Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (3) : 406-419    https://doi.org/10.1007/s11465-017-0419-0
RESEARCH ARTICLE
Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum
Yun KONG, Tianyang WANG(), Zheng LI, Fulei CHU
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(832 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.

Keywords wind turbine      planet gear fault      feature extraction      spectral kurtosis      time wavelet energy spectrum     
Corresponding Author(s): Tianyang WANG   
Just Accepted Date: 03 January 2017   Online First Date: 24 January 2017    Issue Date: 04 August 2017
 Cite this article:   
Yun KONG,Tianyang WANG,Zheng LI, et al. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum[J]. Front. Mech. Eng., 2017, 12(3): 406-419.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0419-0
https://academic.hep.com.cn/fme/EN/Y2017/V12/I3/406
Fig.1  Flowchart of the proposed feature extraction method based on SK-TWES
Fig.2  Wind turbine gearbox test rig for fault diagnosis
Fig.3  Transmitting routine in wind turbine gearbox
Stage Gear type Tooth number
Low-speed Sun gear 17
Planet gear 31(3)
Ring gear 79
Middle-speed Gear 73
Pinion 21
High-speed Gear 66
Pinion 23
Tab.1  Parameters of gears in the wind turbine gearbox
Fig.4  (a) Planet gear with tooth breakage; (b) acceleration sensors placement; the rotating speed of AC motor: (c) Experiment on faulty wind turbine gearbox; (d) experiment on healthy wind turbine gearbox
Manufacturer Model Sensitivity/(mV·g -1) F.S. range/g Frequency range (±5%)/Hz Linearity
DYTRAN INST Inc. 3056B1 10 ±500 1?10000 ±1%
Tab.2  Specifications about the accelerometers
Stage Characteristic frequency Value/Hz
Low-speed fm1 34.874
fs 2.493
fc 0.441
fp 0.684
fpf 1.125
Middle-speed fm2 181.980
f2l 2.493
f2h 8.667
f2lf 2.493
f2hf 8.667
High-speed fm3 571.930
f3l 8.667
f3h 24.867
f3lf 8.667
f3hf 24.867
Tab.3  Characteristic frequency in the wind turbine gearbox test rig
Fig.5  Raw vibration signal for planet gear with localized fault: (a) Waveform and (b) spectrum; raw vibration signal for healthy planet gear: (c) Waveform and (d) spectrum
Fig.6  Planet gear with a localized fault: (a) Kurtogram, (b) envelope of filtered signal based on kurtogram; healthy planet gears: (c) Kurtogram, (d) envelope of filtered signal based on kurtogram
Fig.7  Time wavelet energy spectrum of filtered signal: (a) Planet gear with a localized fault; (b) healthy planet gears
Fig.8  Results of comparative studies: (a) The squared envelope spectrum of raw vibration signals; (b) the squared envelope spectrum of the filtered signal based on kurtogram; (c) the time wavelet energy spectrum without any preprocessing approach
  Fig A1Results of measurement #2: (a) Raw vibration signal; (b) its spectrum; (c) Kurtogram; (d) envelope of filtered signal based on kurtogram; (e) time wavelet energy spectrum of filtered signal; (f) the squared envelope spectrum of raw vibration signals; (g) the squared envelope spectrum of the filtered signal based on kurtogram; (h) the time wavelet energy spectrum of raw signal without any preprocessing approach
  Fig A2Results of measurement #3: (a) Raw vibration signal; (b) its spectrum; (c) Kurtogram; (d) envelope of filtered signal based on kurtogram; (e) time wavelet energy spectrum of filtered signal; (f) the squared envelope spectrum of raw vibration signals; (g) the squared envelope spectrum of the filtered signal based on kurtogram; (h) the time wavelet energy spectrum of raw signal without any preprocessing approach
1 Amirat Y, Benbouzid  M E H, Al-Ahmar  E, et al.A brief status on condition monitoring and fault diagnosis in wind energy conversion systems. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2629–2636
https://doi.org/10.1016/j.rser.2009.06.031
2 Hameed Z, Hong  Y S, Cho  Y M, et al.Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable & Sustainable Energy Reviews, 2009, 13(1): 1–39
https://doi.org/10.1016/j.rser.2007.05.008
3 Feng Z, Liang  M, Zhang Y , et al.Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation. Renewable Energy, 2012, 47: 112–126
https://doi.org/10.1016/j.renene.2012.04.019
4 Younus A M D ,  Yang B S . Intelligent fault diagnosis of rotating machinery using infrared thermal image. Expert Systems with Applications, 2012, 39(2): 2082–2091
https://doi.org/10.1016/j.eswa.2011.08.004
5 Toutountzakis T, Tan  C K, Mba  D. Application of acoustic emission to seeded gear fault detection. NDT & E International, 2005, 38(1): 27–36
https://doi.org/10.1016/j.ndteint.2004.06.008
6 Ottewill J R, Orkisz  M. Condition monitoring of gearboxes using synchronously averaged electric motor signals. Mechanical Systems and Signal Processing, 2013, 38(2): 482–498
https://doi.org/10.1016/j.ymssp.2013.01.008
7 Li C, Liang  M. Extraction of oil debris signature using integral enhanced empirical mode decomposition and correlated reconstruction. Measurement Science & Technology, 2011, 22(8): 085701
https://doi.org/10.1088/0957-0233/22/8/085701
8 Samuel P D, Pines  D J. A review of vibration-based techniques for helicopter transmission diagnostics. Journal of Sound and Vibration, 2005, 282(1‒2): 475–508
https://doi.org/10.1016/j.jsv.2004.02.058
9 Lei Y, Lin  J, Zuo M J , et al.Condition monitoring and fault diagnosis of planetary gearboxes: A review. Measurement, 2014, 48: 292–305
https://doi.org/10.1016/j.measurement.2013.11.012
10 Li C, Sanchez  V, Zurita G , et al.Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement. ISA Transactions, 2016, 60: 274–284
https://doi.org/10.1016/j.isatra.2015.10.014
11 Cong F, Zhong  W, Tong S , et al.Research of singular value decomposition based on slip matrix for rolling bearing fault diagnosis. Journal of Sound and Vibration, 2015, 344: 447–463
https://doi.org/10.1016/j.jsv.2015.01.014
12 Ho D, Randall  R B. Optimisation of bearing diagnostic techniques using simulated and actual bearing fault signals. Mechanical Systems and Signal Processing, 2000, 14(5): 763–788
https://doi.org/10.1006/mssp.2000.1304
13 Antoni J. The spectral kurtosis: A useful tool for characterizing non-stationary signals. Mechanical Systems and Signal Processing, 2006, 20(2): 282–307
https://doi.org/10.1016/j.ymssp.2004.09.001
14 Antoni J. Fast computation of the kurtogram for the detection of transient faults. Mechanical Systems and Signal Processing, 2007, 21(1): 108–124
https://doi.org/10.1016/j.ymssp.2005.12.002
15 Antoni J, Randall  R B. The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing, 2006, 20(2): 308–331
https://doi.org/10.1016/j.ymssp.2004.09.002
16 Wang Y, Liang  M. An adaptive SK technique and its application for fault detection of rolling element bearings. Mechanical Systems and Signal Processing, 2011, 25(5): 1750–1764
https://doi.org/10.1016/j.ymssp.2010.12.008
17 Barszcz T, Randall  R B. Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine. Mechanical Systems and Signal Processing, 2009, 23(4): 1352–1365
https://doi.org/10.1016/j.ymssp.2008.07.019
18 Lei Y, Lin  J, He Z , et al.. Application of an improved kurtogram method for fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing, 2011, 25(5): 1738–1749
https://doi.org/10.1016/j.ymssp.2010.12.011
19 Yan R, Gao  R, Chen X . Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Processing, 2014, 96: 1–15
https://doi.org/10.1016/j.sigpro.2013.04.015
20 Chen J, Li  Z, Pan J , et al.. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mechanical Systems and Signal Processing, 2016, 70 ‒ 71: 1–35
https://doi.org/10.1016/j.ymssp.2015.08.023
21 Lin J, Qu  L. Feature extraction based Morlet wavelet and its application for mechanical fault diagnosis. Journal of Sound and Vibration, 2000, 234(1): 135–148
https://doi.org/10.1006/jsvi.2000.2864
22 Jiang Y, Tang  B, Liu W . Feature extraction method of wind turbine based on adaptive Morlet wavelet and SVD. Renewable Energy, 2011, 36(8): 2146–2153
https://doi.org/10.1016/j.renene.2011.01.009
23 Dwyer R F. Detection of non-Gaussian signal by frequency domain kurtosis estimation. In: Proceedings of the International Conference on Acoustic, Speech, and Signal Processing. Boston, 1983, 607–610
24 Wang Y, Xiang  J, Markert R , et al.. Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications. Mechanical Systems and Signal Processing, 2016, 66–67: 679–698
https://doi.org/10.1016/j.ymssp.2015.04.039
25 Program for the fast kurtogram provided by J. Antoni. Retrieved from 
26 Chu F, Peng  Z, Feng Z , et al.. Modern Signal Processing Methods in Machinery Fault Diagnosis. Beijing: Science Press, 2009, 34–37 (in Chinese)
[1] Xuefeng CHEN, Shibin WANG, Baijie QIAO, Qiang CHEN. Basic research on machinery fault diagnostics: Past, present, and future trends[J]. Front. Mech. Eng., 2018, 13(2): 264-291.
[2] Binrong WEN, Sha WEI, Kexiang WEI, Wenxian YANG, Zhike PENG, Fulei CHU. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow[J]. Front. Mech. Eng., 2017, 12(3): 321-332.
[3] Yi WANG, Yong XIE, Guanghua XU, Sicong ZHANG, Chenggang HOU. Tacholess order-tracking approach for wind turbine gearbox fault detection[J]. Front. Mech. Eng., 2017, 12(3): 427-439.
[4] Xiaoli XU, Xiuli LIU. Weak characteristic information extraction from early fault of wind turbine generator gearbox[J]. Front. Mech. Eng., 2017, 12(3): 357-366.
[5] Zhaohui DU, Xuefeng CHEN, Han ZHANG, Yanyang ZI, Ruqiang YAN. Multiple fault separation and detection by joint subspace learning for the health assessment of wind turbine gearboxes[J]. Front. Mech. Eng., 2017, 12(3): 333-347.
[6] Xueping PAN, Ping JU, Feng WU, Yuqing JIN. Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator[J]. Front. Mech. Eng., 2017, 12(3): 367-376.
[7] Maolin CAI, Yixuan WANG, Zongxia JIAO, Yan SHI. Review of fluid and control technology of hydraulic wind turbines[J]. Front. Mech. Eng., 2017, 12(3): 312-320.
[8] Hamed HABIBI, Hamed RAHIMI NOHOOJI, Ian HOWARD. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control[J]. Front. Mech. Eng., 2017, 12(3): 377-388.
[9] Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN. Effects of elastic support on the dynamic behaviors of the wind turbine drive train[J]. Front. Mech. Eng., 2017, 12(3): 348-356.
[10] Shoudao HUANG, Xuan WU, Xiao LIU, Jian GAO, Yunze HE. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults[J]. Front. Mech. Eng., 2017, 12(3): 281-302.
[11] Lingli JIANG, Zhenyong DENG, Fengshou GU, Andrew D. BALL, Xuejun LI. Effect of friction coefficients on the dynamic response of gear systems[J]. Front. Mech. Eng., 2017, 12(3): 397-405.
[12] Pengxing YI,Peng HUANG,Tielin SHI. Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine[J]. Front. Mech. Eng., 2016, 11(4): 388-402.
[13] Sampath S. S.,Sawan SHETTY,Chithirai Pon Selvan M.. Estimation of power in low velocity vertical axis wind turbine[J]. Front. Mech. Eng., 2015, 10(2): 211-218.
[14] Pengxing YI,Lijian DONG,Tielin SHI. Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox[J]. Front. Mech. Eng., 2014, 9(4): 354-367.
[15] LIU Xiong, CHEN Yan, YE Zhiquan. Optimization model for rotor blades of horizontal axis wind turbines[J]. Front. Mech. Eng., 2007, 2(4): 483-488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed