Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2015, Vol. 9 Issue (1) : 54-67    https://doi.org/10.1007/s11708-014-0342-6
RESEARCH ARTICLE
Exergy-energy analysis of full repowering of a steam power plant
S. NIKBAKHT NASERABAD, K. MOBINI(), A. MEHRPANAHI, M. R. ALIGOODARZ
Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran 7591618439, Iran
 Download: PDF(1223 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A 320 MW old steam power plant has been chosen for repowering in this paper. Considering the technical conditions and working life of the power plant, the full repowering method has been selected from different repowering methods. The power plant repowering has been analyzed for three different feed water flow rates: a flow rate equal to the flow rate at the condenser exit in the original plant when it works at nominal load, a flow rate at maximum load, and a flow rate when all the extractions are blocked. For each flow rates, two types of gas turbines have been examined: V94.2 and V94.3A. The effect of a duct burner has then been investigated in each of the above six cases. Steam is produced by a double-pressure heat recovery steam generator (HRSG) with reheat which obtains its required heat from the exhaust gases coming from the gas turbines. The results obtained from modeling and analyzing the energy-exergy of the original steam power plant and the repowered power plant indicate that the maximum efficiency of the repowered power plant is 52.04%. This maximum efficiency occurs when utilizing two V94.3A gas turbines without duct burner in the steam flow rate of the nominal load.

Keywords full repowering      exergy analysis      V94.2 and V94.3A gas turbines      double-pressure HRSG      duct burner      Bandarabbas steam power plant      efficiency     
Corresponding Author(s): K. MOBINI   
Just Accepted Date: 04 December 2014   Issue Date: 02 March 2015
 Cite this article:   
S. NIKBAKHT NASERABAD,K. MOBINI,A. MEHRPANAHI, et al. Exergy-energy analysis of full repowering of a steam power plant[J]. Front. Energy, 2015, 9(1): 54-67.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-014-0342-6
https://academic.hep.com.cn/fie/EN/Y2015/V9/I1/54
Fig.1  Schematic diagram of Bandarabbas steam power plant
Fig.2  Schematic diagram of repowered cycle
Methane (CH4) 98.57
Components Volume fraction/%
Ethane (C2H6) 0.63
Propane (C3H8) 0.1
Butane (Iso-C4H10) 0.05
Pentane (Iso-C5H12) 0.04
Nitrogen (N2) 0.6
Carbon dioxide (CO2) 0.01
Tab.1  Analysis of natural gas
Point Temperature/K Pressure/bar Mass flow rate/(kg·s−1) Enthalpy /(kJ·kg−1) Entropy/(kJ·kg−1·K−1) Exergy/(kJ·kg−1)
1 564.10 177.27 288.740 1287.3 3.1315 352.76
2 811.00 170.00 285.590 3392.9 6.4000 1477.3
3 599.30 38.780 246.010 3034.1 6.4998 1088.6
4 598.85 38.540 222.295 3033.6 6.5015 1087.6
5 811.00 34.920 221.184 3536.9 7.2669 1361.2
6 596.00 7.230 207.434 3105.9 7.3634 901.23
7 341.00 0.100 178.608 2401.1 8.1760 112.14
8 315.54 0.086 207.940 177.50 0.6041 1.6010
9 339.21 7.658 207.940 277.12 0.9062 10.550
10 362.11 7.480 207.940 373.09 1.1800 24.330
11 398.51 7.330 207.940 526.95 1.5849 56.667
12 437.90 7.130 288.740 696.35 1.9902 104.40
13 440.05 178.04 288.740 715.43 1.9910 123.25
14 475.37 177.74 288.740 869.16 2.3268 176.19
15 517.83 177.49 288.740 1061.1 2.7135 252.07
16 702.10 79.530 30.390 3217.9 6.4816 1277.8
17 598.85 38.540 22.850 3033.6 6.5015 1087.6
18 707.50 17.170 13.820 3327.1 7.3111 1138.1
19 593.90 7.350 13.730 3101.3 7.3480 901.15
20 486.30 2.540 12.820 2857.5 7.3703 650.72
21 373.30 0.770 7.343 2679.1 7.4885 436.84
22 353.00 0.300 8.311 2545.3 7.5312 289.42
23 522.83 77.150 39.393 1083.8 2.7807 254.54
24 480.37 37.140 53.239 885.72 2.3954 172.15
25 445.05 16.660 67.051 728.06 2.0596 115.28
26 367.11 2.560 12.821 393.74 1.2380 27.560
27 344.20 0.750 20.164 297.44 0.9677 12.401
28 341.21 0.290 8.311 284.89 0.9312 10.801
Tab.2  Results of modeling of the steam power plant showing the properties of water/steam at different points (Fig. 1)
Modeling parameter Modeling result Power plant data Error/%
Total power/MW 325 320 1.72
Efficiency/% 38.18 38.70 1.34
Tab.3  Comparison of the result obtained from modeling and data of the power plant
Fig.3  Definition of pinch and approach temperature differences
V94.2 V94.3A Ambient Specification
(* Input data)
Error/% Sabalanpp, Iran Modeling Error/% Roodsarpp, Iran Modeling
15 15 21.7 21.7 *Air inlet temperature/°C
1.15 1040 1028 1.16 1206 1192 Turbine inlet temperature/°C
30 30 26 26 * Fuel temperature/°C
2.73 337.9 347.15 2.13 423.5 432.5 AC outlet temperature/°C
0.90 545 539.85 0.50 576 578.9 Exhaust temperature/°C
0.86 0.86 0.884 0.884 * Air inlet pressure/bar
20.5 20.5 24.4 24.4 * Fuel pressure/bar
3.09 514 498.1 3.21 556.42 574.3 Exhaust flow/(kg·s−1)
3.26 504.25 487.8 3.06 543.94 560.6 Air flow/(kg·s−1)
49434 49434 46503 46503 * LHV/(kJ·kg−1)
159 159 217.6 217.6 *Shaft net power/MW
87 87 88.2 88.2 *Compressor efficiency/%
88 88 87.5 87.5 * Turbine efficiency/%
1.6 33 32.47 1.46 34.87 35.38 Thermal efficiency/%
11.37 11.37 16.58 16.58 * rpc/%
0.975 0.975 0.97 0.97 * rpcch/%
Tab.4  Comparison of the results obtained from modeling and the existing data from two available gas turbines
Fig.4  Comparison of exhaust loss and total power for different repowering scenario
Type of gas turbine Situation of repowering Numbers of gas turbine Duct burner k y ?Tpinch,hp /K ?Tpinch,lp/K ?Tpinch,Dea/K Tgt,out,HRSG/K E˙g,out,HRSGPH E˙g,out,HRSGCH ηexergy /% New ST power/MW Total power/
MW
V94.3A Nominal 2 Exists 1.0 0.88 15.58 55.56 72.54 420.6 23.3713 14.1825 51.04 289.2 875.2
Deleted 1.0 0.83 5.230 35.54 51.48 399.3 16.3331 14.1403 52.04 280.0 866.0
3 Exists 1.0 0.88 98.78 192.5 219.4 583.3 158.823 21.2526 45.87 289.2 1168
Deleted 1.0 0.88 82.02 175.3 202.1 565.9 142.398 21.2104 46.81 289.2 1168
Overload 2 Exists 1.2
Deleted 1.2
3 Exists 1.2 0.88 64.93 133.4 160.2 517.8 100.831 21.2526 47.94 342.0 1221
Deleted 1.2 0.88 48.01 116.0 142.6 500.1 86.8514 21.2104 48.92 342.0 1221
Extraction deletion 2 Exists 1.37
Deleted 1.37
3 Exists 1.37 0.88 36.24 83.98 109.1 461.3 59.2849 21.2526 49.56 383.3 1262
Deleted 1.37 0.88 19.20 66.32 91.34 443.3 47.9138 21.2104 50.57 383.3 1262
V94.2 Nominal 4 Exists 1.00 0.83 5.100 95.02 120.9 486.1 88.4272 18.7023 42.19 269.4 929.4
Deleted 1.00 0.72 5.031 84.63 107.0 472.3 77.0860 18.6747 42.28 249.9 909.9
5 Exists 1.00 0.88 27.48 142.4 173.3 544.3 177.918 23.3910 40.21 277.2 1102
Deleted 1.00 0.88 10.80 125.4 156.2 527.1 156.677 23.3434 40.97 277.2 1102
Overload 4 Exists 1.20 0.69 5.260 52.85 75.15 434.6 49.4961 18.7023 43.19 291.5 951.5
Deleted 1.20 0.60 5.153 41.98 61.36 420.7 40.5653 18.6747 43.27 271.2 931.2
5 Exists 1.20 0.86 5.149 96.88 128.8 495.1 120.140 23.3910 41.93 324.4 1149
Deleted 1.20 0.77 5.103 88.60 117.5 483.8 108.063 23.3434 42.06 306.3 1131
Extraction deletion 4 Exists 1.37 0.57 13.64 20.56 38.76 393.1 25.1567 18.7023 43.65 301.6 961.6
Deleted 1.37
5 Exists 1.37 0.75 5.062 68.08 97.03 459.4 83.8888 23.3910 42.65 344.0 1169
Deleted 1.37 0.67 5.177 59.61 85.83 448.1 73.4947 23.3434 42.76 325.2 1150
  Results obtained from modeling of the repowered power plant at different conditions
Fig.5  Diagram of temperature versus total heat absorbed by steam along HRSG
Fig.6  Absorption at different HRSG components
Fig.7  Effect of fuel consumption in duct burner on total power and exergy efficiency
Fig.8  Effect of y and k parameters on exhaust gas temperature
Fig.9  Effect of y and k parameters on exergy efficiency
Fig.10  Effect of y and k parameters on repowered power plant net work
Fig.11  Effect of exhaust temperature on total power and exergy efficiency
Cpa Specific heat/(kJ·kg−1·K−1)
Comp Compressor
ΔT Temperature difference/K
η Efficiency/%
E˙ Exergy rate/kW
ex,e Specific exergy/(kJ·kg−1)
FA Ratio of fuel to air
γa Air specific heat rate
γf Fuel exergy grade function/%
γg Gas specific heat rate
h Enthalpy/(kJ·kg−1)
HP High pressure
IP Intermediate pressure
LHV lower heating value/(kJ·kg−1)
LP Low Pressure
m˙ Mass flow rate/(kg·s−1)
N Numbers of gas turbine
P Pressure/bar
Q˙ Heat transfer rate/kW
R Universal constant of gases
rp Pressure ratio
s Entropy
T Temperature/K
W˙ Power/kW
Subscripts
a Air
app Approach
Comp Compressor
Cch Combustion chamber
Cond Condensor
DB, db Duct burner
Dea Deaerator
eco Economizer
eva Evaporator
f Fuel
g Gas
GT,gt Gas turbine
Ise Isentropic
l Loss
p Pinch
pp Power plant
pre Pre heater
RC Repowered cycle
St Steam turbine
Sup Super heater
t Turbine
tot Total
0 Dead state
Superscripts
PH Physical exergy
Physical exergy Chemical exergy
KN Kinetic exergy
PT Potential exergy
  Notations
1 R Melli, V Naso, E Sciubba. Modular repowering of power plants with nominal ratings lower than 180 MW: a rational design approach and its application to the Italian utility system. Journal of Energy Resources Technology, 1994, 116(3): 201–210
https://doi.org/10.1115/1.2906444
2 J A Brander, D L Chase. Repowering application considerations. Journal of Engineering for Gas Turbines and Power, 1992, 114(4): 643–652
https://doi.org/10.1115/1.2906637
3 M Fränkle. SRS. The Standardized Repowering Solution for 300 MW Steam Power Plants in Russia. Siemens Power Generation (PG), Germany, 2006
4 S Karellas, A Doukelis, G Zanni, E Kakaras. Energy and exergy analysis of repowering option for Greek lignite-fired power plant. Proceeding of ECOS 2012—the 25th International Conference on Efficiency Cost Optimization, Simulation and Environmental Impact of Energy Systems, Perugia, 2012
5 N Kudlu. Major options and considerations for repowering with gas turbines. BETCHEL Project Report, Electric Power Research (EPRI), Project 2565–18, Final Report. 1989
6 J M Escosa, L M Romeo. Optimizing CO2 avoided cost by means of repowering. Applied Energy, 2009, 86(11): 2351–2358
https://doi.org/10.1016/j.apenergy.2009.02.015
7 W Stenzel, D M Sopocy, S Pace. Repowering existing fossil steam plants. 2014-01-16
8 A Mehrpanahi, S M Hossienalipour, K Mobini. Investigation of the effects of repowering options on electricity generation cost on Iran steam power plants. International Journal of Sustainable Energy, 2013, 32(4): 229–243
https://doi.org/10.1080/14786451.2011.622762
9 A B Walters. Power plant topping cycle repowering. Journal of the Association of Energy Engineering, 1995, 92(5): 49–71
10 K Mobini, A Mehrpanahi, S M Hosseinalipour. Thermo-economic analysis of the existing options for feed water heating repowering using a stepwise method. Journal of Mechanical Aerospace, 2012, 8(2): 13–29 (propulsion and heat transfer)
11 S Sanaye, Y Hamzeie. Modeling and techno-economic optimization of steam power plant repowering by using gas turbine. In: Proceedings of the 20th International Power System Conference, Tehran, 2004
12 G Heyen , B Kalitventzeff. A comparison of advanced thermal cycles suitable for upgrading existing power plant. Applied Thermal Engineering, 1999, 19(3): 227–237
https://doi.org/10.1016/S1359-4311(98)00044-1
13 S Bracco, S Siri. Exergetic optimization of single level combined gas-steam power plants considering different objective functions. Energy, 2010, 35(12): 5365–5373
https://doi.org/10.1016/j.apenergy.2009.02.015
14 M Cârdu. Preoccupations for some thermopower equipment and installations rehabilitation and repowering. Energy Conversion and Management, 1995, 36(1): 35–40
https://doi.org/10.1016/0196-8904(94)00042-X
15 A M Bassily. Enhancing the efficiency and power of the triple-pressure reheat combined cycle by means of gas reheat gas recuperation and reduction of the irreversibility in the heat recovery steam generator. Applied Energy, 2008, 85(12): 1141–1162
https://doi.org/10.1016/j.apenergy.2008.02.017
16 T Srinivas, A V S S K S Gupta, B V Reddy. Sensitivity analysis of STIG based combined cycle with dual pressure HRSG. International Journal of Thermal Sciences, 2008, 47(9): 1226–1234
https://doi.org/10.1016/j.ijthermalsci.2007.10.002
17 A Franco. Analysis of small size combined cycle plants based on the use of supercritical HRSG. Applied Thermal Engineering, 2011, 31(5): 785–794
https://doi.org/10.1016/j.applthermaleng.2010.10.027
18 Y Sanjay. Investigation of effect of variation of cycle parameters on thermodynamic performance of gas-steam combined cycle. Energy, 2011, 36(1): 157–167
https://doi.org/10.1016/j.energy.2010.10.058
19 S M Hossienalipour, A Mehrpanahi. Optimization of parallel feed water heating repowering of ShahidRajaee power plant based to production electrical cost. Iranian Society of Mechanical Engineers, 2011, 13(1): 32–50
20 H Sharifi. Heat Recovery Steam Generator. Pendar Pars Publication, Iran. 2011
21 M Ameri, P Ahmadi, S Khanmohammadi. Exergy analysis of a 420 MW combined cycle power plant. International Journal of Energy Research, 2008, 32(2): 175–183
https://doi.org/10.1002/er.1351
22 M Judes, S Vigerske, G Tsatsaronis. Optimization in Energy Industry. Berlin, Springer, 2008
23 O Balli, H Aras, A Hepbasli. Exergetic performance evaluation of a combined heat and power (CHP) system in Turkey. International Journal of Energy Research, 2007, 31(9): 849–866
https://doi.org/10.1002/er.1270
24 S Bilgen, K Kaygusuz. Second law (exergy) analysis of cogeneration system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2008, 30(13): 1267–1280
https://doi.org/10.1080/15567030701258311
25 A Bejan, G Tsatsaronis, M Moran. Thermal design and optimization. New York: John Wiley & Sons, 1996
26 M Tajik Mansouri, P Ahmadi, A Ganjeh Kaviri, M N M Jaafar. Exergetic and economic evaluation of the effect of HRSG configurations on the performance of combined cycle power plants. Energy Conversion and Management, 2012, 58: 47–58
https://doi.org/10.1016/j.enconman.2011.12.020
27 J M Moran. Availability Analysis: A Guide to Efficient Energy Use. New York: ASME Press, 1989
28 A Franco, A Russo. Combined cycle plant efficiency increase based on the optimization of the heat recovery steam generator operating parameters. International Journal of Thermal Sciences, 2002, 41(9): 843–859
https://doi.org/10.1016/S1290-0729(02)01378-9
29 E Godoy, S J Benz, N J Scenna. A strategy for the economic optimization of combined cycle gas turbine power plants by taking advantage of useful thermodynamic relationships. Applied Thermal Engineering, 2011, 31(5): 852–871
https://doi.org/10.1016/j.applthermaleng.2010.11.004
30 E Godoy, S J Benz, N J Scenna. Optimal economic strategy for the multi period design and long-term operation of natural gas combined cycle power plants. Applied Thermal Engineering, 2013, 51(1–2): 218–230
https://doi.org/10.1016/j.applthermaleng.2012.08.049
31 P Ahmadi, I Dincer. Thermodynamic analysis and thermoeconomic optimization of a dual pressure combined cycle power plant with a supplementary firing unit. Energy Conversion and Management, 2011, 52(5): 2296–2308
https://doi.org/10.1016/j.enconman.2010.12.023
32 N R Kumar, K R Krishna, A V S R Raju. Thermodynamic analysis of heat recovery steam generator in combined cycle power plant. Thermal Science, 2007, 11(4): 143–156
https://doi.org/10.2298/TSCI0704143R
[1] Muni Raj MAURYA, John-John CABIBIHAN, Kishor Kumar SADASIVUNI, Kalim DESHMUKH. A review on high performance photovoltaic cells and strategies for improving their efficiency[J]. Front. Energy, 2022, 16(4): 548-580.
[2] Gorakshnath TAKALKAR, Ahmad K. SLEITI. Comprehensive performance analysis and optimization of 1,3-dimethylimidazolylium dimethylphosphate-water binary mixture for a single effect absorption refrigeration system[J]. Front. Energy, 2022, 16(3): 521-535.
[3] Zekun LIU, Shuang YUAN, Yi YUAN, Guojian LI, Qiang WANG. A thermoelectric generator and water-cooling assisted high conversion efficiency polycrystalline silicon photovoltaic system[J]. Front. Energy, 2021, 15(2): 358-366.
[4] Philip Kofi ADOM, Michael Owusu APPIAH, Mawunyo Prosper AGRADI. Does financial development lower energy intensity?[J]. Front. Energy, 2020, 14(3): 620-634.
[5] Pei LI, Guotian CAI, Yuntao ZHANG, Shangjun KE, Peng WANG, Liping GAO. Multi-objective optimal allocation strategy for the energy internet in Huangpu District, Guangzhou, China[J]. Front. Energy, 2020, 14(2): 241-253.
[6] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[7] Dianbo XIN, Shuliang HUANG, Song YIN, Yuping DENG, Wenqiang ZHANG. Experimental investigation on oil-gas separator of air-conditioning systems[J]. Front. Energy, 2019, 13(2): 411-416.
[8] Min XU, Jun CAI, Xiulan HUAI. Exergy analysis and performance enhancement of isopropanol-acetone-hydrogen chemical heat pump[J]. Front. Energy, 2017, 11(4): 510-515.
[9] Zhiwei MA, Huashan BAO, Anthony Paul ROSKILLY. Numerical study of a hybrid absorption-compression high temperature heat pump for industrial waste heat recovery[J]. Front. Energy, 2017, 11(4): 503-509.
[10] Peng GAO, Liwei WANG, Ruzhu WANG, Yang YU. Simulation and experiments on a solid sorption combined cooling and power system driven by the exhaust waste heat[J]. Front. Energy, 2017, 11(4): 516-526.
[11] Fanying MENG,Jinning LIU,Leilei SHEN,Jianhua SHI,Anjun HAN,Liping ZHANG,Yucheng LIU,Jian YU,Junkai ZHANG,Rui ZHOU,Zhengxin LIU. High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar cells[J]. Front. Energy, 2017, 11(1): 78-84.
[12] S. Hari Charan CHERUKURI,Balasubramaniyan SARAVANAN. An overview of selected topics in smart grids[J]. Front. Energy, 2016, 10(4): 441-458.
[13] R. Senthil KUMAR,M. LOGANATHAN,E. James GUNASEKARAN. Performance, emission and combustion characteristics of CI engine fuelled with diesel and hydrogen[J]. Front. Energy, 2015, 9(4): 486-494.
[14] Fidelis I. ABAM, Olayinka S. OHUNAKIN, Bethrand N. NWANKWOJIKE, Ekwe B. EKWE. End-use energy utilization efficiency of Nigerian residential sector[J]. Front. Energy, 2014, 8(3): 322-334.
[15] Jincheng XING,Youli LI,Jihong LING,Huiyang YU,Liwen WANG. Method for rating energy performance of public buildings[J]. Front. Energy, 2014, 8(3): 379-385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed