinder pressure and NHRR versus crank angle at different speeds and loads
Fig.6  Total mass concentration versus biodiesel percentage at different speeds and loads
Fig.7  DN/DlogDp versus Dp at different speeds and loads
Fig.8  Total number concentration versus biodiesel percentage at different speeds and loads
Fig.9  HC emissions versus biodiesel percentage at different speeds and loads
Fig.10  CO emissions versus biodiesel percentage at different speeds and loads
1 Graboski M S, McCormich R L. Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science , 1998, 24(2): 125-164
doi: 10.1016/S0360-1285(97)00034-8
2 Canakci M. Performance and emissions characteristics of biodiesel from soybean oil. Proceedings of the Institution of Mechanical Engineers. Part D, Journal of Automobile Engineering , 2005, 219(7): 915-922
doi: 10.1243/095440705X28736
3 Park S Y, Kim H, Choi B. Emission characteristics of exhaust gases and nanoparticles from a diesel engine with biodiesel-diesel blend fuel (BD20). Journal of Mechanical Science and Technology , 2009, 23(9): 2555-2564
doi: 10.1007/s12206-009-0704-x
4 Lapuerta M, Armas O, Fernandez J R. Effect of bidiesel fuels on diesel engine emissions. Progress in Energy and Combustion Science , 2008, 34(2): 198-223
doi: 10.1016/j.pecs.2007.07.001
5 Szybist J P, Boehman A L, Taylor J D, McCormick R L. Evaluation of formulation strategies to eliminate the biodiesel NOx effect. Fuel Processing Technology , 2005, 86(10): 1109-1126
doi: 10.1016/j.fuproc.2004.11.006
6 Bailey B, Eberhardt J, Goguen S, Erwin J. Diethyl ether (DEE) as a renewable diesel fuel. SAE Technical Paper, 1997, 972978
7 Millerjothi N K, Nagarajan G, Renganarayanan S. Experimental studies on homogeneous charge CI engine fueled with LPG using DEE as an ignition enhancer. Renewable Energy , 2007, 32(9): 1581-1593
doi: 10.1016/j.renene.2006.08.007
8 Kapilan N, Mohanan P, Reddy R P. Performance and emission studies of diesel engine using diethyl ether as oxygenated fuel additive. SAE Technical Paper, 2008, 2008–01–2466
9 Kumar M S, Ramesh A, Nagalingam B. A comparison of the different methods of using jatropha oil as fuel in a compression ignition engine. Journal of Engineering for Gas Turbines and Power , 2010, 132(3): 032801-032810
doi: 10.1115/1.3155400
10 Iranmanesh M, Subrahmanyam J P, Babu M K G. Potential of diethyl ether as a blended supplementary oxygenated fuel with biodiesel to improve combustion and emission characteristics of diesel engines. SAE Technical Paper, 2008, 2008–01–1805
11 Cinar C, Can O, Sahin F, Yucesu H S. Effects of premixed diethyl ether (DEE) on combustion and exhaust emissions in a HCCI-DI diesel engine. Applied Thermal Engineering , 2010, 30(4): 360-365
doi: 10.1016/j.applthermaleng.2009.09.016
12 Kittelson D B. Engine and nanoparticles: a review. Journal of Aerosol Science, 1998, 29(5, 6): 575-588
13 Zhang J, He K B, Shi X Y, Zhao Y. Effect of SME biodiesel blends on PM2.5 emission from a heavy-duty engine. Atmospheric Environment , 2009, 43(15): 2442-2448
doi: 10.1016/j.atmosenv.2009.01.052
14 McCormick R, Tennant C, Hayes R.Black S, Ireland J, Mcdaniel T, Williams A, Frailey M, Sharp C A. Regulated emissions from biodiesel tested in heavy-duty engines meeting 2004 emission standards. SAE Technical Paper, 2005, 2005–01–2200
15 Kaplan C, Arslan R, Surmen A. Performance characteristics of sunflower methyl esters as biodiesel. Energy Sources, Part A. Recovery, Utilization, and Environmental Effects , 2006, 28(8): 751-755
16 Tsolakis A, Hernandaz J J, Megaritis A, Crampton M. Dual fuel diesel engine operation using H2 effect on particulate emissions. Energy & Fuels , 2005, 19(2): 418-425
doi: 10.1021/ef0400520
17 Tsolakis A. Effects on particle size distribution from the diesel engine operating on RME-biodiesel with EGR. Energy & Fuels , 2006, 20(4): 1418-1424
doi: 10.1021/ef050385c
18 Lapuerta M, Rodríguez-Fernández J, Agudelo J R. Diesel particulate emissions from used cooking oil biodiesel. Bioresource Technology , 2008, 99(4): 731-740
doi: 10.1016/j.biortech.2007.01.033 pmid:17368887
19 Lin Y F, Wu Y P G, Chang C T. Combustion characteristics of waste-oil produced biodiesel/diesel fuel blends. Fuel, 2007, 86(12, 13): 1772-1780
20 Zhu L, Cheung C S, Zhang W G, Huang Z. Influence of methanol-biodiesel blends on the particulate emissions of a direct injection diesel engine. Aerosol Science and Technology , 2010, 44(5): 362-369
doi: 10.1080/02786821003652646
22 Di Y G, Cheung C S, Huang Z H. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Science of the Total Environment , 2009, 407(2): 835-846
doi: 10.1016/j.scitotenv.2008.09.023 pmid:18947856
23 Kim H, Choi B. The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine. Renewable Energy , 2010, 35(1): 157-163
doi: 10.1016/j.renene.2009.04.008
24 Heikkil? J, Virtanen A, R?nkk? T, Keskinen J, Aakko-Saksa P, Murtonen T. Nanoparticle emissions from a heavy-duty engine running on alternative diesel fuels. Environmental Science & Technology , 2009, 43(24): 9501-9506
doi: 10.1021/es9013807 pmid:20000547
25 Fontaras G, Kousoulidou M, Karavalakis G, Tzamkiozis T, Pistikopoulos P, Ntziachristos L, Bakeas E, Stournas S, Samaras Z. Effects of low concentration biodiesel blend application on modern passenger cars. Part 1: feedstock impact on regulated pollutants, fuel consumption and particle emissions. Environmental Pollution , 2010, 158(5): 1451-1460
doi: 10.1016/j.envpol.2009.12.033 pmid:20080326
26 Van Gulijk C, Schouten J M, Marijinissen C M, Makkee M, Moulijn J A. Restriction for the ELPI in diesel particulate measurements. Journal of Aerosol Science , 2001, 32(9): 1117-1130
doi: 10.1016/S0021-8502(01)00045-3
27 Frank B P, Tang S D, Lanni T, Grygas J, Rideout G, Meyer N, Beregszaszy C. The effect of fuel type and aftertreatment method on ultrafine particle emission from a heavy-duty diesel engine. Aerosol Science and Technology , 2007, 41(11): 1029-1039
doi: 10.1080/02786820701697531
28 Heywood J B. Internal Combustion Engine Fundamentals.New York:McGraw-Hill, 1988
29 Adi G, Hall C, Snyder D, Bunce M, Satkoski C, Kumar S, Garimella P, Stanton D, Shaver G. Soy-biodiesel impact on NOx emissions and fuel economy for diffusion-dominated combustion in a turbo-diesel engine incorporating exhaust gas recirculation and common rail fuel injection. Energy & Fuels , 2009, 23(12): 5821-5829
doi: 10.1021/ef9006609
30 Eckerle W, Lyford-Pike E, Stanton D, LaPointe L A, Whitacre S D, Wall J C. Effects of methyl ester biodiesel blends on NOx emissions. SAE Technical Paper, 2008, No. 2008–01–0078
31 Ashok M P, Saravanan C G. Performance and emission of the emulsified fuel in a DI diesel engine using oxygenated additive diethyl ether with surfactant of span-80. Energy & Fuels , 2007, 21(4): 1878-1882
doi: 10.1021/ef060584b
32 Edwin Geo V, Nagarajan G, Kamalakannan J. Experimental investigations to study the characteristics of rubber-seed-oil-fueled diesel engine supplemented with diethyl ether. Energy & Fuels , 2009, 23(1): 533-538
doi: 10.1021/ef800552f
33 Selim M Y E. Reducing the viscosity of jojoba methyl ether diesel fuel and effect on diesel engine performance and roughness. Energy Conversion and Management , 2009, 50(7): 1781-1788
doi: 10.1016/j.enconman.2009.03.012
34 Tree D R, Svensson K I. Soot processes in compression ignition engines. Progress in Energy and Combustion Science , 2007, 33(3): 272-309
doi: 10.1016/j.pecs.2006.03.002
35 Wang W G, Lyons D W, Clark N N, Gautam M, Norton P M. Emissions from nine heavy trucks fuelled by diesel and biodiesel blend without engine modification. Environmental Science & Technology , 2000, 34(6): 933-939
doi: 10.1021/es981329b
36 Song J, Alam M, Boehman A L, Kim U. Examination of the oxidation behavior of biodiesel soot. Combustion and Flame , 2006, 146(4): 589-604
doi: 10.1016/j.combustflame.2006.06.010
37 Ning Z, Cheung C S, Liu S X. Experimental investigation of the effect of exhaust gas cooling on diesel particulate. Journal of Aerosol Science , 2004, 35(3): 333-345
doi: 10.1016/j.jaerosci.2003.10.001
[1] M. LOGANATHAN, A. VELMURUGAN, TOM PAGE, E. JAMES GUNASEKARAN, P. TAMILARASAN. Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation[J]. Front. Energy, 2017, 11(4): 568-574.
[2] Yiji LU, Anthony Paul ROSKILLY, Long JIANG, Longfei CHEN, Xiaoli YU. Analysis of a 1 kW organic Rankine cycle using a scroll expander for engine coolant and exhaust heat recovery[J]. Front. Energy, 2017, 11(4): 527-534.
[3] Yi REN,Xianguo LI. Assessment and validation of liquid breakup models for high-pressure dense diesel sprays[J]. Front. Energy, 2016, 10(2): 164-175.
[4] Zhen HUANG,Zhongzhao LI,Jianyong ZHANG,Xingcai LU,Junhua FANG,Dong HAN. Active fuel design—A way to manage the right fuel for HCCI engines[J]. Front. Energy, 2016, 10(1): 14-28.
[5] SUKARNI,SUDJITO,Nurkholis HAMIDI,Uun YANUHAR,I.N.G. WARDANA. Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere[J]. Front. Energy, 2015, 9(2): 125-133.
[6] Zuohua HUANG, Jinhua WANG, Erjiang HU, Chenglong TANG, Yingjia ZHANG. Progress in hydrogen enriched hydrocarbons combustion and engine applications[J]. Front Energ, 2014, 8(1): 73-80.
[7] Lingge SUI, Zhongchang LIU, Yongqiang HAN, Jing TIAN. Transient emission simulation and optimization of turbocharged diesel engine[J]. Front Energ, 2013, 7(2): 237-244.
[8] Ying GU, Xiaowei LIU, Bo ZHAO, Minghou XU. Effect of Fe on NO release during char combustion in air and O2/CO2[J]. Front Energ, 2012, 6(2): 200-206.
[9] Wu YU, Gen CHEN, Zuohua HUANG. Influence of cetane number improver on performance and emissions of a common-rail diesel engine fueled with biodiesel-methanol blend[J]. Front Energ, 2011, 5(4): 412-418.
[10] K. RAJKUMAR, P. GOVINDARAJAN. Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine[J]. Front Energ, 2011, 5(4): 398-403.
[11] Shiyan ZHENG. Unified cycle model of a class of internal combustion engines and their optimum performance characteristics[J]. Front Energ, 2011, 5(4): 367-375.
[12] Pawel LUSZCZ, Hongming XU, Mirek WYZSNSKI, Xiao MA, Rob STEVENS, Athanasios TSOLAKIS. Imaging studies of in-cylinder HCCI combustion[J]. Front Energ, 2011, 5(3): 313-321.
[13] Huaqiang CHU, Qiang CHENG, Huaichun ZHOU, Fengshan LIU. Nongray radiation from gas and soot mixtures in planar plates based on statistical narrow-band spectral model[J]. Front Energ Power Eng Chin, 2011, 5(2): 149-158.
[14] Shi SU, Xinxiang YU. Progress in developing an innovative lean burn catalytic turbine technology for fugitive methane mitigation and utilization[J]. Front Energ, 2011, 5(2): 229-235.
[15] Pinglu CHEN, Xiaoli YU, Xianghong NIE, Yidong FANG. Modeling and simulation analysis on parallel hybrid air-fuel vehicle[J]. Front Energ Power Eng Chin, 2010, 4(4): 553-559.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed