Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (2) : 258-284    https://doi.org/10.1007/s11684-023-1031-9
Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair
Tianjing Sun1, Mo Li1, Qi Liu2(), Anyong Yu1(), Kun Cheng3, Jianxing Ma4, Sean Murphy5, Patrick Michael McNutt5, Yuanyuan Zhang5()
1. Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
2. Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
3. Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
4. Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
5. Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27109, USA
 Download: PDF(4393 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.

Keywords exosomes      stem cells      therapeutic impact      skin      wound healing     
Corresponding Author(s): Qi Liu,Anyong Yu,Yuanyuan Zhang   
Just Accepted Date: 23 October 2023   Online First Date: 12 January 2024    Issue Date: 27 May 2024
 Cite this article:   
Tianjing Sun,Mo Li,Qi Liu, et al. Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair[J]. Front. Med., 2024, 18(2): 258-284.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-023-1031-9
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I2/258
Fig.1  Pathophysiological changes at different stages of skin wound healing. (A) At the hemostasis stage, platelets are activated and release various cytokines and growth factors, recruit immune cells and induce vasoconstriction. (B) In the stage of inflammatory response, macrophages and neutrophils gather at the site of injury, macrophages release inflammatory factors, and the M1 phenotype transitions to M2 phenotype to promote wound healing. (C) Endothelial cell vascularization and fibronectin migration promote collagen formation during the proliferation stage. (D) The main process during the remodeling stage involves the formation of type I and II collagen, as well as the reorganization of collagen and ECM. ECM, extracellular matrix.
Fig.2  The mechanism of exosomes therapy for acute skin wound. (A) Exosomes of different cellular origins, such as fibroblast, macrophage, stem cell and platelet etc. (B) The role of exosomes in wound healing of the skin includes alleviating inflammatory reactions, promoting proliferation and migration of fibroblasts, promoting angiogenesis of endothelial cells, and accelerating remodeling of extracellular matrix and collagen. (C) Exosomes accelerate skin wound healing and reduce scar formation.
Stem cell therapyExosome therapy
AdvantagesExtensively studiedCell differentiation capacitySelf-renewalLonger-lasting effectNo ethical concerns for ESCs/iPSCsLess invasiveFewer safety concernsNo need for genetic manipulation or expansionStorage and transportation of exosome more easily
DisadvantagesTime-consuming, expensiveSafety concernsEthical concerns for iPSCs/ESCsRisk of immune rejectionShorter half-lifeRequire multiple doses or sustained release formulationsFailure to replicate the regenerative potential of stem cells in severe tissue damage
Tab.1  Comparison of stem cell therapy and exosome therapy
Optimizing their yieldOptimizing their qualityOptimizing their therapy
Cell sourcePurityTiming
Culture conditionsCargo loadingDose
Isolation methodsTargetingFrequency
IdentificationCharacterizationInterval
Storage conditionsStabilityRoute of administration
Tab.2  Optimization of the yield and quality of exosomes as well as exosome therapy
Fig.3  Optimization of exosomes yield and therapy for skin acute wound healing, including optimization of exosome sources, culture conditions, storage conditions, isolation, genetic engineering and optimal does, timing, frequency, administration routine of exosomes.
Isolation methodsAdvantagesLimitationsSample matrix
UCGolden standardEasily requiredSimplicity of operatorTime consumingHigh requirements for equipmentDecreased in biological activityLimited mass productionCell culture mediumSerumUrine
Differential centrifugationRapidMass productionHeterogeneityEasy to drainCell culture mediumSerumUrine
UFRapidSimplicity of operationProtein contaminationExosomes are damagedCell culture mediumSerumUrineCerebrospinal fluid
Immuno-isolationRapidHigh purity and specificityAdditional separation and purification are requiredNot suitable for mass generationCell culture mediumSerum
Polymer precipitationMass productionSimplicity of operatorDecreased purityProtein contaminationExpensive kitCell culture medium
SECHigh purityCommercial kits availableHigh productivityCo-separation of proteins with similar diametersNot satisfy the downstream applicationCell culture mediumSerumUrineCerebrospinal fluidSaliva, etc.
AF4High purityHigh efficiencyIdentify subsetHigh requirements for equipment and personnelLimited mass productionCell culture mediumSerumUrine
Ion exchangeSimplicity of operatorHigh purityUnknownCell culture medium
Microfluidic technologyRapidSave samples and reagentsHigh purity and efficiencyNot suitable for mass generationMethods need to be further standardizedCell culture mediumSerum
Tab.3  Exosome isolation techniques and their comparison
Fig.4  Engineered exosomes for skin wound healing, including surface and genetic engineering, precondition and loaded.
MethodsMechanismOutcomesReferences
Surface engineeringModified with the surface antibodiesModulate inflammatory response and promote skin tissue repair in immune cells, keratinocytes or fibroblasts[44,119,120]
Genetic engineeringModify donor cells cargoOverexpressed or loaded with growth factors or miRNA can promote cell proliferation and differentiation, angiogenesis, and extracellular matrix formation[121128]
Hydrogels combined with exosomesExosomes are transported to the site of injury by hydrogelsLoaded Exos on hydrogel facilitate cell proliferation and accelerate collagen synthesis to promote wound healing[129,130]
PreconditioningPreconditioning donor cellsATV-pretreated MSC-Exos upregulating miR-221-3p and AKT/eNOS pathway to accelerate diabetic wound repair
Fe3O4 nanoparticles preconditioning BMSc-Exos upregulating miR-21-5 to promote wound healing
HGF-ADSC-Exos promote wound healing by increasing neovascularization
[131137]
Tab.4  Engineered exosomes better improve skin wound healing
AdministrationDiseasesOutcomesReferences
Local injection (dose: 1 g/L)Diabetic woundEnhanced the biological functions of HUVECs in vitro; enhanced angiogenesis to accelerated diabetic wound healing in vivo.[153]
Topical applicationDiabetic woundLess inflammation, collagen deposition, and neovascularization to drive wound healing[154]
Systemic injection (dose: 200 μg)Acute skin woundStimulate cell migration, proliferation and collagen synthesis to accelerate wound healing[87,155]
Inhalation (dose: 10 × 109 particles/kg, 30 min/day, successive 10 days)Idiopathic pulmonary fibrosisReestablishing normal alveolar structure and decreasing both collagen accumulation and myofibroblast proliferation[156]
Oral administration (dose: 3 mg/day, successive 7 days)Ulcerative colitisAmeliorate mice colitis and accelerate colitis resolution via regulating the expression of the pro-inflammatory cytokines[157]
Tab.5  Comparison of exosome administration
IndicationDiseasesExosome sourceEffective moleculesOutcomesReferences
CancerGliomaNeutrophilsLoaded with doxorubicin, inhibit glioma progression via BBB transfer to the TME[162]
Colorectal cancer293T cellsmiR-21↓, PTEN and hMSH2↑Decrease tumor proliferation and increase apoptosis to inhibit tumor growth[164]
Gastric cancerHEK293T cells culture media and plasmamiR-214↓Induce cell apoptosis, reduce proliferation and migration, and increase drug sensitivity[165]
BCBreast tumor cellsmiRNA-16-5p↓, CD73↑BC-derived exosome SNHG16/miR-16-5p/SMAD5-regulatory axis potentiates TGF-β1/SMAD5 pathway activation, to induce CD73 expression in Vδ1 T cells[168]
BCCAFmiR-92, PD-L1↑Promotes apoptosis and impaired proliferation of T cells[169]
Ischemia-induced injury or diseasesMIhUSCCx43, Ki67, CD31, α-SMA, Vwf, TGF-β1, MMP-9, etc.↑Promote cell proliferation and angiogenesis, enhancing ejection fraction[171]
ISIPAScircSHOC2, miR-7670-3p, SIRT1↑Regulate autophagy and reduce neuronal apoptosis[172]
ISLactobacillus plantarummiR-101a-3p↑Inhibit neuron apoptosis to protect against ischemic brain injury through the microRNA-101a-3p/c-Fos/TGF-β axis[173]
Kidney I/RHUVECNF-κb activity↓Decreased NF-κB activity, expression of pro-inflammatory cytokines and adhesion molecules[174]
Inflammatory-related diseasesAtherosclerosisHEK293T cellsmiR-155 ↑Exosome-based delivery of the engineered IL-10 could alleviate the atherosclerosis in ApoE mice[180]
AAM2 macrophageInflammatory cytokines↓Ameliorated AA with a marked reduction of lung inflammation[181]
TBIAstrocytemiR-873a-5p↑Inhibited LPS-induced microglial M1 phenotype transformation and inflammation through decreased phosphorylation of ERK and NF-κB p65[182]
Murine colitisM2 macrophagemiR-590-3p, LATS1↑Reduces inflammatory signals and promotes epithelial regeneration[183]
NASHHLSCsα-SMA, Col1a, Tgf-β1, TNF, IL-1β↓Display anti-fibrotic and anti-inflammatory effects to improve liver function[186]
EAEHUCBIL-2, MMP-9, HSP-72↑Inhibited T cell proliferation and EAE development by regulating IL-2 signaling[189]
Tab.6  Exosome therapy used in other diseases
1 CK Sen. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care (New Rochelle) 2019; 8(2): 39–48
https://doi.org/10.1089/wound.2019.0946
2 CK Sen. Human wound and its burden: updated 2020 compendium of estimates. Adv Wound Care (New Rochelle) 2021; 10(5): 281–292
https://doi.org/10.1089/wound.2021.0026
3 L Bacakova, J Zarubova, M Travnickova, J Musilkova, J Pajorova, P Slepicka, NS Kasalkova, V Svorcik, Z Kolska, H Motarjemi, M Molitor. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells — a review. Biotechnol Adv 2018; 36(4): 1111–1126
https://doi.org/10.1016/j.biotechadv.2018.03.011
4 M XueS DervishCJ Jackson. Isolation of human skin epidermal stem cells based on the expression of endothelial protein C receptor. In: Turksen K. Skin Stem Cells. Methods in Molecular Biology, vol 1879. New York: Humana Press, 2018: 165–174 doi:10.1007/7651_2018_152
5 J Mokry, R Pisal. Development and maintenance of epidermal stem cells in skin adnexa. Int J Mol Sci 2020; 21(24): 9736
https://doi.org/10.3390/ijms21249736
6 I Brockmann, J Ehrenpfordt, T Sturmheit, M Brandenburger, C Kruse, M Zille, D Rose, J Boltze. Skin-derived stem cells for wound treatment using cultured epidermal autografts: clinical applications and challenges. Stem Cells Int 2018; 2018: 4623615
https://doi.org/10.1155/2018/4623615
7 AP Veith, K Henderson, A Spencer, AD Sligar, AB Baker. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146: 97–125
https://doi.org/10.1016/j.addr.2018.09.010
8 W Xiaojie, J Banda, H Qi, AK Chang, C Bwalya, L Chao, X Li. Scarless wound healing: current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev 2022; 66: 26–37
https://doi.org/10.1016/j.cytogfr.2022.03.001
9 J Liu, X Qiu, Y Lv, C Zheng, Y Dong, G Dou, B Zhu, A Liu, W Wang, J Zhou, S Liu, S Liu, B Gao, Y Jin. Apoptotic bodies derived from mesenchymal stem cells promote cutaneous wound healing via regulating the functions of macrophages. Stem Cell Res Ther 2020; 11(1): 507
https://doi.org/10.1186/s13287-020-02014-w
10 X Zhou, K Ning, B Ling, X Chen, H Cheng, B Lu, Z Gao, J Xu. Multiple injections of autologous adipose-derived stem cells accelerate the burn wound healing process and promote blood vessel regeneration in a rat model. Stem Cells Dev 2019; 28(21): 1463–1472
https://doi.org/10.1089/scd.2019.0113
11 M Li, L Qiu, W Hu, X Deng, H Xu, Y Cao, Z Xiao, L Peng, S Johnson, L Alexey, PA Kingston, Q Li, Y Zhang. Genetically-modified bone mesenchymal stem cells with TGF-β(3) improve wound healing and reduce scar tissue formation in a rabbit model. Exp Cell Res 2018; 367(1): 24–29
https://doi.org/10.1016/j.yexcr.2018.02.006
12 Q Li, G Qi, D Lutter, W Beard, CRS Souza, MA Highland, W Wu, P Li, Y Zhang, A Atala, X Sun. Injectable peptide hydrogel encapsulation of mesenchymal stem cells improved viability, stemness, anti-inflammatory effects, and early stage wound healing. Biomolecules 2022; 12(9): 1317
https://doi.org/10.3390/biom12091317
13 X Yin, Q Li, PM McNutt, Y Zhang. Urine-derived stem cells for epithelial tissues reconstruction and wound healing. Pharmaceutics 2022; 14(8): 1669
https://doi.org/10.3390/pharmaceutics14081669
14 JO Jeong, JW Han, JM Kim, HJ Cho, C Park, N Lee, DW Kim, YS Yoon. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res 2011; 108(11): 1340–1347
https://doi.org/10.1161/CIRCRESAHA.110.239848
15 A Trounson, C McDonald. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 2015; 17(1): 11–22
https://doi.org/10.1016/j.stem.2015.06.007
16 AS Lee, C Tang, MS Rao, IL Weissman, JC Wu. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19(8): 998–1004
https://doi.org/10.1038/nm.3267
17 U Ben-David, N Benvenisty. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011; 11(4): 268–277
https://doi.org/10.1038/nrc3034
18 J Min, C Zhang, RJ Bliton, B Caldwell, L Caplan, KS Presentation, DJ Park, SH Kong, HS Lee, MK Washington, WH Kim, KS Lau, ST Magness, HJ Lee, HK Yang, JR Goldenring, E Choi. Dysplastic stem cell plasticity functions as a driving force for neoplastic transformation of precancerous gastric mucosa. Gastroenterology 2022; 163(4): 875–890
https://doi.org/10.1053/j.gastro.2022.06.021
19 T Deuse, X Hu, A Gravina, D Wang, G Tediashvili, C De, WO Thayer, A Wahl, JV Garcia, H Reichenspurner, MM Davis, LL Lanier, S Schrepfer. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol 2019; 37(3): 252–258
https://doi.org/10.1038/s41587-019-0016-3
20 JI Pearl, AS Lee, DB Leveson-Gower, N Sun, Z Ghosh, F Lan, J Ransohoff, RS Negrin, MM Davis, JC Wu. Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 2011; 8(3): 309–317
https://doi.org/10.1016/j.stem.2011.01.012
21 T Zhao, ZN Zhang, Z Rong, Y Xu. Immunogenicity of induced pluripotent stem cells. Nature 2011; 474(7350): 212–215
https://doi.org/10.1038/nature10135
22 J Gopalarethinam, AP Nair, M Iyer, B Vellingiri, MD Subramaniam. Advantages of mesenchymal stem cell over the other stem cells. Acta Histochem 2023; 125(4): 152041
https://doi.org/10.1016/j.acthis.2023.152041
23 E Ford, J Pearlman, T Ruan, J Manion, M Waller, GG Neely, L Caron. Human pluripotent stem cells-based therapies for neurodegenerative diseases: current status and challenges. Cells 2020; 9(11): 2517
https://doi.org/10.3390/cells9112517
24 A Shpichka, D Butnaru, EA Bezrukov, RB Sukhanov, A Atala, V Burdukovskii, Y Zhang, P Timashev. Skin tissue regeneration for burn injury. Stem Cell Res Ther 2019; 10(1): 94
https://doi.org/10.1186/s13287-019-1203-3
25 Y Zhang, Y He, S Bharadwaj, N Hammam, K Carnagey, R Myers, A Atala, M Van Dyke. Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 2009; 30(23–24): 4021–4028
https://doi.org/10.1016/j.biomaterials.2009.04.005
26 G Orlando, KJ Wood, P De Coppi, PM Baptista, KW Binder, KN Bitar, C Breuer, L Burnett, G Christ, A Farney, M Figliuzzi, JH Holmes, K Koch, P Macchiarini, SH Mirmalek Sani, E Opara, A Remuzzi, J Rogers, JM Saul, D Seliktar, K Shapira-Schweitzer, T Smith, D Solomon, M Van Dyke, JJ Yoo, Y Zhang, A Atala, RJ Stratta, S Soker. Regenerative medicine as applied to general surgery. Ann Surg 2012; 255(5): 867–880
https://doi.org/10.1097/SLA.0b013e318243a4db
27 A Prasai, JW Jay, D Jupiter, SE Wolf, A El Ayadi. Role of exosomes in dermal wound healing: a systematic review. J Invest Dermatol 2022; 142(3): 662–678.e8
https://doi.org/10.1016/j.jid.2021.07.167
28 S Kourembanas. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol 2015; 77(1): 13–27
https://doi.org/10.1146/annurev-physiol-021014-071641
29 R Kalluri, VS LeBleu. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977
https://doi.org/10.1126/science.aau6977
30 Y Yu, M Chen, Q Guo, L Shen, X Liu, J Pan, Y Zhang, T Xu, D Zhang, G Wei. Human umbilical cord mesenchymal stem cell exosome-derived miR-874-3p targeting RIPK1/PGAM5 attenuates kidney tubular epithelial cell damage. Cell Mol Biol Lett 2023; 28(1): 12
https://doi.org/10.1186/s11658-023-00425-0
31 P Canning, A Alwan, F Khalil, Y Zhang, EC Opara. Perspectives and challenges on the potential use of exosomes in bioartificial pancreas engineering. Ann Biomed Eng 2022; 50(10): 1177–1186
https://doi.org/10.1007/s10439-022-03004-0
32 C Deng, Y Xie, C Zhang, B Ouyang, H Chen, L Lv, J Yao, X Liang, Y Zhang, X Sun, C Deng, G Liu. Urine-derived stem cells facilitate endogenous spermatogenesis restoration of busulfan-induced nonobstructive azoospermic mice by paracrine exosomes. Stem Cells Dev 2019; 28(19): 1322–1333
https://doi.org/10.1089/scd.2019.0026
33 P Hu, Q Yang, Q Wang, C Shi, D Wang, U Armato, ID Prà, A Chiarini. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration. Burns Trauma 2019; 7: 38
https://doi.org/10.1186/s41038-019-0178-8
34 K Abdelsaid, V Sudhahar, RA Harris, A Das, SW Youn, Y Liu, M McMenamin, Y Hou, D Fulton, MW Hamrick, Y Tang, T Fukai, M Ushio-Fukai. Exercise improves angiogenic function of circulating exosomes in type 2 diabetes: role of exosomal SOD3. FASEB J 2022; 36(3): e22177
https://doi.org/10.1096/fj.202101323R
35 W Zhao, R Zhang, C Zang, L Zhang, R Zhao, Q Li, Z Yang, Z Feng, W Zhang, R Cui. Exosome derived from mesenchymal stem cells alleviates pathological scars by inhibiting the proliferation, migration and protein expression of fibroblasts via delivering miR-138-5p to target SIRT1. Int J Nanomedicine 2022; 17: 4023–4038
https://doi.org/10.2147/IJN.S377317
36 KY Park, HS Han, JW Park, HH Kwon, GH Park, SJ Seo. Exosomes derived from human adipose tissue-derived mesenchymal stem cells for the treatment of dupilumab-related facial redness in patients with atopic dermatitis: a report of two cases. J Cosmet Dermatol 2022; 21(2): 844–849
https://doi.org/10.1111/jocd.14153
37 GH Yang, YB Lee, D Kang, E Choi, Y Nam, KH Lee, HJ You, HJ Kang, SH An, H Jeon. Overcome the barriers of the skin: exosome therapy. Biomater Res 2021; 25(1): 22
https://doi.org/10.1186/s40824-021-00224-8
38 DH Ha, HK Kim, J Lee, HH Kwon, GH Park, SH Yang, JY Jung, H Choi, JH Lee, S Sung, YW Yi, BS Cho. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells 2020; 9(5): 1157
https://doi.org/10.3390/cells9051157
39 C Théry, L Zitvogel, S Amigorena. Exosomes: composition, biogenesis and function. Nat Rev Immunol 2002; 2(8): 569–579
https://doi.org/10.1038/nri855
40 Andaloussi S EL, I Mäger, XO Breakefield, MJ Wood. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347–357
https://doi.org/10.1038/nrd3978
41 HK Karnati, JH Garcia, D Tweedie, RE Becker, D Kapogiannis, NH Greig. Neuronal enriched extracellular vesicle proteins as biomarkers for traumatic brain injury. J Neurotrauma 2019; 36(7): 975–987
https://doi.org/10.1089/neu.2018.5898
42 MD Hade, CN Suire, J Mossell, Z Suo. Extracellular vesicles: emerging frontiers in wound healing. Med Res Rev 2022; 42(6): 2102–2125
https://doi.org/10.1002/med.21918
43 QF Han, WJ Li, KS Hu, J Gao, WL Zhai, JH Yang, SJ Zhang. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21(1): 207
https://doi.org/10.1186/s12943-022-01671-0
44 AA Farooqi, NN Desai, MZ Qureshi, DRN Librelotto, ML Gasparri, A Bishayee, SM Nabavi, V Curti, M Daglia. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 2018; 36(1): 328–334
https://doi.org/10.1016/j.biotechadv.2017.12.010
45 BT Pan, K Teng, C Wu, M Adam, RM Johnstone. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 1985; 101(3): 942–948
https://doi.org/10.1083/jcb.101.3.942
46 BT Pan, RM Johnstone. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983; 33(3): 967–978
https://doi.org/10.1016/0092-8674(83)90040-5
47 C Yan, J Chen, C Wang, M Yuan, Y Kang, Z Wu, W Li, G Zhang, HG Machens, Y Rinkevich, Z Chen, X Yang, X Xu. Milk exosomes-mediated miR-31-5p delivery accelerates diabetic wound healing through promoting angiogenesis. Drug Deliv 2022; 29(1): 214–228
https://doi.org/10.1080/10717544.2021.2023699
48 S Gurunathan, MH Kang, JH Kim. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int J Nanomedicine 2021; 16: 1281–1312
https://doi.org/10.2147/IJN.S291956
49 EW Choi, MK Seo, EY Woo, SH Kim, EJ Park, S Kim. Exosomes from human adipose-derived stem cells promote proliferation and migration of skin fibroblasts. Exp Dermatol 2018; 27(10): 1170–1172
https://doi.org/10.1111/exd.13451
50 D Narauskaitė, G Vydmantaitė, J Rusteikaitė, R Sampath, A Rudaitytė, G Stašytė, Calvente MI Aparicio, A Jekabsone. Extracellular vesicles in skin wound healing. Pharmaceuticals (Basel) 2021; 14(8): 811
https://doi.org/10.3390/ph14080811
51 M Rodrigues, N Kosaric, CA Bonham, GC Gurtner. Wound healing: a cellular perspective. Physiol Rev 2019; 99(1): 665–706
https://doi.org/10.1152/physrev.00067.2017
52 M Čoma, JC Manning, H Kaltner, P Gál. The sweet side of wound healing: galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling. Expert Opin Ther Targets 2023; 27(1): 41–53
https://doi.org/10.1080/14728222.2023.2175318
53 A Hassanshahi, M Moradzad, S Ghalamkari, M Fadaei, AJ Cowin, M Hassanshahi. Macrophage-mediated inflammation in skin wound healing. Cells 2022; 11(19): 2953
https://doi.org/10.3390/cells11192953
54 JM Reinke, H Sorg. Wound repair and regeneration. Eur Surg Res 2012; 49(1): 35–43
https://doi.org/10.1159/000339613
55 L Moretti, J Stalfort, TH Barker, D Abebayehu. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298(2): 101530
https://doi.org/10.1016/j.jbc.2021.101530
56 HE Talbott, S Mascharak, M Griffin, DC Wan, MT Longaker. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022; 29(8): 1161–1180
https://doi.org/10.1016/j.stem.2022.07.006
57 J Johnson, YW Wu, C Blyth, G Lichtfuss, H Goubran, T Burnouf. Prospective therapeutic applications of platelet extracellular vesicles. Trends Biotechnol 2021; 39(6): 598–612
https://doi.org/10.1016/j.tibtech.2020.10.004
58 EI Sinauridze, DA Kireev, NY Popenko, AV Pichugin, MA Panteleev, OV Krymskaya, FI Ataullakhanov. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97(3): 425–434
https://doi.org/10.1160/TH06-06-0313
59 M Antich-Rosselló, MA Forteza-Genestra, M Monjo, JM Ramis. Platelet-derived extracellular vesicles for regenerative medicine. Int J Mol Sci 2021; 22(16): 8580
https://doi.org/10.3390/ijms22168580
60 AL Graça, RMA Domingues, M Gomez-Florit, ME Gomes. Platelet-derived extracellular vesicles promote tenogenic differentiation of stem cells on bioengineered living fibers. Int J Mol Sci 2023; 24(4): 3516
https://doi.org/10.3390/ijms24043516
61 N Xu, L Wang, J Guan, C Tang, N He, W Zhang, S Fu. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int J Biol Macromol 2018; 117: 102–107
https://doi.org/10.1016/j.ijbiomac.2018.05.066
62 SC Guo, SC Tao, WJ Yin, X Qi, T Yuan, CQ Zhang. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics 2017; 7(1): 81–96
https://doi.org/10.7150/thno.16803
63 H Kim, SY Wang, G Kwak, Y Yang, IC Kwon, SH Kim. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv Sci (Weinh) 2019; 6(20): 1900513
https://doi.org/10.1002/advs.201900513
64 X He, Z Dong, Y Cao, H Wang, S Liu, L Liao, Y Jin, L Yuan, B Li. MSC-derived exosome promotes M2 polarization and enhances cutaneous wound healing. Stem Cells Int 2019; 2019: 7132708
https://doi.org/10.1155/2019/7132708
65 JC Hu, CX Zheng, BD Sui, WJ Liu, Y Jin. Mesenchymal stem cell-derived exosomes: a novel and potential remedy for cutaneous wound healing and regeneration. World J Stem Cells 2022; 14(5): 318–329
https://doi.org/10.4252/wjsc.v14.i5.318
66 D Su, HI Tsai, Z Xu, F Yan, Y Wu, Y Xiao, X Liu, Y Wu, S Parvanian, W Zhu, JE Eriksson, D Wang, H Zhu, H Chen, F Cheng. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles 2020; 9(1): 1709262
https://doi.org/10.1080/20013078.2019.1709262
67 G Kwak, J Cheng, H Kim, S Song, SJ Lee, Y Yang, JH Jeong, JE Lee, PB Messersmith, SH Kim. Sustained exosome-guided macrophage polarization using hydrolytically degradable PEG hydrogels for cutaneous wound healing: identification of key proteins and miRNAs, and sustained release formulation. Small 2022; 18(15): 2200060
https://doi.org/10.1002/smll.202200060
68 X Qiu, J Liu, C Zheng, Y Su, L Bao, B Zhu, S Liu, L Wang, X Wang, Y Wang, W Zhao, J Zhou, Z Deng, S Liu, Y Jin. Exosomes released from educated mesenchymal stem cells accelerate cutaneous wound healing via promoting angiogenesis. Cell Prolif 2020; 53(8): e12830
https://doi.org/10.1111/cpr.12830
69 R Tutuianu, AM Rosca, DM Iacomi, M Simionescu, I Titorencu. Human mesenchymal stromal cell-derived exosomes promote in vitro wound healing by modulating the biological properties of skin keratinocytes and fibroblasts and stimulating angiogenesis. Int J Mol Sci 2021; 22(12): 6239
https://doi.org/10.3390/ijms22126239
70 F Marofi, KI Alexandrovna, R Margiana, M Bahramali, W Suksatan, WK Abdelbasset, S Chupradit, M Nasimi, MS Maashi. MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy. Stem Cell Res Ther 2021; 12(1): 597
https://doi.org/10.1186/s13287-021-02662-6
71 UTT Than, D Guanzon, D Leavesley, T Parker. Association of extracellular membrane vesicles with cutaneous wound healing. Int J Mol Sci 2017; 18(5): 956
https://doi.org/10.3390/ijms18050956
72 A Shabbir, A Cox, L Rodriguez-Menocal, M Salgado, E Van Badiavas. Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 2015; 24(14): 1635–1647
https://doi.org/10.1089/scd.2014.0316
73 B Zhao, X Zhang, Y Zhang, Y Lu, W Zhang, S Lu, Y Fu, Y Zhou, J Zhang, J Zhang. Human exosomes accelerate cutaneous wound healing by promoting collagen synthesis in a diabetic mouse model. Stem Cells Dev 2021; 30(18): 922–933
https://doi.org/10.1089/scd.2021.0100
74 J Zhang, J Guan, X Niu, G Hu, S Guo, Q Li, Z Xie, C Zhang, Y Wang. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 2015; 13(1): 49
https://doi.org/10.1186/s12967-015-0417-0
75 EJ Oh, P Gangadaran, RL Rajendran, HM Kim, JM Oh, KY Choi, HY Chung, BC Ahn. Extracellular vesicles derived from fibroblasts promote wound healing by optimizing fibroblast and endothelial cellular functions. Stem Cells 2021; 39(3): 266–279
https://doi.org/10.1002/stem.3310
76 D Bian, Y Wu, G Song, R Azizi, A Zamani. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther 2022; 13(1): 24
https://doi.org/10.1186/s13287-021-02697-9
77 J Huang, J Xiong, L Yang, J Zhang, S Sun, Y Liang. Cell-free exosome-laden scaffolds for tissue repair. Nanoscale 2021; 13(19): 8740–8750
https://doi.org/10.1039/D1NR01314A
78 R Tenchov, JM Sasso, X Wang, WS Liaw, CA Chen, QA Zhou. Exosomes—nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics. ACS Nano 2022; 16(11): 17802–17846
https://doi.org/10.1021/acsnano.2c08774
79 MF Pittenger, AM Mackay, SC Beck, RK Jaiswal, R Douglas, JD Mosca, MA Moorman, DW Simonetti, S Craig, DR Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143–147
https://doi.org/10.1126/science.284.5411.143
80 S Liu, J Zhou, X Zhang, Y Liu, J Chen, B Hu, J Song, Y Zhang. Strategies to optimize adult stem cell therapy for tissue regeneration. Int J Mol Sci 2016; 17(6): 982
https://doi.org/10.3390/ijms17060982
81 M Mousaei Ghasroldasht, J Seok, HS Park, FB Liakath Ali, A Al-Hendy. Stem cell therapy: from idea to clinical practice. Int J Mol Sci 2022; 23(5): 2850
https://doi.org/10.3390/ijms23052850
82 A Nourian Dehkordi, F Mirahmadi Babaheydari, M Chehelgerdi, S Raeisi Dehkordi. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10(1): 111
https://doi.org/10.1186/s13287-019-1212-2
83 M Yousefi Dehbidi, N Goodarzi, MH Azhdari, M Doroudian. Mesenchymal stem cells and their derived exosomes to combat Covid-19. Rev Med Virol 2022; 32(2): e2281
https://doi.org/10.1002/rmv.2281
84 XS Ren, Y Tong, Y Qiu, C Ye, N Wu, XQ Xiong, JJ Wang, Y Han, YB Zhou, F Zhang, HJ Sun, XY Gao, Q Chen, YH Li, YM Kang, GQ Zhu. miR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles 2020; 9(1): 1698795
https://doi.org/10.1080/20013078.2019.1698795
85 F Mahmoudi, P Hanachi, A Montaseri. Extracellular vesicles of immune cells; immunomodulatory impacts and therapeutic potentials. Clin Immunol 2023; 248: 109237
https://doi.org/10.1016/j.clim.2023.109237
86 K ShenXJ WangKT LiuSH LiJ LiJX ZhangHT WangDH Hu. Effects of exosomes from human adipose-derived mesenchymal stem cells on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice Chin J Burns (Zhonghua Shao Shang Za Zhi) 2022; 38(3): 215–226 (in Chinese)
87 Y Zhou, B Zhao, XL Zhang, YJ Lu, ST Lu, J Cheng, Y Fu, L Lin, NY Zhang, PX Li, J Zhang, J Zhang. Combined topical and systemic administration with human adipose-derived mesenchymal stem cells (hADSC) and hADSC-derived exosomes markedly promoted cutaneous wound healing and regeneration. Stem Cell Res Ther 2021; 12(1): 257
https://doi.org/10.1186/s13287-021-02287-9
88 Y Zhang, J Yan, Y Liu, Z Chen, X Li, L Tang, J Li, M Duan, G Zhang. Human amniotic fluid stem cell-derived exosomes as a novel cell-free therapy for cutaneous regeneration. Front Cell Dev Biol 2021; 9: 685873
https://doi.org/10.3389/fcell.2021.685873
89 M Duan, Y Zhang, H Zhang, Y Meng, M Qian, G Zhang. Epidermal stem cell-derived exosomes promote skin regeneration by downregulating transforming growth factor-β1 in wound healing. Stem Cell Res Ther 2020; 11(1): 452
https://doi.org/10.1186/s13287-020-01971-6
90 H Lv, H Liu, T Sun, H Wang, X Zhang, W Xu. Exosome derived from stem cell: a promising therapeutics for wound healing. Front Pharmacol 2022; 13: 957771
https://doi.org/10.3389/fphar.2022.957771
91 M Wang, P Wu, J Huang, W Liu, H Qian, Y Sun, H Shi. Skin cell-derived extracellular vesicles: a promising therapeutic strategy for cutaneous injury. Burns Trauma 2022; 10: tkac037
92 L Lyu, Y Cai, G Zhang, Z Jing, J Liang, R Zhang, X Dang, C Zhang. Exosomes derived from M2 macrophages induce angiogenesis to promote wound healing. Front Mol Biosci 2022; 9: 1008802
https://doi.org/10.3389/fmolb.2022.1008802
93 RA Haraszti, R Miller, ML Dubuke, HE Rockwell, AH Coles, E Sapp, MC Didiot, D Echeverria, M Stoppato, YY Sere, J Leszyk, JF Alterman, B Godinho, MR Hassler, J McDaniel, NR Narain, R Wollacott, Y Wang, SA Shaffer, MA Kiebish, M DiFiglia, N Aronin, A Khvorova. Serum deprivation of mesenchymal stem cells improves exosome activity and alters lipid and protein composition. iScience 2019; 16: 230–241
https://doi.org/10.1016/j.isci.2019.05.029
94 JP Bost, O Saher, D Hagey, DR Mamand, X Liang, W Zheng, G Corso, O Gustafsson, A Görgens, CE Smith, R Zain, Andaloussi S El, D Gupta. Growth media conditions influence the secretion route and release levels of engineered extracellular vesicles. Adv Healthc Mater 2022; 11(5): 2101658
https://doi.org/10.1002/adhm.202101658
95 H Gonzalez-King, NA García, I Ontoria-Oviedo, M Ciria, JA Montero, P Sepúlveda. Hypoxia Inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells 2017; 35(7): 1747–1759
https://doi.org/10.1002/stem.2618
96 CY Ng, LT Kee, ME Al-Masawa, QH Lee, T Subramaniam, D Kok, MH Ng, JX Law. Scalable production of extracellular vesicles and its therapeutic values: a review. Int J Mol Sci 2022; 23(14): 7986
https://doi.org/10.3390/ijms23147986
97 Y Cheng, Q Zeng, Q Han, W Xia. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell 2019; 10(4): 295–299
https://doi.org/10.1007/s13238-018-0529-4
98 DB Patel, KM Gray, Y Santharam, TN Lamichhane, KM Stroka, SM Jay. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med 2017; 2(2): 170–179
https://doi.org/10.1002/btm2.10065
99 R Linares, S Tan, C Gounou, N Arraud, AR Brisson. High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles 2015; 4(1): 29509
https://doi.org/10.3402/jev.v4.29509
100 AK Ludwig, Miroschedji K De, TR Doeppner, V Börger, J Ruesing, V Rebmann, S Durst, S Jansen, M Bremer, E Behrmann, BB Singer, H Jastrow, JD Kuhlmann, Magraoui F El, HE Meyer, DM Hermann, B Opalka, S Raunser, M Epple, PA Horn, B Giebel. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J Extracell Vesicles 2018; 7(1): 1528109
https://doi.org/10.1080/20013078.2018.1528109
101 OJ Arntz, BCH Pieters, P van Lent, MI Koenders, PM van der Kraan, FAJ van de Loo. An optimized method for plasma extracellular vesicles isolation to exclude the copresence of biological drugs and plasma proteins which impairs their biological characterization. PLoS One 2020; 15(7): e0236508
https://doi.org/10.1371/journal.pone.0236508
102 H Zheng, S Guan, X Wang, J Zhao, M Gao, X Zhang. Deconstruction of heterogeneity of size-dependent exosome subpopulations from human urine by profiling N-glycoproteomics and phosphoproteomics simultaneously. Anal Chem 2020; 92(13): 9239–9246
https://doi.org/10.1021/acs.analchem.0c01572
103 T Liangsupree, E Multia, ML Riekkola. Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A 2021; 1636: 461773
https://doi.org/10.1016/j.chroma.2020.461773
104 S Lin, Z Yu, D Chen, Z Wang, J Miao, Q Li, D Zhang, J Song, D Cui. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications. Small 2020; 16(9): 1903916
https://doi.org/10.1002/smll.201903916
105 S Sitar, A Kejžar, D Pahovnik, K Kogej, M Tušek-Žnidarič, M Lenassi, E Žagar. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal Chem 2015; 87(18): 9225–9233
https://doi.org/10.1021/acs.analchem.5b01636
106 H Zhang, D Freitas, HS Kim, K Fabijanic, Z Li, H Chen, MT Mark, H Molina, AB Martin, L Bojmar, J Fang, S Rampersaud, A Hoshino, I Matei, CM Kenific, M Nakajima, AP Mutvei, P Sansone, W Buehring, H Wang, JP Jimenez, L Cohen-Gould, N Paknejad, M Brendel, K Manova-Todorova, A Magalhães, JA Ferreira, H Osório, AM Silva, A Massey, JR Cubillos-Ruiz, G Galletti, P Giannakakou, AM Cuervo, J Blenis, R Schwartz, MS Brady, H Peinado, J Bromberg, H Matsui, CA Reis, D Lyden. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 2018; 20(3): 332–343
https://doi.org/10.1038/s41556-018-0040-4
107 C Chen, J Skog, CH Hsu, RT Lessard, L Balaj, T Wurdinger, BS Carter, XO Breakefield, M Toner, D Irimia. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 2010; 10(4): 505–511
https://doi.org/10.1039/B916199F
108 P Zhang, M He, Y Zeng. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 2016; 16(16): 3033–3042
https://doi.org/10.1039/C6LC00279J
109 N Bohmer, N Demarmels, E Tsolaki, L Gerken, K Keevend, S Bertazzo, M Lattuada, IK Herrmann. Removal of cells from body fluids by magnetic separation in batch and continuous mode: influence of bead size, concentration, and contact time. ACS Appl Mater Interfaces 2017; 9(35): 29571–29579
https://doi.org/10.1021/acsami.7b10140
110 X Fang, C Chen, B Liu, Z Ma, F Hu, H Li, H Gu, H Xu. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification. Acta Biomater 2021; 124: 336–347
https://doi.org/10.1016/j.actbio.2021.02.004
111 N Seo, J Nakamura, T Kaneda, H Tateno, A Shimoda, T Ichiki, K Furukawa, J Hirabayashi, K Akiyoshi, H Shiku. Distinguishing functional exosomes and other extracellular vesicles as a nucleic acid cargo by the anion-exchange method. J Extracell Vesicles 2022; 11(3): e12205
https://doi.org/10.1002/jev2.12205
112 K Chattrairat, T Yasui, S Suzuki, A Natsume, K Nagashima, M Iida, M Zhang, T Shimada, A Kato, K Aoki, F Ohka, S Yamazaki, T Yanagida, Y Baba. All-in-one nanowire assay system for capture and analysis of extracellular vesicles from an ex vivo brain tumor model. ACS Nano 2023; 17(3): 2235–2244
https://doi.org/10.1021/acsnano.2c08526
113 T Yasui, P Paisrisarn, T Yanagida, Y Konakade, Y Nakamura, K Nagashima, M Musa, IA Thiodorus, H Takahashi, T Naganawa, T Shimada, N Kaji, T Ochiya, T Kawai, Y Baba. Molecular profiling of extracellular vesicles via charge-based capture using oxide nanowire microfluidics. Biosens Bioelectron 2021; 194: 113589
https://doi.org/10.1016/j.bios.2021.113589
114 J Stam, S Bartel, R Bischoff, JC Wolters. Isolation of extracellular vesicles with combined enrichment methods. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1169: 122604
https://doi.org/10.1016/j.jchromb.2021.122604
115 Z Onódi, C Pelyhe, Nagy C Terézia, GB Brenner, L Almási, Á Kittel, M Manček-Keber, P Ferdinandy, EI Buzás, Z Giricz. Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol 2018; 9: 1479
https://doi.org/10.3389/fphys.2018.01479
116 BF Hettich, M Ben-Yehuda Greenwald, S Werner, JC Leroux. Exosomes for wound healing: purification optimization and identification of bioactive components. Adv Sci (Weinh) 2020; 7(23): 2002596
https://doi.org/10.1002/advs.202002596
117 C Jin, P Wu, L Li, W Xu, H Qian. Exosomes: emerging therapy delivery tools and biomarkers for kidney diseases. Stem Cells Int 2021; 2021: 7844455
https://doi.org/10.1155/2021/7844455
118 K Singh, R Nalabotala, KM Koo, S Bose, R Nayak, MJA Shiddiky. Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. Analyst (Lond) 2021; 146(12): 3731–3749
https://doi.org/10.1039/D1AN00024A
119 Z Wei, Z Chen, Y Zhao, F Fan, W Xiong, S Song, Y Yin, J Hu, K Yang, L Yang, B Xu, J Ge. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials 2021; 275: 121000
https://doi.org/10.1016/j.biomaterials.2021.121000
120 Q Lv, J Deng, Y Chen, Y Wang, B Liu, J Liu. Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing. Mol Pharm 2020; 17(5): 1723–1733
https://doi.org/10.1021/acs.molpharmaceut.0c00177
121 A Shi, J Li, X Qiu, M Sabbah, S Boroumand, TC Huang, C Zhao, A Terzic, A Behfar, SL Moran. TGF-β loaded exosome enhances ischemic wound healing in vitro and in vivo. Theranostics 2021; 11(13): 6616–6631
https://doi.org/10.7150/thno.57701
122 G Togliatto, P Dentelli, A Rosso, G Lombardo, M Gili, S Gallo, C Gai, A Solini, G Camussi, MF Brizzi. PDGF-BB carried by endothelial cell-derived extracellular vesicles reduces vascular smooth muscle cell apoptosis in diabetes. Diabetes 2018; 67(4): 704–716
https://doi.org/10.2337/db17-0371
123 R Lou, J Chen, F Zhou, C Wang, CH Leung, L Lin. Exosome-cargoed microRNAs: Potential therapeutic molecules for diabetic wound healing. Drug Discov Today 2022; 27(10): 103323
https://doi.org/10.1016/j.drudis.2022.07.008
124 J Shen, X Zhao, Y Zhong, P Yang, P Gao, X Wu, X Wang, W An. Exosomal ncRNAs: the pivotal players in diabetic wound healing. Front Immunol 2022; 13: 1005307
https://doi.org/10.3389/fimmu.2022.1005307
125 YX Xu, SD Pu, X Li, ZW Yu, YT Zhang, XW Tong, YY Shan, XY Gao. Exosomal ncRNAs: novel therapeutic target and biomarker for diabetic complications. Pharmacol Res 2022; 178: 106135
https://doi.org/10.1016/j.phrs.2022.106135
126 Y Matsuzaka, R Yashiro. Advances in purification, modification, and application of extracellular vesicles for novel clinical treatments. Membranes (Basel) 2022; 12(12): 1244
https://doi.org/10.3390/membranes12121244
127 C Yang, L Luo, X Bai, K Shen, K Liu, J Wang, D Hu. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys 2020; 681: 108259
https://doi.org/10.1016/j.abb.2020.108259
128 M Li, L Qiu, W Hu, X Deng, H Xu, Y Cao, Z Xiao, L Peng, S Johnson, L Alexey, PA Kingston, Q Li, Y Zhang. Genetically-modified bone mesenchymal stem cells with TGF-beta3 improve wound healing and reduce scar tissue formation in a rabbit model. Exp Cell Res 2018; 367(1): 24–29
https://doi.org/10.1016/j.yexcr.2018.02.006
129 MD Hade, CN Suire, Z Suo. An effective peptide-based platform for efficient exosomal loading and cellular delivery of a microRNA. ACS Appl Mater Interfaces 2023; 15(3): 3851–3866
https://doi.org/10.1021/acsami.2c20728
130 J Zhu, Z Liu, L Wang, Q Jin, Y Zhao, A Du, N Ding, Y Wang, H Jiang, L Zhu. Exosome mimetics-loaded hydrogel accelerates wound repair by transferring functional mitochondrial proteins. Front Bioeng Biotechnol 2022; 10: 866505
https://doi.org/10.3389/fbioe.2022.866505
131 M Yu, W Liu, J Li, J Lu, H Lu, W Jia, F Liu. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res Ther 2020; 11(1): 350
https://doi.org/10.1186/s13287-020-01824-2
132 D Wu, L Kang, J Tian, Y Wu, J Liu, Z Li, X Wu, Y Huang, B Gao, H Wang, Z Wu, G Qiu. Exosomes derived from bone mesenchymal stem cells with the stimulation of Fe3O4 nanoparticles and static magnetic field enhance wound healing through upregulated miR-21-5p. Int J Nanomedicine 2020; 15: 7979–7993
https://doi.org/10.2147/IJN.S275650
133 J Wang, H Wu, Y Peng, Y Zhao, Y Qin, Y Zhang, Z Xiao. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways. J Nanobiotechnology 2021; 19(1): 202
https://doi.org/10.1186/s12951-021-00942-0
134 W Liu, L Li, Y Rong, D Qian, J Chen, Z Zhou, Y Luo, D Jiang, L Cheng, S Zhao, F Kong, J Wang, Z Zhou, T Xu, F Gong, Y Huang, C Gu, X Zhao, J Bai, F Wang, W Zhao, L Zhang, X Li, G Yin, J Fan, W Cai. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126. Acta Biomater 2020; 103: 196–212
https://doi.org/10.1016/j.actbio.2019.12.020
135 W Gao, R He, J Ren, W Zhang, K Wang, L Zhu, T Liang. Exosomal HMGB1 derived from hypoxia-conditioned bone marrow mesenchymal stem cells increases angiogenesis via the JNK/HIF-1α pathway. FEBS Open Bio 2021; 11(5): 1364–1373
https://doi.org/10.1002/2211-5463.13142
136 XF Zhang, T Wang, ZX Wang, KP Huang, YW Zhang, GL Wang, HJ Zhang, ZH Chen, CY Wang, JX Zhang, H Wang. Hypoxic ucMSC-secreted exosomal miR-125b promotes endothelial cell survival and migration during wound healing by targeting TP53INP1. Mol Ther Nucleic Acids 2021; 26: 347–359
https://doi.org/10.1016/j.omtn.2021.07.014
137 T Cao, D Xiao, P Ji, Z Zhang, WX Cai, C Han, W Li, K Tao. Effects of exosomes from hepatocyte growth factor-modified human adipose mesenchymal stem cells on full-thickness skin defect in diabetic mice. Chin J Burns (Zhonghua Shao Shang Za Zhi) 2022; 38(11): 1004–1013
138 AM Amengual-Tugores, C Ráez-Meseguer, MA Forteza-Genestra, M Monjo, JM Ramis. Extracellular vesicle-based hydrogels for wound healing applications. Int J Mol Sci 2023; 24(4): 4104
https://doi.org/10.3390/ijms24044104
139 C Chen, X Bai, Y Ding, IS Lee. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res 2019; 23(1): 25
https://doi.org/10.1186/s40824-019-0176-8
140 M Hu, L Hong, C Liu, S Hong, S He, M Zhou, G Huang, Q Chen. Electrical stimulation enhances neuronal cell activity mediated by Schwann cell derived exosomes. Sci Rep 2019; 9(1): 4206
https://doi.org/10.1038/s41598-019-41007-5
141 JD Klein, XH Wang. Electrically stimulated acupuncture increases renal blood flow through exosome-carried miR-181. Am J Physiol Renal Physiol 2018; 315(6): F1542–F1549
https://doi.org/10.1152/ajprenal.00259.2018
142 J Wang, K Pothana, S Chen, H Sawant, JB Travers, J Bihl, Y Chen. Ultraviolet B irradiation alters the level and miR contents of exosomes released by keratinocytes in diabetic condition. Photochem Photobiol 2022; 98(5): 1122–1130
https://doi.org/10.1111/php.13583
143 N Ni, W Ma, Y Tao, J Liu, H Hua, J Cheng, J Wang, B Zhou, D Luo. Exosomal miR-769-5p exacerbates ultraviolet-induced bystander effect by targeting TGFBR1. Front Physiol 2020; 11: 603081
https://doi.org/10.3389/fphys.2020.603081
144 J Dong, B Wu, W Tian. Exosomes derived from hypoxia-preconditioned mesenchymal stem cells (hypoMSCs-Exo): advantages in disease treatment. Cell Tissue Res 2023; 392(3): 621–629
https://doi.org/10.1007/s00441-023-03758-6
145 Y Zhang, J Bi, J Huang, Y Tang, S Du, P Li. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine 2020; 15: 6917–6934
https://doi.org/10.2147/IJN.S264498
146 R Maroto, Y Zhao, M Jamaluddin, VL Popov, H Wang, M Kalubowilage, Y Zhang, J Luisi, H Sun, CT Culbertson, SH Bossmann, M Motamedi, AR Brasier. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles 2017; 6(1): 1359478
https://doi.org/10.1080/20013078.2017.1359478
147 S Bosch, Beaurepaire L de, M Allard, M Mosser, C Heichette, D Chrétien, D Jegou, JM Bach. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep 2016; 6(1): 36162
https://doi.org/10.1038/srep36162
148 C Charoenviriyakul, Y Takahashi, M Nishikawa, Y Takakura. Preservation of exosomes at room temperature using lyophilization. Int J Pharm 2018; 553(1–2): 1–7
https://doi.org/10.1016/j.ijpharm.2018.10.032
149 D Gupta, AM Zickler, S El Andaloussi. Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178: 113961
https://doi.org/10.1016/j.addr.2021.113961
150 T Zhou, C He, P Lai, Z Yang, Y Liu, H Xu, X Lin, B Ni, R Ju, W Yi, L Liang, D Pei, CE Egwuagu, X Liu. miR-204-containing exosomes ameliorate GVHD-associated dry eye disease. Sci Adv 2022; 8(2): eabj9617
https://doi.org/10.1126/sciadv.abj9617
151 R Samaeekia, B Rabiee, I Putra, X Shen, YJ Park, P Hematti, M Eslani, AR Djalilian. Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2018; 59(12): 5194–5200
https://doi.org/10.1167/iovs.18-24803
152 YS Chen, EY Lin, TW Chiou, HJ Harn. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Ci Ji Yi Xue Za Zhi 2020; 32(2): 113–120
153 Y Hu, R Tao, L Chen, Y Xiong, H Xue, L Hu, C Yan, X Xie, Z Lin, AC Panayi, B Mi, G Liu. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis. J Nanobiotechnology 2021; 19(1): 150
https://doi.org/10.1186/s12951-021-00894-5
154 Q Li, W Hu, Q Huang, J Yang, B Li, K Ma, Q Wei, Y Wang, J Su, M Sun, S Cui, R Yang, H Li, X Fu, C Zhang. miR146a-loaded engineered exosomes released from silk fibroin patch promote diabetic wound healing by targeting IRAK1. Signal Transduct Target Ther 2023; 8(1): 62
https://doi.org/10.1038/s41392-022-01263-w
155 L Hu, J Wang, X Zhou, Z Xiong, J Zhao, R Yu, F Huang, H Zhang, L Chen. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep 2016; 6(1): 32993
https://doi.org/10.1038/srep32993
156 PC Dinh, D Paudel, H Brochu, KD Popowski, MC Gracieux, J Cores, K Huang, MT Hensley, E Harrell, AC Vandergriff, AK George, RT Barrio, S Hu, TA Allen, K Blackburn, TG Caranasos, X Peng, LV Schnabel, KB Adler, LJ Lobo, MB Goshe, K Cheng. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun 2020; 11(1): 1064
https://doi.org/10.1038/s41467-020-14344-7
157 C Liu, X Yan, Y Zhang, M Yang, Y Ma, Y Zhang, Q Xu, K Tu, M Zhang. Oral administration of turmeric-derived exosome-like nanovesicles with anti-inflammatory and pro-resolving bioactions for murine colitis therapy. J Nanobiotechnology 2022; 20(1): 206
https://doi.org/10.1186/s12951-022-01421-w
158 J Zhong, B Xia, S Shan, A Zheng, S Zhang, J Chen, XJ Liang. High-quality milk exosomes as oral drug delivery system. Biomaterials 2021; 277: 121126
https://doi.org/10.1016/j.biomaterials.2021.121126
159 ME Al-Masawa, MA Alshawsh, CY Ng, AMH Ng, JB Foo, U Vijakumaran, R Subramaniam, NAA Ghani, KW Witwer, JX Law. Efficacy and safety of small extracellular vesicle interventions in wound healing and skin regeneration: a systematic review and meta-analysis of animal studies. Theranostics 2022; 12(15): 6455–6508
https://doi.org/10.7150/thno.73436
160 Y Jia, L Yu, T Ma, W Xu, H Qian, Y Sun, H Shi. Small extracellular vesicles isolation and separation: current techniques, pending questions and clinical applications. Theranostics 2022; 12(15): 6548–6575
https://doi.org/10.7150/thno.74305
161 MY Li, LZ Liu, M Dong. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer 2021; 20(1): 22
https://doi.org/10.1186/s12943-021-01312-y
162 J Wang, W Tang, M Yang, Y Yin, H Li, F Hu, L Tang, X Ma, Y Zhang, Y Wang. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials 2021; 273: 120784
https://doi.org/10.1016/j.biomaterials.2021.120784
163 MDA Paskeh, M Entezari, S Mirzaei, A Zabolian, H Saleki, MJ Naghdi, S Sabet, MA Khoshbakht, M Hashemi, K Hushmandi, G Sethi, A Zarrabi, AP Kumar, SC Tan, M Papadakis, A Alexiou, MA Islam, E Mostafavi, M Ashrafizadeh. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15(1): 83
https://doi.org/10.1186/s13045-022-01305-4
164 G Liang, Y Zhu, DJ Ali, T Tian, H Xu, K Si, B Sun, B Chen, Z Xiao. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J Nanobiotechnology 2020; 18(1): 10
https://doi.org/10.1186/s12951-019-0563-2
165 X Wang, H Zhang, M Bai, T Ning, S Ge, T Deng, R Liu, L Zhang, G Ying, Y Ba. Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 2018; 26(3): 774–783
https://doi.org/10.1016/j.ymthe.2018.01.001
166 M Ashrafizadeh, M Delfi, F Hashemi, A Zabolian, H Saleki, M Bagherian, N Azami, MV Farahani, SO Sharifzadeh, S Hamzehlou, K Hushmandi, P Makvandi, A Zarrabi, MR Hamblin, RS Varma. Biomedical application of chitosan-based nanoscale delivery systems: potential usefulness in siRNA delivery for cancer therapy. Carbohydr Polym 2021; 260: 117809
https://doi.org/10.1016/j.carbpol.2021.117809
167 Z Xu, S Zeng, Z Gong, Y Yan. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer 2020; 19(1): 160
https://doi.org/10.1186/s12943-020-01278-3
168 C Ni, QQ Fang, WZ Chen, JX Jiang, Z Jiang, J Ye, T Zhang, L Yang, FB Meng, WJ Xia, M Zhong, J Huang. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+γδ1 Treg cells. Signal Transduct Target Ther 2020; 5(1): 41
https://doi.org/10.1038/s41392-020-0129-7
169 D Dou, X Ren, M Han, X Xu, X Ge, Y Gu, X Wang. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Front Immunol 2020; 11: 2026
https://doi.org/10.3389/fimmu.2020.02026
170 W Xin, Y Qin, P Lei, J Zhang, X Yang, Z Wang. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. Mol Ther Nucleic Acids 2022; 29: 900–922
https://doi.org/10.1016/j.omtn.2022.08.032
171 Y Zou, L Li, Y Li, S Chen, X Xie, X Jin, X Wang, C Ma, G Fan, W Wang. Restoring cardiac functions after myocardial infarction-ischemia/reperfusion via an exosome anchoring conductive hydrogel. ACS Appl Mater Interfaces 2021; 13(48): 56892–56908
https://doi.org/10.1021/acsami.1c16481
172 W Chen, H Wang, Z Zhu, J Feng, L Chen. Exosome-shuttled circSHOC2 from IPASs regulates neuronal autophagy and ameliorates ischemic brain injury via the miR-7670-3p/SIRT1 axis. Mol Ther Nucleic Acids 2020; 22: 657–672
https://doi.org/10.1016/j.omtn.2020.09.027
173 Z Yang, Z Gao, Z Yang, Y Zhang, H Chen, X Yang, X Fang, Y Zhu, J Zhang, F Ouyang, J Li, G Cai, Y Li, X Lin, R Ni, C Xia, R Wang, X Shi, L Chu. Lactobacillus plantarum-derived extracellular vesicles protect against ischemic brain injury via the microRNA-101a-3p/c-Fos/TGF-β axis. Pharmacol Res 2022; 182: 106332
https://doi.org/10.1016/j.phrs.2022.106332
174 S Kim, SA Lee, H Yoon, MY Kim, JK Yoo, SH Ahn, CH Park, J Park, BY Nam, JT Park, SH Han, SW Kang, NH Kim, HS Kim, D Han, JI Yook, C Choi, TH Yoo. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury. Kidney Int 2021; 100(3): 570–584
https://doi.org/10.1016/j.kint.2021.04.039
175 C Wang, M Xu, Q Fan, C Li, X Zhou. Therapeutic potential of exosome-based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci 2023; 18(1): 100772
https://doi.org/10.1016/j.ajps.2022.100772
176 DKW Ocansey, L Zhang, Y Wang, Y Yan, H Qian, X Zhang, W Xu, F Mao. Exosome-mediated effects and applications in inflammatory bowel disease. Biol Rev Camb Philos Soc 2020; 95(5): 1287–1307
https://doi.org/10.1111/brv.12608
177 C Noonin, V Thongboonkerd. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics 2021; 11(9): 4436–4451
https://doi.org/10.7150/thno.54004
178 X Zeng, YD Zhang, RY Ma, YJ Chen, XM Xiang, DY Hou, XH Li, H Huang, T Li, CY Duan. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Mil Med Res 2022; 9(1): 25
https://doi.org/10.1186/s40779-022-00383-2
179 Y Wu, J Li, Y Zeng, W Pu, X Mu, K Sun, Y Peng, B Shen. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci 2022; 14(1): 40
https://doi.org/10.1038/s41368-022-00187-z
180 T Bu, Z Li, Y Hou, W Sun, R Zhang, L Zhao, M Wei, G Yang, L Yuan. Exosome-mediated delivery of inflammation-responsive Il-10 mRNA for controlled atherosclerosis treatment. Theranostics 2021; 11(20): 9988–10000
https://doi.org/10.7150/thno.64229
181 W Pei, X Li, R Bi, X Zhang, M Zhong, H Yang, Y Zhang, K Lv. Exosome membrane-modified M2 macrophages targeted nanomedicine: treatment for allergic asthma. J Control Release 2021; 338: 253–267
https://doi.org/10.1016/j.jconrel.2021.08.024
182 X Long, X Yao, Q Jiang, Y Yang, X He, W Tian, K Zhao, H Zhang. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflammation 2020; 17(1): 89
https://doi.org/10.1186/s12974-020-01761-0
183 F Deng, J Yan, J Lu, M Luo, P Xia, S Liu, X Wang, F Zhi, D Liu. M2 macrophage-derived exosomal miR-590-3p attenuates DSS-induced mucosal damage and promotes epithelial repair via the LATS1/YAP/ β-catenin signalling axis. J Crohn’s Colitis 2021; 15(4): 665–677
https://doi.org/10.1093/ecco-jcc/jjaa214
184 HA Dad, TW Gu, AQ Zhu, LQ Huang, LH Peng. Plant exosome-like nanovesicles: emerging therapeutics and drug delivery nanoplatforms. Mol Ther 2021; 29(1): 13–31
https://doi.org/10.1016/j.ymthe.2020.11.030
185 Y Kang, C Xu, L Meng, X Dong, M Qi, D Jiang. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact Mater 2022; 18: 26–41
https://doi.org/10.1016/j.bioactmat.2022.02.012
186 S Bruno, C Pasquino, MB Herrera Sanchez, M Tapparo, F Figliolini, C Grange, G Chiabotto, M Cedrino, MC Deregibus, C Tetta, G Camussi. HLSC-derived extracellular vesicles attenuate liver fibrosis and inflammation in a murine model of non-alcoholic steatohepatitis. Mol Ther 2020; 28(2): 479–489
https://doi.org/10.1016/j.ymthe.2019.10.016
187 CF Budden, LJ Gearing, R Kaiser, L Standke, PJ Hertzog, E Latz. Inflammasome-induced extracellular vesicles harbour distinct RNA signatures and alter bystander macrophage responses. J Extracell Vesicles 2021; 10(10): e12127
https://doi.org/10.1002/jev2.12127
188 A Haghighitalab, M Dominici, MM Matin, F Shekari, M Ebrahimi Warkiani, R Lim, N Ahmadiankia, M Mirahmadi, AR Bahrami, HR Bidkhori. Extracellular vesicles and their cells of origin: open issues in autoimmune diseases. Front Immunol 2023; 14: 1090416
https://doi.org/10.3389/fimmu.2023.1090416
189 S Kim, JY Maeng, SJ Hyun, HJ Sohn, SY Kim, CH Hong, TG Kim. Extracellular vesicles from human umbilical cord blood plasma modulate interleukin-2 signaling of T cells to ameliorate experimental autoimmune encephalomyelitis. Theranostics 2020; 10(11): 5011–5028
https://doi.org/10.7150/thno.42742
190 G Casella, J Rasouli, A Boehm, W Zhang, D Xiao, LLW Ishikawa, R Thome, X Li, D Hwang, P Porazzi, S Molugu, HY Tang, GX Zhang, B Ciric, A Rostami. Oligodendrocyte-derived extracellular vesicles as antigen-specific therapy for autoimmune neuroinflammation in mice. Sci Transl Med 2020; 12(568): eaba0599
https://doi.org/10.1126/scitranslmed.aba0599
191 TT Tang, B Wang, LL Lv, BC Liu. Extracellular vesicle-based nanotherapeutics: emerging frontiers in anti-inflammatory therapy. Theranostics 2020; 10(18): 8111–8129
https://doi.org/10.7150/thno.47865
192 DK Jeppesen, AM Fenix, JL Franklin, JN Higginbotham, Q Zhang, LJ Zimmerman, DC Liebler, J Ping, Q Liu, R Evans, WH Fissell, JG Patton, LH Rome, DT Burnette, RJ Coffey. Reassessment of exosome composition. Cell 2019; 177(2): 428–445.e18
https://doi.org/10.1016/j.cell.2019.02.029
[1] Xinyue Zhao, Haijun Ge, Wenshuai Xu, Chongsheng Cheng, Wangji Zhou, Yan Xu, Junping Fan, Yaping Liu, Xinlun Tian, Kai-Feng Xu, Xue Zhang. Lack of CFAP54 causes primary ciliary dyskinesia in a mouse model and human patients[J]. Front. Med., 2023, 17(6): 1236-1249.
[2] Meiling Xia, Rui Yan, Wenjuan Wang, Meng Zhang, Zhigang Miao, Bo Wan, Xingshun Xu. GID complex regulates the differentiation of neural stem cells by destabilizing TET2[J]. Front. Med., 2023, 17(6): 1204-1218.
[3] Rongchun Wang, Danhui Yang, Chaofeng Tu, Cheng Lei, Shuizi Ding, Ting Guo, Lin Wang, Ying Liu, Chenyang Lu, Binyi Yang, Shi Ouyang, Ke Gong, Zhiping Tan, Yun Deng, Yueqiu Tan, Jie Qing, Hong Luo. Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice[J]. Front. Med., 2023, 17(5): 957-971.
[4] Fen Zhang, Lanlan Xiao, Ya Yang, Menghao Zhou, Yalei Zhao, Zhongyang Xie, Xiaoxi Ouyang, Feiyang Ji, Shima Tang, Lanjuan Li. Human menstrual blood-derived stem cells alleviate autoimmune hepatitis via JNK/MAPK signaling pathway in vivo and in vitro[J]. Front. Med., 2023, 17(3): 534-548.
[5] Wencheng Zhang, Yangyang Cui, Yuan Du, Yong Yang, Ting Fang, Fengfeng Lu, Weixia Kong, Canjun Xiao, Jun Shi, Lola M. Reid, Zhiying He. Liver cell therapies: cellular sources and grafting strategies[J]. Front. Med., 2023, 17(3): 432-457.
[6] Lingyu Gao, Qianjin Lu. The critical importance of epigenetics in autoimmune-related skin diseases[J]. Front. Med., 2023, 17(1): 43-57.
[7] Kosar Babaei, Mohsen Aziminezhad, Seyedeh Elham Norollahi, Sogand Vahidi, Ali Akbar Samadani. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods[J]. Front. Med., 2022, 16(6): 827-858.
[8] Shan Chong, Yun He, Yejun Wu, Peng Zhao, Xiaolu Zhu, Fengrong Wang, Yuanyuan Zhang, Xiaodong Mo, Wei Han, Jingzhi Wang, Yu Wang, Huan Chen, Yuhong Chen, Xiangyu Zhao, Yingjun Chang, Lanping Xu, Kaiyan Liu, Xiaojun Huang, Xiaohui Zhang. Risk stratification system for skin and soft tissue infections after allogeneic hematopoietic stem cell transplantation: PAH risk score[J]. Front. Med., 2022, 16(6): 957-968.
[9] Yao Chen, Fahuan Song, Mengjiao Tu, Shuang Wu, Xiao He, Hao Liu, Caiyun Xu, Kai Zhang, Yuankai Zhu, Rui Zhou, Chentao Jin, Ping Wang, Hong Zhang, Mei Tian. Quantitative proteomics revealed extensive microenvironmental changes after stem cell transplantation in ischemic stroke[J]. Front. Med., 2022, 16(3): 429-441.
[10] Ming Hou, Suji Wang, Dandan Yu, Xinyi Lu, Xiansen Zhao, Zhangpeng Chen, Chao Yan. Cannabidiol prevents depressive-like behaviors through the modulation of neural stem cell differentiation[J]. Front. Med., 2022, 16(2): 227-239.
[11] Yulan Chen, Dianfu Chen, Shaoyun Zhao, Gonglu Liu, Hongfu Li, Zhi-Ying Wu. Penetrance estimation of PRRT2 variants in paroxysmal kinesigenic dyskinesia and infantile convulsions[J]. Front. Med., 2021, 15(6): 877-886.
[12] Chun Bian, Xinyue Zhao, Yaping Liu, Minjiang Chen, Shuying Zheng, Xinlun Tian, Kai-Feng Xu. Case report of neurofibromatosis type 1 combined with primary ciliary dyskinesia[J]. Front. Med., 2021, 15(6): 933-937.
[13] Deyu Zhang, Xiaojie Xu, Qinong Ye. Metabolism and immunity in breast cancer[J]. Front. Med., 2021, 15(2): 178-207.
[14] Xuran Chu, Chengshui Chen, Chaolei Chen, Jin-San Zhang, Saverio Bellusci, Xiaokun Li. Evidence for lung repair and regeneration in humans: key stem cells and therapeutic functions of fibroblast growth factors[J]. Front. Med., 2020, 14(3): 262-272.
[15] Xiaolin Fan, Yanzhen Xiong, Yuan Wang. A reignited debate over the cell(s) of origin for glioblastoma and its clinical implications[J]. Front. Med., 2019, 13(5): 531-539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed