|
|
Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair |
Tianjing Sun1, Mo Li1, Qi Liu2( ), Anyong Yu1( ), Kun Cheng3, Jianxing Ma4, Sean Murphy5, Patrick Michael McNutt5, Yuanyuan Zhang5( ) |
1. Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China 2. Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China 3. Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA 4. Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA 5. Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27109, USA |
|
|
Abstract Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.
|
Keywords
exosomes
stem cells
therapeutic impact
skin
wound healing
|
Corresponding Author(s):
Qi Liu,Anyong Yu,Yuanyuan Zhang
|
Just Accepted Date: 23 October 2023
Online First Date: 12 January 2024
Issue Date: 27 May 2024
|
|
1 |
CK Sen. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care (New Rochelle) 2019; 8(2): 39–48
https://doi.org/10.1089/wound.2019.0946
|
2 |
CK Sen. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care (New Rochelle) 2021; 10(5): 281–292
https://doi.org/10.1089/wound.2021.0026
|
3 |
L Bacakova, J Zarubova, M Travnickova, J Musilkova, J Pajorova, P Slepicka, NS Kasalkova, V Svorcik, Z Kolska, H Motarjemi, M Molitor. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells — a review. Biotechnol Adv 2018; 36(4): 1111–1126
https://doi.org/10.1016/j.biotechadv.2018.03.011
|
4 |
M XueS DervishCJ Jackson. Isolation of human skin epidermal stem cells based on the expression of endothelial protein C receptor. In: Turksen K. Skin Stem Cells. Methods in Molecular Biology, vol 1879. New York: Humana Press, 2018: 165–174 doi:10.1007/7651_2018_152
|
5 |
J Mokry, R Pisal. Development and maintenance of epidermal stem cells in skin adnexa. Int J Mol Sci 2020; 21(24): 9736
https://doi.org/10.3390/ijms21249736
|
6 |
I Brockmann, J Ehrenpfordt, T Sturmheit, M Brandenburger, C Kruse, M Zille, D Rose, J Boltze. Skin-derived stem cells for wound treatment using cultured epidermal autografts: clinical applications and challenges. Stem Cells Int 2018; 2018: 4623615
https://doi.org/10.1155/2018/4623615
|
7 |
AP Veith, K Henderson, A Spencer, AD Sligar, AB Baker. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146: 97–125
https://doi.org/10.1016/j.addr.2018.09.010
|
8 |
W Xiaojie, J Banda, H Qi, AK Chang, C Bwalya, L Chao, X Li. Scarless wound healing: current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev 2022; 66: 26–37
https://doi.org/10.1016/j.cytogfr.2022.03.001
|
9 |
J Liu, X Qiu, Y Lv, C Zheng, Y Dong, G Dou, B Zhu, A Liu, W Wang, J Zhou, S Liu, S Liu, B Gao, Y Jin. Apoptotic bodies derived from mesenchymal stem cells promote cutaneous wound healing via regulating the functions of macrophages. Stem Cell Res Ther 2020; 11(1): 507
https://doi.org/10.1186/s13287-020-02014-w
|
10 |
X Zhou, K Ning, B Ling, X Chen, H Cheng, B Lu, Z Gao, J Xu. Multiple injections of autologous adipose-derived stem cells accelerate the burn wound healing process and promote blood vessel regeneration in a rat model. Stem Cells Dev 2019; 28(21): 1463–1472
https://doi.org/10.1089/scd.2019.0113
|
11 |
M Li, L Qiu, W Hu, X Deng, H Xu, Y Cao, Z Xiao, L Peng, S Johnson, L Alexey, PA Kingston, Q Li, Y Zhang. Genetically-modified bone mesenchymal stem cells with TGF-β(3) improve wound healing and reduce scar tissue formation in a rabbit model. Exp Cell Res 2018; 367(1): 24–29
https://doi.org/10.1016/j.yexcr.2018.02.006
|
12 |
Q Li, G Qi, D Lutter, W Beard, CRS Souza, MA Highland, W Wu, P Li, Y Zhang, A Atala, X Sun. Injectable peptide hydrogel encapsulation of mesenchymal stem cells improved viability, stemness, anti-inflammatory effects, and early stage wound healing. Biomolecules 2022; 12(9): 1317
https://doi.org/10.3390/biom12091317
|
13 |
X Yin, Q Li, PM McNutt, Y Zhang. Urine-derived stem cells for epithelial tissues reconstruction and wound healing. Pharmaceutics 2022; 14(8): 1669
https://doi.org/10.3390/pharmaceutics14081669
|
14 |
JO Jeong, JW Han, JM Kim, HJ Cho, C Park, N Lee, DW Kim, YS Yoon. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 2011; 108(11): 1340–1347
https://doi.org/10.1161/CIRCRESAHA.110.239848
|
15 |
A Trounson, C McDonald. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015; 17(1): 11–22
https://doi.org/10.1016/j.stem.2015.06.007
|
16 |
AS Lee, C Tang, MS Rao, IL Weissman, JC Wu. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19(8): 998–1004
https://doi.org/10.1038/nm.3267
|
17 |
U Ben-David, N Benvenisty. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011; 11(4): 268–277
https://doi.org/10.1038/nrc3034
|
18 |
J Min, C Zhang, RJ Bliton, B Caldwell, L Caplan, KS Presentation, DJ Park, SH Kong, HS Lee, MK Washington, WH Kim, KS Lau, ST Magness, HJ Lee, HK Yang, JR Goldenring, E Choi. Dysplastic stem cell plasticity functions as a driving force for neoplastic transformation of precancerous gastric mucosa. Gastroenterology 2022; 163(4): 875–890
https://doi.org/10.1053/j.gastro.2022.06.021
|
19 |
T Deuse, X Hu, A Gravina, D Wang, G Tediashvili, C De, WO Thayer, A Wahl, JV Garcia, H Reichenspurner, MM Davis, LL Lanier, S Schrepfer. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 2019; 37(3): 252–258
https://doi.org/10.1038/s41587-019-0016-3
|
20 |
JI Pearl, AS Lee, DB Leveson-Gower, N Sun, Z Ghosh, F Lan, J Ransohoff, RS Negrin, MM Davis, JC Wu. Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 2011; 8(3): 309–317
https://doi.org/10.1016/j.stem.2011.01.012
|
21 |
T Zhao, ZN Zhang, Z Rong, Y Xu. Immunogenicity of induced pluripotent stem cells. Nature 2011; 474(7350): 212–215
https://doi.org/10.1038/nature10135
|
22 |
J Gopalarethinam, AP Nair, M Iyer, B Vellingiri, MD Subramaniam. Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem 2023; 125(4): 152041
https://doi.org/10.1016/j.acthis.2023.152041
|
23 |
E Ford, J Pearlman, T Ruan, J Manion, M Waller, GG Neely, L Caron. Human pluripotent stem cells-based therapies for neurodegenerative diseases: current status and challenges. Cells 2020; 9(11): 2517
https://doi.org/10.3390/cells9112517
|
24 |
A Shpichka, D Butnaru, EA Bezrukov, RB Sukhanov, A Atala, V Burdukovskii, Y Zhang, P Timashev. Skin tissue regeneration for burn injury. Stem Cell Res Ther 2019; 10(1): 94
https://doi.org/10.1186/s13287-019-1203-3
|
25 |
Y Zhang, Y He, S Bharadwaj, N Hammam, K Carnagey, R Myers, A Atala, M Van Dyke. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 2009; 30(23–24): 4021–4028
https://doi.org/10.1016/j.biomaterials.2009.04.005
|
26 |
G Orlando, KJ Wood, P De Coppi, PM Baptista, KW Binder, KN Bitar, C Breuer, L Burnett, G Christ, A Farney, M Figliuzzi, JH Holmes, K Koch, P Macchiarini, SH Mirmalek Sani, E Opara, A Remuzzi, J Rogers, JM Saul, D Seliktar, K Shapira-Schweitzer, T Smith, D Solomon, M Van Dyke, JJ Yoo, Y Zhang, A Atala, RJ Stratta, S Soker. Regenerative medicine as applied to general surgery. Ann Surg 2012; 255(5): 867–880
https://doi.org/10.1097/SLA.0b013e318243a4db
|
27 |
A Prasai, JW Jay, D Jupiter, SE Wolf, A El Ayadi. Role of exosomes in dermal wound healing: a systematic review. J Invest Dermatol 2022; 142(3): 662–678.e8
https://doi.org/10.1016/j.jid.2021.07.167
|
28 |
S Kourembanas. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 2015; 77(1): 13–27
https://doi.org/10.1146/annurev-physiol-021014-071641
|
29 |
R Kalluri, VS LeBleu. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977
https://doi.org/10.1126/science.aau6977
|
30 |
Y Yu, M Chen, Q Guo, L Shen, X Liu, J Pan, Y Zhang, T Xu, D Zhang, G Wei. Human umbilical cord mesenchymal stem cell exosome-derived miR-874-3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage. Cell Mol Biol Lett 2023; 28(1): 12
https://doi.org/10.1186/s11658-023-00425-0
|
31 |
P Canning, A Alwan, F Khalil, Y Zhang, EC Opara. Perspectives and challenges on the potential use of exosomes in bioartificial pancreas engineering. Ann Biomed Eng 2022; 50(10): 1177–1186
https://doi.org/10.1007/s10439-022-03004-0
|
32 |
C Deng, Y Xie, C Zhang, B Ouyang, H Chen, L Lv, J Yao, X Liang, Y Zhang, X Sun, C Deng, G Liu. Urine-derived stem cells facilitate endogenous spermatogenesis restoration of busulfan-induced nonobstructive azoospermic mice by paracrine exosomes. Stem Cells Dev 2019; 28(19): 1322–1333
https://doi.org/10.1089/scd.2019.0026
|
33 |
P Hu, Q Yang, Q Wang, C Shi, D Wang, U Armato, ID Prà, A Chiarini. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration. Burns Trauma 2019; 7: 38
https://doi.org/10.1186/s41038-019-0178-8
|
34 |
K Abdelsaid, V Sudhahar, RA Harris, A Das, SW Youn, Y Liu, M McMenamin, Y Hou, D Fulton, MW Hamrick, Y Tang, T Fukai, M Ushio-Fukai. Exercise improves angiogenic function of circulating exosomes in type 2 diabetes: role of exosomal SOD3. FASEB J 2022; 36(3): e22177
https://doi.org/10.1096/fj.202101323R
|
35 |
W Zhao, R Zhang, C Zang, L Zhang, R Zhao, Q Li, Z Yang, Z Feng, W Zhang, R Cui. Exosome derived from mesenchymal stem cells alleviates pathological scars by inhibiting the proliferation, migration and protein expression of fibroblasts via delivering miR-138-5p to target SIRT1. Int J Nanomedicine 2022; 17: 4023–4038
https://doi.org/10.2147/IJN.S377317
|
36 |
KY Park, HS Han, JW Park, HH Kwon, GH Park, SJ Seo. Exosomes derived from human adipose tissue-derived mesenchymal stem cells for the treatment of dupilumab-related facial redness in patients with atopic dermatitis: a report of two cases. J Cosmet Dermatol 2022; 21(2): 844–849
https://doi.org/10.1111/jocd.14153
|
37 |
GH Yang, YB Lee, D Kang, E Choi, Y Nam, KH Lee, HJ You, HJ Kang, SH An, H Jeon. Overcome the barriers of the skin: exosome therapy. Biomater Res 2021; 25(1): 22
https://doi.org/10.1186/s40824-021-00224-8
|
38 |
DH Ha, HK Kim, J Lee, HH Kwon, GH Park, SH Yang, JY Jung, H Choi, JH Lee, S Sung, YW Yi, BS Cho. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells 2020; 9(5): 1157
https://doi.org/10.3390/cells9051157
|
39 |
C Théry, L Zitvogel, S Amigorena. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569–579
https://doi.org/10.1038/nri855
|
40 |
Andaloussi S EL, I Mäger, XO Breakefield, MJ Wood. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347–357
https://doi.org/10.1038/nrd3978
|
41 |
HK Karnati, JH Garcia, D Tweedie, RE Becker, D Kapogiannis, NH Greig. Neuronal enriched extracellular vesicle proteins as biomarkers for traumatic brain injury. J Neurotrauma 2019; 36(7): 975–987
https://doi.org/10.1089/neu.2018.5898
|
42 |
MD Hade, CN Suire, J Mossell, Z Suo. Extracellular vesicles: emerging frontiers in wound healing. Med Res Rev 2022; 42(6): 2102–2125
https://doi.org/10.1002/med.21918
|
43 |
QF Han, WJ Li, KS Hu, J Gao, WL Zhai, JH Yang, SJ Zhang. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21(1): 207
https://doi.org/10.1186/s12943-022-01671-0
|
44 |
AA Farooqi, NN Desai, MZ Qureshi, DRN Librelotto, ML Gasparri, A Bishayee, SM Nabavi, V Curti, M Daglia. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 2018; 36(1): 328–334
https://doi.org/10.1016/j.biotechadv.2017.12.010
|
45 |
BT Pan, K Teng, C Wu, M Adam, RM Johnstone. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 1985; 101(3): 942–948
https://doi.org/10.1083/jcb.101.3.942
|
46 |
BT Pan, RM Johnstone. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983; 33(3): 967–978
https://doi.org/10.1016/0092-8674(83)90040-5
|
47 |
C Yan, J Chen, C Wang, M Yuan, Y Kang, Z Wu, W Li, G Zhang, HG Machens, Y Rinkevich, Z Chen, X Yang, X Xu. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv 2022; 29(1): 214–228
https://doi.org/10.1080/10717544.2021.2023699
|
48 |
S Gurunathan, MH Kang, JH Kim. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int J Nanomedicine 2021; 16: 1281–1312
https://doi.org/10.2147/IJN.S291956
|
49 |
EW Choi, MK Seo, EY Woo, SH Kim, EJ Park, S Kim. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts. Exp Dermatol 2018; 27(10): 1170–1172
https://doi.org/10.1111/exd.13451
|
50 |
D Narauskaitė, G Vydmantaitė, J Rusteikaitė, R Sampath, A Rudaitytė, G Stašytė, Calvente MI Aparicio, A Jekabsone. Extracellular vesicles in skin wound healing. Pharmaceuticals (Basel) 2021; 14(8): 811
https://doi.org/10.3390/ph14080811
|
51 |
M Rodrigues, N Kosaric, CA Bonham, GC Gurtner. Wound healing: a cellular perspective. Physiol Rev 2019; 99(1): 665–706
https://doi.org/10.1152/physrev.00067.2017
|
52 |
M Čoma, JC Manning, H Kaltner, P Gál. The sweet side of wound healing: galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling. Expert Opin Ther Targets 2023; 27(1): 41–53
https://doi.org/10.1080/14728222.2023.2175318
|
53 |
A Hassanshahi, M Moradzad, S Ghalamkari, M Fadaei, AJ Cowin, M Hassanshahi. Macrophage-mediated inflammation in skin wound healing. Cells 2022; 11(19): 2953
https://doi.org/10.3390/cells11192953
|
54 |
JM Reinke, H Sorg. Wound repair and regeneration. Eur Surg Res 2012; 49(1): 35–43
https://doi.org/10.1159/000339613
|
55 |
L Moretti, J Stalfort, TH Barker, D Abebayehu. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298(2): 101530
https://doi.org/10.1016/j.jbc.2021.101530
|
56 |
HE Talbott, S Mascharak, M Griffin, DC Wan, MT Longaker. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022; 29(8): 1161–1180
https://doi.org/10.1016/j.stem.2022.07.006
|
57 |
J Johnson, YW Wu, C Blyth, G Lichtfuss, H Goubran, T Burnouf. Prospective therapeutic applications of platelet extracellular vesicles. Trends Biotechnol 2021; 39(6): 598–612
https://doi.org/10.1016/j.tibtech.2020.10.004
|
58 |
EI Sinauridze, DA Kireev, NY Popenko, AV Pichugin, MA Panteleev, OV Krymskaya, FI Ataullakhanov. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97(3): 425–434
https://doi.org/10.1160/TH06-06-0313
|
59 |
M Antich-Rosselló, MA Forteza-Genestra, M Monjo, JM Ramis. Platelet-derived extracellular vesicles for regenerative medicine. Int J Mol Sci 2021; 22(16): 8580
https://doi.org/10.3390/ijms22168580
|
60 |
AL Graça, RMA Domingues, M Gomez-Florit, ME Gomes. Platelet-derived extracellular vesicles promote tenogenic differentiation of stem cells on bioengineered living fibers. Int J Mol Sci 2023; 24(4): 3516
https://doi.org/10.3390/ijms24043516
|
61 |
N Xu, L Wang, J Guan, C Tang, N He, W Zhang, S Fu. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int J Biol Macromol 2018; 117: 102–107
https://doi.org/10.1016/j.ijbiomac.2018.05.066
|
62 |
SC Guo, SC Tao, WJ Yin, X Qi, T Yuan, CQ Zhang. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics 2017; 7(1): 81–96
https://doi.org/10.7150/thno.16803
|
63 |
H Kim, SY Wang, G Kwak, Y Yang, IC Kwon, SH Kim. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh) 2019; 6(20): 1900513
https://doi.org/10.1002/advs.201900513
|
64 |
X He, Z Dong, Y Cao, H Wang, S Liu, L Liao, Y Jin, L Yuan, B Li. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int 2019; 2019: 7132708
https://doi.org/10.1155/2019/7132708
|
65 |
JC Hu, CX Zheng, BD Sui, WJ Liu, Y Jin. Mesenchymal stem cell-derived exosomes: a novel and potential remedy for cutaneous wound healing and regeneration. World J Stem Cells 2022; 14(5): 318–329
https://doi.org/10.4252/wjsc.v14.i5.318
|
66 |
D Su, HI Tsai, Z Xu, F Yan, Y Wu, Y Xiao, X Liu, Y Wu, S Parvanian, W Zhu, JE Eriksson, D Wang, H Zhu, H Chen, F Cheng. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles 2020; 9(1): 1709262
https://doi.org/10.1080/20013078.2019.1709262
|
67 |
G Kwak, J Cheng, H Kim, S Song, SJ Lee, Y Yang, JH Jeong, JE Lee, PB Messersmith, SH Kim. Sustained exosome-guided macrophage polarization using hydrolytically degradable PEG hydrogels for cutaneous wound healing: identification of key proteins and miRNAs, and sustained release formulation. Small 2022; 18(15): 2200060
https://doi.org/10.1002/smll.202200060
|
68 |
X Qiu, J Liu, C Zheng, Y Su, L Bao, B Zhu, S Liu, L Wang, X Wang, Y Wang, W Zhao, J Zhou, Z Deng, S Liu, Y Jin. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Prolif 2020; 53(8): e12830
https://doi.org/10.1111/cpr.12830
|
69 |
R Tutuianu, AM Rosca, DM Iacomi, M Simionescu, I Titorencu. Human mesenchymal stromal cell-derived exosomes promote in vitro wound healing by modulating the biological properties of skin keratinocytes and fibroblasts and stimulating angiogenesis. Int J Mol Sci 2021; 22(12): 6239
https://doi.org/10.3390/ijms22126239
|
70 |
F Marofi, KI Alexandrovna, R Margiana, M Bahramali, W Suksatan, WK Abdelbasset, S Chupradit, M Nasimi, MS Maashi. MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy. Stem Cell Res Ther 2021; 12(1): 597
https://doi.org/10.1186/s13287-021-02662-6
|
71 |
UTT Than, D Guanzon, D Leavesley, T Parker. Association of extracellular membrane vesicles with cutaneous wound healing. Int J Mol Sci 2017; 18(5): 956
https://doi.org/10.3390/ijms18050956
|
72 |
A Shabbir, A Cox, L Rodriguez-Menocal, M Salgado, E Van Badiavas. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 2015; 24(14): 1635–1647
https://doi.org/10.1089/scd.2014.0316
|
73 |
B Zhao, X Zhang, Y Zhang, Y Lu, W Zhang, S Lu, Y Fu, Y Zhou, J Zhang, J Zhang. Human exosomes accelerate cutaneous wound healing by promoting collagen synthesis in a diabetic mouse model. Stem Cells Dev 2021; 30(18): 922–933
https://doi.org/10.1089/scd.2021.0100
|
74 |
J Zhang, J Guan, X Niu, G Hu, S Guo, Q Li, Z Xie, C Zhang, Y Wang. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 2015; 13(1): 49
https://doi.org/10.1186/s12967-015-0417-0
|
75 |
EJ Oh, P Gangadaran, RL Rajendran, HM Kim, JM Oh, KY Choi, HY Chung, BC Ahn. Extracellular vesicles derived from fibroblasts promote wound healing by optimizing fibroblast and endothelial cellular functions. Stem Cells 2021; 39(3): 266–279
https://doi.org/10.1002/stem.3310
|
76 |
D Bian, Y Wu, G Song, R Azizi, A Zamani. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther 2022; 13(1): 24
https://doi.org/10.1186/s13287-021-02697-9
|
77 |
J Huang, J Xiong, L Yang, J Zhang, S Sun, Y Liang. Cell-free exosome-laden scaffolds for tissue repair. Nanoscale 2021; 13(19): 8740–8750
https://doi.org/10.1039/D1NR01314A
|
78 |
R Tenchov, JM Sasso, X Wang, WS Liaw, CA Chen, QA Zhou. Exosomes—nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics. ACS Nano 2022; 16(11): 17802–17846
https://doi.org/10.1021/acsnano.2c08774
|
79 |
MF Pittenger, AM Mackay, SC Beck, RK Jaiswal, R Douglas, JD Mosca, MA Moorman, DW Simonetti, S Craig, DR Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143–147
https://doi.org/10.1126/science.284.5411.143
|
80 |
S Liu, J Zhou, X Zhang, Y Liu, J Chen, B Hu, J Song, Y Zhang. Strategies to optimize adult stem cell therapy for tissue regeneration. Int J Mol Sci 2016; 17(6): 982
https://doi.org/10.3390/ijms17060982
|
81 |
M Mousaei Ghasroldasht, J Seok, HS Park, FB Liakath Ali, A Al-Hendy. Stem cell therapy: from idea to clinical practice. Int J Mol Sci 2022; 23(5): 2850
https://doi.org/10.3390/ijms23052850
|
82 |
A Nourian Dehkordi, F Mirahmadi Babaheydari, M Chehelgerdi, S Raeisi Dehkordi. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10(1): 111
https://doi.org/10.1186/s13287-019-1212-2
|
83 |
M Yousefi Dehbidi, N Goodarzi, MH Azhdari, M Doroudian. Mesenchymal stem cells and their derived exosomes to combat Covid-19. Rev Med Virol 2022; 32(2): e2281
https://doi.org/10.1002/rmv.2281
|
84 |
XS Ren, Y Tong, Y Qiu, C Ye, N Wu, XQ Xiong, JJ Wang, Y Han, YB Zhou, F Zhang, HJ Sun, XY Gao, Q Chen, YH Li, YM Kang, GQ Zhu. miR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles 2020; 9(1): 1698795
https://doi.org/10.1080/20013078.2019.1698795
|
85 |
F Mahmoudi, P Hanachi, A Montaseri. Extracellular vesicles of immune cells; immunomodulatory impacts and therapeutic potentials. Clin Immunol 2023; 248: 109237
https://doi.org/10.1016/j.clim.2023.109237
|
86 |
K ShenXJ WangKT LiuSH LiJ LiJX ZhangHT WangDH Hu. Effects of exosomes from human adipose-derived mesenchymal stem cells on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice Chin J Burns (Zhonghua Shao Shang Za Zhi) 2022; 38(3): 215–226 (in Chinese)
|
87 |
Y Zhou, B Zhao, XL Zhang, YJ Lu, ST Lu, J Cheng, Y Fu, L Lin, NY Zhang, PX Li, J Zhang, J Zhang. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res Ther 2021; 12(1): 257
https://doi.org/10.1186/s13287-021-02287-9
|
88 |
Y Zhang, J Yan, Y Liu, Z Chen, X Li, L Tang, J Li, M Duan, G Zhang. Human amniotic fluid stem cell-derived exosomes as a novel cell-free therapy for cutaneous regeneration. Front Cell Dev Biol 2021; 9: 685873
https://doi.org/10.3389/fcell.2021.685873
|
89 |
M Duan, Y Zhang, H Zhang, Y Meng, M Qian, G Zhang. Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing. Stem Cell Res Ther 2020; 11(1): 452
https://doi.org/10.1186/s13287-020-01971-6
|
90 |
H Lv, H Liu, T Sun, H Wang, X Zhang, W Xu. Exosome derived from stem cell: a promising therapeutics for wound healing. Front Pharmacol 2022; 13: 957771
https://doi.org/10.3389/fphar.2022.957771
|
91 |
M Wang, P Wu, J Huang, W Liu, H Qian, Y Sun, H Shi. Skin cell-derived extracellular vesicles: a promising therapeutic strategy for cutaneous injury. Burns Trauma 2022; 10: tkac037
|
92 |
L Lyu, Y Cai, G Zhang, Z Jing, J Liang, R Zhang, X Dang, C Zhang. Exosomes derived from M2 macrophages induce angiogenesis to promote wound healing. Front Mol Biosci 2022; 9: 1008802
https://doi.org/10.3389/fmolb.2022.1008802
|
93 |
RA Haraszti, R Miller, ML Dubuke, HE Rockwell, AH Coles, E Sapp, MC Didiot, D Echeverria, M Stoppato, YY Sere, J Leszyk, JF Alterman, B Godinho, MR Hassler, J McDaniel, NR Narain, R Wollacott, Y Wang, SA Shaffer, MA Kiebish, M DiFiglia, N Aronin, A Khvorova. Serum deprivation of mesenchymal stem cells improves exosome activity and alters lipid and protein composition. iScience 2019; 16: 230–241
https://doi.org/10.1016/j.isci.2019.05.029
|
94 |
JP Bost, O Saher, D Hagey, DR Mamand, X Liang, W Zheng, G Corso, O Gustafsson, A Görgens, CE Smith, R Zain, Andaloussi S El, D Gupta. Growth media conditions influence the secretion route and release levels of engineered extracellular vesicles. Adv Healthc Mater 2022; 11(5): 2101658
https://doi.org/10.1002/adhm.202101658
|
95 |
H Gonzalez-King, NA García, I Ontoria-Oviedo, M Ciria, JA Montero, P Sepúlveda. Hypoxia Inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells 2017; 35(7): 1747–1759
https://doi.org/10.1002/stem.2618
|
96 |
CY Ng, LT Kee, ME Al-Masawa, QH Lee, T Subramaniam, D Kok, MH Ng, JX Law. Scalable production of extracellular vesicles and its therapeutic values: a review. Int J Mol Sci 2022; 23(14): 7986
https://doi.org/10.3390/ijms23147986
|
97 |
Y Cheng, Q Zeng, Q Han, W Xia. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell 2019; 10(4): 295–299
https://doi.org/10.1007/s13238-018-0529-4
|
98 |
DB Patel, KM Gray, Y Santharam, TN Lamichhane, KM Stroka, SM Jay. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med 2017; 2(2): 170–179
https://doi.org/10.1002/btm2.10065
|
99 |
R Linares, S Tan, C Gounou, N Arraud, AR Brisson. High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles 2015; 4(1): 29509
https://doi.org/10.3402/jev.v4.29509
|
100 |
AK Ludwig, Miroschedji K De, TR Doeppner, V Börger, J Ruesing, V Rebmann, S Durst, S Jansen, M Bremer, E Behrmann, BB Singer, H Jastrow, JD Kuhlmann, Magraoui F El, HE Meyer, DM Hermann, B Opalka, S Raunser, M Epple, PA Horn, B Giebel. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J Extracell Vesicles 2018; 7(1): 1528109
https://doi.org/10.1080/20013078.2018.1528109
|
101 |
OJ Arntz, BCH Pieters, P van Lent, MI Koenders, PM van der Kraan, FAJ van de Loo. An optimized method for plasma extracellular vesicles isolation to exclude the copresence of biological drugs and plasma proteins which impairs their biological characterization. PLoS One 2020; 15(7): e0236508
https://doi.org/10.1371/journal.pone.0236508
|
102 |
H Zheng, S Guan, X Wang, J Zhao, M Gao, X Zhang. Deconstruction of heterogeneity of size-dependent exosome subpopulations from human urine by profiling N-glycoproteomics and phosphoproteomics simultaneously. Anal Chem 2020; 92(13): 9239–9246
https://doi.org/10.1021/acs.analchem.0c01572
|
103 |
T Liangsupree, E Multia, ML Riekkola. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 2021; 1636: 461773
https://doi.org/10.1016/j.chroma.2020.461773
|
104 |
S Lin, Z Yu, D Chen, Z Wang, J Miao, Q Li, D Zhang, J Song, D Cui. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 2020; 16(9): 1903916
https://doi.org/10.1002/smll.201903916
|
105 |
S Sitar, A Kejžar, D Pahovnik, K Kogej, M Tušek-Žnidarič, M Lenassi, E Žagar. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal Chem 2015; 87(18): 9225–9233
https://doi.org/10.1021/acs.analchem.5b01636
|
106 |
H Zhang, D Freitas, HS Kim, K Fabijanic, Z Li, H Chen, MT Mark, H Molina, AB Martin, L Bojmar, J Fang, S Rampersaud, A Hoshino, I Matei, CM Kenific, M Nakajima, AP Mutvei, P Sansone, W Buehring, H Wang, JP Jimenez, L Cohen-Gould, N Paknejad, M Brendel, K Manova-Todorova, A Magalhães, JA Ferreira, H Osório, AM Silva, A Massey, JR Cubillos-Ruiz, G Galletti, P Giannakakou, AM Cuervo, J Blenis, R Schwartz, MS Brady, H Peinado, J Bromberg, H Matsui, CA Reis, D Lyden. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 2018; 20(3): 332–343
https://doi.org/10.1038/s41556-018-0040-4
|
107 |
C Chen, J Skog, CH Hsu, RT Lessard, L Balaj, T Wurdinger, BS Carter, XO Breakefield, M Toner, D Irimia. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 2010; 10(4): 505–511
https://doi.org/10.1039/B916199F
|
108 |
P Zhang, M He, Y Zeng. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 2016; 16(16): 3033–3042
https://doi.org/10.1039/C6LC00279J
|
109 |
N Bohmer, N Demarmels, E Tsolaki, L Gerken, K Keevend, S Bertazzo, M Lattuada, IK Herrmann. Removal of cells from body fluids by magnetic separation in batch and continuous mode: influence of bead size, concentration, and contact time. ACS Appl Mater Interfaces 2017; 9(35): 29571–29579
https://doi.org/10.1021/acsami.7b10140
|
110 |
X Fang, C Chen, B Liu, Z Ma, F Hu, H Li, H Gu, H Xu. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification. Acta Biomater 2021; 124: 336–347
https://doi.org/10.1016/j.actbio.2021.02.004
|
111 |
N Seo, J Nakamura, T Kaneda, H Tateno, A Shimoda, T Ichiki, K Furukawa, J Hirabayashi, K Akiyoshi, H Shiku. Distinguishing functional exosomes and other extracellular vesicles as a nucleic acid cargo by the anion-exchange method. J Extracell Vesicles 2022; 11(3): e12205
https://doi.org/10.1002/jev2.12205
|
112 |
K Chattrairat, T Yasui, S Suzuki, A Natsume, K Nagashima, M Iida, M Zhang, T Shimada, A Kato, K Aoki, F Ohka, S Yamazaki, T Yanagida, Y Baba. All-in-one nanowire assay system for capture and analysis of extracellular vesicles from an ex vivo brain tumor model. ACS Nano 2023; 17(3): 2235–2244
https://doi.org/10.1021/acsnano.2c08526
|
113 |
T Yasui, P Paisrisarn, T Yanagida, Y Konakade, Y Nakamura, K Nagashima, M Musa, IA Thiodorus, H Takahashi, T Naganawa, T Shimada, N Kaji, T Ochiya, T Kawai, Y Baba. Molecular profiling of extracellular vesicles via charge-based capture using oxide nanowire microfluidics. Biosens Bioelectron 2021; 194: 113589
https://doi.org/10.1016/j.bios.2021.113589
|
114 |
J Stam, S Bartel, R Bischoff, JC Wolters. Isolation of extracellular vesicles with combined enrichment methods. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1169: 122604
https://doi.org/10.1016/j.jchromb.2021.122604
|
115 |
Z Onódi, C Pelyhe, Nagy C Terézia, GB Brenner, L Almási, Á Kittel, M Manček-Keber, P Ferdinandy, EI Buzás, Z Giricz. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol 2018; 9: 1479
https://doi.org/10.3389/fphys.2018.01479
|
116 |
BF Hettich, M Ben-Yehuda Greenwald, S Werner, JC Leroux. Exosomes for wound healing: purification optimization and identification of bioactive components. Adv Sci (Weinh) 2020; 7(23): 2002596
https://doi.org/10.1002/advs.202002596
|
117 |
C Jin, P Wu, L Li, W Xu, H Qian. Exosomes: emerging therapy delivery tools and biomarkers for kidney diseases. Stem Cells Int 2021; 2021: 7844455
https://doi.org/10.1155/2021/7844455
|
118 |
K Singh, R Nalabotala, KM Koo, S Bose, R Nayak, MJA Shiddiky. Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. Analyst (Lond) 2021; 146(12): 3731–3749
https://doi.org/10.1039/D1AN00024A
|
119 |
Z Wei, Z Chen, Y Zhao, F Fan, W Xiong, S Song, Y Yin, J Hu, K Yang, L Yang, B Xu, J Ge. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials 2021; 275: 121000
https://doi.org/10.1016/j.biomaterials.2021.121000
|
120 |
Q Lv, J Deng, Y Chen, Y Wang, B Liu, J Liu. Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing. Mol Pharm 2020; 17(5): 1723–1733
https://doi.org/10.1021/acs.molpharmaceut.0c00177
|
121 |
A Shi, J Li, X Qiu, M Sabbah, S Boroumand, TC Huang, C Zhao, A Terzic, A Behfar, SL Moran. TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics 2021; 11(13): 6616–6631
https://doi.org/10.7150/thno.57701
|
122 |
G Togliatto, P Dentelli, A Rosso, G Lombardo, M Gili, S Gallo, C Gai, A Solini, G Camussi, MF Brizzi. PDGF-BB carried by endothelial cell-derived extracellular vesicles reduces vascular smooth muscle cell apoptosis in diabetes. Diabetes 2018; 67(4): 704–716
https://doi.org/10.2337/db17-0371
|
123 |
R Lou, J Chen, F Zhou, C Wang, CH Leung, L Lin. Exosome-cargoed microRNAs: Potential therapeutic molecules for diabetic wound healing. Drug Discov Today 2022; 27(10): 103323
https://doi.org/10.1016/j.drudis.2022.07.008
|
124 |
J Shen, X Zhao, Y Zhong, P Yang, P Gao, X Wu, X Wang, W An. Exosomal ncRNAs: the pivotal players in diabetic wound healing. Front Immunol 2022; 13: 1005307
https://doi.org/10.3389/fimmu.2022.1005307
|
125 |
YX Xu, SD Pu, X Li, ZW Yu, YT Zhang, XW Tong, YY Shan, XY Gao. Exosomal ncRNAs: novel therapeutic target and biomarker for diabetic complications. Pharmacol Res 2022; 178: 106135
https://doi.org/10.1016/j.phrs.2022.106135
|
126 |
Y Matsuzaka, R Yashiro. Advances in purification, modification, and application of extracellular vesicles for novel clinical treatments. Membranes (Basel) 2022; 12(12): 1244
https://doi.org/10.3390/membranes12121244
|
127 |
C Yang, L Luo, X Bai, K Shen, K Liu, J Wang, D Hu. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys 2020; 681: 108259
https://doi.org/10.1016/j.abb.2020.108259
|
128 |
M Li, L Qiu, W Hu, X Deng, H Xu, Y Cao, Z Xiao, L Peng, S Johnson, L Alexey, PA Kingston, Q Li, Y Zhang. Genetically-modified bone mesenchymal stem cells with TGF-beta3 improve wound healing and reduce scar tissue formation in a rabbit model. Exp Cell Res 2018; 367(1): 24–29
https://doi.org/10.1016/j.yexcr.2018.02.006
|
129 |
MD Hade, CN Suire, Z Suo. An effective peptide-based platform for efficient exosomal loading and cellular delivery of a microRNA. ACS Appl Mater Interfaces 2023; 15(3): 3851–3866
https://doi.org/10.1021/acsami.2c20728
|
130 |
J Zhu, Z Liu, L Wang, Q Jin, Y Zhao, A Du, N Ding, Y Wang, H Jiang, L Zhu. Exosome mimetics-loaded hydrogel accelerates wound repair by transferring functional mitochondrial proteins. Front Bioeng Biotechnol 2022; 10: 866505
https://doi.org/10.3389/fbioe.2022.866505
|
131 |
M Yu, W Liu, J Li, J Lu, H Lu, W Jia, F Liu. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res Ther 2020; 11(1): 350
https://doi.org/10.1186/s13287-020-01824-2
|
132 |
D Wu, L Kang, J Tian, Y Wu, J Liu, Z Li, X Wu, Y Huang, B Gao, H Wang, Z Wu, G Qiu. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomedicine 2020; 15: 7979–7993
https://doi.org/10.2147/IJN.S275650
|
133 |
J Wang, H Wu, Y Peng, Y Zhao, Y Qin, Y Zhang, Z Xiao. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. J Nanobiotechnology 2021; 19(1): 202
https://doi.org/10.1186/s12951-021-00942-0
|
134 |
W Liu, L Li, Y Rong, D Qian, J Chen, Z Zhou, Y Luo, D Jiang, L Cheng, S Zhao, F Kong, J Wang, Z Zhou, T Xu, F Gong, Y Huang, C Gu, X Zhao, J Bai, F Wang, W Zhao, L Zhang, X Li, G Yin, J Fan, W Cai. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater 2020; 103: 196–212
https://doi.org/10.1016/j.actbio.2019.12.020
|
135 |
W Gao, R He, J Ren, W Zhang, K Wang, L Zhu, T Liang. Exosomal HMGB1 derived from hypoxia-conditioned bone marrow mesenchymal stem cells increases angiogenesis via the JNK/HIF-1α pathway. FEBS Open Bio 2021; 11(5): 1364–1373
https://doi.org/10.1002/2211-5463.13142
|
136 |
XF Zhang, T Wang, ZX Wang, KP Huang, YW Zhang, GL Wang, HJ Zhang, ZH Chen, CY Wang, JX Zhang, H Wang. Hypoxic ucMSC-secreted exosomal miR-125b promotes endothelial cell survival and migration during wound healing by targeting TP53INP1. Mol Ther Nucleic Acids 2021; 26: 347–359
https://doi.org/10.1016/j.omtn.2021.07.014
|
137 |
T Cao, D Xiao, P Ji, Z Zhang, WX Cai, C Han, W Li, K Tao. Effects of exosomes from hepatocyte growth factor-modified human adipose mesenchymal stem cells on full-thickness skin defect in diabetic mice. Chin J Burns (Zhonghua Shao Shang Za Zhi) 2022; 38(11): 1004–1013
|
138 |
AM Amengual-Tugores, C Ráez-Meseguer, MA Forteza-Genestra, M Monjo, JM Ramis. Extracellular vesicle-based hydrogels for wound healing applications. Int J Mol Sci 2023; 24(4): 4104
https://doi.org/10.3390/ijms24044104
|
139 |
C Chen, X Bai, Y Ding, IS Lee. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res 2019; 23(1): 25
https://doi.org/10.1186/s40824-019-0176-8
|
140 |
M Hu, L Hong, C Liu, S Hong, S He, M Zhou, G Huang, Q Chen. Electrical stimulation enhances neuronal cell activity mediated by Schwann cell derived exosomes. Sci Rep 2019; 9(1): 4206
https://doi.org/10.1038/s41598-019-41007-5
|
141 |
JD Klein, XH Wang. Electrically stimulated acupuncture increases renal blood flow through exosome-carried miR-181. Am J Physiol Renal Physiol 2018; 315(6): F1542–F1549
https://doi.org/10.1152/ajprenal.00259.2018
|
142 |
J Wang, K Pothana, S Chen, H Sawant, JB Travers, J Bihl, Y Chen. Ultraviolet B irradiation alters the level and miR contents of exosomes released by keratinocytes in diabetic condition. Photochem Photobiol 2022; 98(5): 1122–1130
https://doi.org/10.1111/php.13583
|
143 |
N Ni, W Ma, Y Tao, J Liu, H Hua, J Cheng, J Wang, B Zhou, D Luo. Exosomal miR-769-5p exacerbates ultraviolet-induced bystander effect by targeting TGFBR1. Front Physiol 2020; 11: 603081
https://doi.org/10.3389/fphys.2020.603081
|
144 |
J Dong, B Wu, W Tian. Exosomes derived from hypoxia-preconditioned mesenchymal stem cells (hypoMSCs-Exo): advantages in disease treatment. Cell Tissue Res 2023; 392(3): 621–629
https://doi.org/10.1007/s00441-023-03758-6
|
145 |
Y Zhang, J Bi, J Huang, Y Tang, S Du, P Li. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine 2020; 15: 6917–6934
https://doi.org/10.2147/IJN.S264498
|
146 |
R Maroto, Y Zhao, M Jamaluddin, VL Popov, H Wang, M Kalubowilage, Y Zhang, J Luisi, H Sun, CT Culbertson, SH Bossmann, M Motamedi, AR Brasier. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles 2017; 6(1): 1359478
https://doi.org/10.1080/20013078.2017.1359478
|
147 |
S Bosch, Beaurepaire L de, M Allard, M Mosser, C Heichette, D Chrétien, D Jegou, JM Bach. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep 2016; 6(1): 36162
https://doi.org/10.1038/srep36162
|
148 |
C Charoenviriyakul, Y Takahashi, M Nishikawa, Y Takakura. Preservation of exosomes at room temperature using lyophilization. Int J Pharm 2018; 553(1–2): 1–7
https://doi.org/10.1016/j.ijpharm.2018.10.032
|
149 |
D Gupta, AM Zickler, S El Andaloussi. Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178: 113961
https://doi.org/10.1016/j.addr.2021.113961
|
150 |
T Zhou, C He, P Lai, Z Yang, Y Liu, H Xu, X Lin, B Ni, R Ju, W Yi, L Liang, D Pei, CE Egwuagu, X Liu. miR-204-containing exosomes ameliorate GVHD-associated dry eye disease. Sci Adv 2022; 8(2): eabj9617
https://doi.org/10.1126/sciadv.abj9617
|
151 |
R Samaeekia, B Rabiee, I Putra, X Shen, YJ Park, P Hematti, M Eslani, AR Djalilian. Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2018; 59(12): 5194–5200
https://doi.org/10.1167/iovs.18-24803
|
152 |
YS Chen, EY Lin, TW Chiou, HJ Harn. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Ci Ji Yi Xue Za Zhi 2020; 32(2): 113–120
|
153 |
Y Hu, R Tao, L Chen, Y Xiong, H Xue, L Hu, C Yan, X Xie, Z Lin, AC Panayi, B Mi, G Liu. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnology 2021; 19(1): 150
https://doi.org/10.1186/s12951-021-00894-5
|
154 |
Q Li, W Hu, Q Huang, J Yang, B Li, K Ma, Q Wei, Y Wang, J Su, M Sun, S Cui, R Yang, H Li, X Fu, C Zhang. miR146a-loaded engineered exosomes released from silk fibroin patch promote diabetic wound healing by targeting IRAK1. Signal Transduct Target Ther 2023; 8(1): 62
https://doi.org/10.1038/s41392-022-01263-w
|
155 |
L Hu, J Wang, X Zhou, Z Xiong, J Zhao, R Yu, F Huang, H Zhang, L Chen. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep 2016; 6(1): 32993
https://doi.org/10.1038/srep32993
|
156 |
PC Dinh, D Paudel, H Brochu, KD Popowski, MC Gracieux, J Cores, K Huang, MT Hensley, E Harrell, AC Vandergriff, AK George, RT Barrio, S Hu, TA Allen, K Blackburn, TG Caranasos, X Peng, LV Schnabel, KB Adler, LJ Lobo, MB Goshe, K Cheng. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun 2020; 11(1): 1064
https://doi.org/10.1038/s41467-020-14344-7
|
157 |
C Liu, X Yan, Y Zhang, M Yang, Y Ma, Y Zhang, Q Xu, K Tu, M Zhang. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. J Nanobiotechnology 2022; 20(1): 206
https://doi.org/10.1186/s12951-022-01421-w
|
158 |
J Zhong, B Xia, S Shan, A Zheng, S Zhang, J Chen, XJ Liang. High-quality milk exosomes as oral drug delivery system. Biomaterials 2021; 277: 121126
https://doi.org/10.1016/j.biomaterials.2021.121126
|
159 |
ME Al-Masawa, MA Alshawsh, CY Ng, AMH Ng, JB Foo, U Vijakumaran, R Subramaniam, NAA Ghani, KW Witwer, JX Law. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: a systematic review and meta-analysis of animal studies. Theranostics 2022; 12(15): 6455–6508
https://doi.org/10.7150/thno.73436
|
160 |
Y Jia, L Yu, T Ma, W Xu, H Qian, Y Sun, H Shi. Small extracellular vesicles isolation and separation: current techniques, pending questions and clinical applications. Theranostics 2022; 12(15): 6548–6575
https://doi.org/10.7150/thno.74305
|
161 |
MY Li, LZ Liu, M Dong. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer 2021; 20(1): 22
https://doi.org/10.1186/s12943-021-01312-y
|
162 |
J Wang, W Tang, M Yang, Y Yin, H Li, F Hu, L Tang, X Ma, Y Zhang, Y Wang. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials 2021; 273: 120784
https://doi.org/10.1016/j.biomaterials.2021.120784
|
163 |
MDA Paskeh, M Entezari, S Mirzaei, A Zabolian, H Saleki, MJ Naghdi, S Sabet, MA Khoshbakht, M Hashemi, K Hushmandi, G Sethi, A Zarrabi, AP Kumar, SC Tan, M Papadakis, A Alexiou, MA Islam, E Mostafavi, M Ashrafizadeh. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15(1): 83
https://doi.org/10.1186/s13045-022-01305-4
|
164 |
G Liang, Y Zhu, DJ Ali, T Tian, H Xu, K Si, B Sun, B Chen, Z Xiao. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology 2020; 18(1): 10
https://doi.org/10.1186/s12951-019-0563-2
|
165 |
X Wang, H Zhang, M Bai, T Ning, S Ge, T Deng, R Liu, L Zhang, G Ying, Y Ba. Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 2018; 26(3): 774–783
https://doi.org/10.1016/j.ymthe.2018.01.001
|
166 |
M Ashrafizadeh, M Delfi, F Hashemi, A Zabolian, H Saleki, M Bagherian, N Azami, MV Farahani, SO Sharifzadeh, S Hamzehlou, K Hushmandi, P Makvandi, A Zarrabi, MR Hamblin, RS Varma. Biomedical application of chitosan-based nanoscale delivery systems: potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260: 117809
https://doi.org/10.1016/j.carbpol.2021.117809
|
167 |
Z Xu, S Zeng, Z Gong, Y Yan. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer 2020; 19(1): 160
https://doi.org/10.1186/s12943-020-01278-3
|
168 |
C Ni, QQ Fang, WZ Chen, JX Jiang, Z Jiang, J Ye, T Zhang, L Yang, FB Meng, WJ Xia, M Zhong, J Huang. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+γδ1 Treg cells. Signal Transduct Target Ther 2020; 5(1): 41
https://doi.org/10.1038/s41392-020-0129-7
|
169 |
D Dou, X Ren, M Han, X Xu, X Ge, Y Gu, X Wang. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Front Immunol 2020; 11: 2026
https://doi.org/10.3389/fimmu.2020.02026
|
170 |
W Xin, Y Qin, P Lei, J Zhang, X Yang, Z Wang. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. Mol Ther Nucleic Acids 2022; 29: 900–922
https://doi.org/10.1016/j.omtn.2022.08.032
|
171 |
Y Zou, L Li, Y Li, S Chen, X Xie, X Jin, X Wang, C Ma, G Fan, W Wang. Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel. ACS Appl Mater Interfaces 2021; 13(48): 56892–56908
https://doi.org/10.1021/acsami.1c16481
|
172 |
W Chen, H Wang, Z Zhu, J Feng, L Chen. Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 axis. Mol Ther Nucleic Acids 2020; 22: 657–672
https://doi.org/10.1016/j.omtn.2020.09.027
|
173 |
Z Yang, Z Gao, Z Yang, Y Zhang, H Chen, X Yang, X Fang, Y Zhu, J Zhang, F Ouyang, J Li, G Cai, Y Li, X Lin, R Ni, C Xia, R Wang, X Shi, L Chu. Lactobacillus plantarum-derived extracellular vesicles protect against ischemic brain injury via the microRNA-101a-3p/c-Fos/TGF-β axis. Pharmacol Res 2022; 182: 106332
https://doi.org/10.1016/j.phrs.2022.106332
|
174 |
S Kim, SA Lee, H Yoon, MY Kim, JK Yoo, SH Ahn, CH Park, J Park, BY Nam, JT Park, SH Han, SW Kang, NH Kim, HS Kim, D Han, JI Yook, C Choi, TH Yoo. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury. Kidney Int 2021; 100(3): 570–584
https://doi.org/10.1016/j.kint.2021.04.039
|
175 |
C Wang, M Xu, Q Fan, C Li, X Zhou. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci 2023; 18(1): 100772
https://doi.org/10.1016/j.ajps.2022.100772
|
176 |
DKW Ocansey, L Zhang, Y Wang, Y Yan, H Qian, X Zhang, W Xu, F Mao. Exosome-mediated effects and applications in inflammatory bowel disease. Biol Rev Camb Philos Soc 2020; 95(5): 1287–1307
https://doi.org/10.1111/brv.12608
|
177 |
C Noonin, V Thongboonkerd. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics 2021; 11(9): 4436–4451
https://doi.org/10.7150/thno.54004
|
178 |
X Zeng, YD Zhang, RY Ma, YJ Chen, XM Xiang, DY Hou, XH Li, H Huang, T Li, CY Duan. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Mil Med Res 2022; 9(1): 25
https://doi.org/10.1186/s40779-022-00383-2
|
179 |
Y Wu, J Li, Y Zeng, W Pu, X Mu, K Sun, Y Peng, B Shen. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci 2022; 14(1): 40
https://doi.org/10.1038/s41368-022-00187-z
|
180 |
T Bu, Z Li, Y Hou, W Sun, R Zhang, L Zhao, M Wei, G Yang, L Yuan. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics 2021; 11(20): 9988–10000
https://doi.org/10.7150/thno.64229
|
181 |
W Pei, X Li, R Bi, X Zhang, M Zhong, H Yang, Y Zhang, K Lv. Exosome membrane-modified M2 macrophages targeted nanomedicine: treatment for allergic asthma. J Control Release 2021; 338: 253–267
https://doi.org/10.1016/j.jconrel.2021.08.024
|
182 |
X Long, X Yao, Q Jiang, Y Yang, X He, W Tian, K Zhao, H Zhang. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflammation 2020; 17(1): 89
https://doi.org/10.1186/s12974-020-01761-0
|
183 |
F Deng, J Yan, J Lu, M Luo, P Xia, S Liu, X Wang, F Zhi, D Liu. M2 macrophage-derived exosomal miR-590-3p attenuates DSS-induced mucosal damage and promotes epithelial repair via the LATS1/YAP/ β-catenin signalling axis. J Crohn’s Colitis 2021; 15(4): 665–677
https://doi.org/10.1093/ecco-jcc/jjaa214
|
184 |
HA Dad, TW Gu, AQ Zhu, LQ Huang, LH Peng. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther 2021; 29(1): 13–31
https://doi.org/10.1016/j.ymthe.2020.11.030
|
185 |
Y Kang, C Xu, L Meng, X Dong, M Qi, D Jiang. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact Mater 2022; 18: 26–41
https://doi.org/10.1016/j.bioactmat.2022.02.012
|
186 |
S Bruno, C Pasquino, MB Herrera Sanchez, M Tapparo, F Figliolini, C Grange, G Chiabotto, M Cedrino, MC Deregibus, C Tetta, G Camussi. HLSC-derived extracellular vesicles attenuate liver fibrosis and inflammation in a murine model of non-alcoholic steatohepatitis. Mol Ther 2020; 28(2): 479–489
https://doi.org/10.1016/j.ymthe.2019.10.016
|
187 |
CF Budden, LJ Gearing, R Kaiser, L Standke, PJ Hertzog, E Latz. Inflammasome-induced extracellular vesicles harbour distinct RNA signatures and alter bystander macrophage responses. J Extracell Vesicles 2021; 10(10): e12127
https://doi.org/10.1002/jev2.12127
|
188 |
A Haghighitalab, M Dominici, MM Matin, F Shekari, M Ebrahimi Warkiani, R Lim, N Ahmadiankia, M Mirahmadi, AR Bahrami, HR Bidkhori. Extracellular vesicles and their cells of origin: open issues in autoimmune diseases. Front Immunol 2023; 14: 1090416
https://doi.org/10.3389/fimmu.2023.1090416
|
189 |
S Kim, JY Maeng, SJ Hyun, HJ Sohn, SY Kim, CH Hong, TG Kim. Extracellular vesicles from human umbilical cord blood plasma modulate interleukin-2 signaling of T cells to ameliorate experimental autoimmune encephalomyelitis. Theranostics 2020; 10(11): 5011–5028
https://doi.org/10.7150/thno.42742
|
190 |
G Casella, J Rasouli, A Boehm, W Zhang, D Xiao, LLW Ishikawa, R Thome, X Li, D Hwang, P Porazzi, S Molugu, HY Tang, GX Zhang, B Ciric, A Rostami. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci Transl Med 2020; 12(568): eaba0599
https://doi.org/10.1126/scitranslmed.aba0599
|
191 |
TT Tang, B Wang, LL Lv, BC Liu. Extracellular vesicle-based nanotherapeutics: emerging frontiers in anti-inflammatory therapy. Theranostics 2020; 10(18): 8111–8129
https://doi.org/10.7150/thno.47865
|
192 |
DK Jeppesen, AM Fenix, JL Franklin, JN Higginbotham, Q Zhang, LJ Zimmerman, DC Liebler, J Ping, Q Liu, R Evans, WH Fissell, JG Patton, LH Rome, DT Burnette, RJ Coffey. Reassessment of exosome composition. Cell 2019; 177(2): 428–445.e18
https://doi.org/10.1016/j.cell.2019.02.029
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|