Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2008, Vol. 1 Issue (3-4) : 336-340    https://doi.org/10.1007/s12200-008-0059-4
Research article
Monolithically integrated long wavelength photoreceiver OEIC based on InP/InGaAs HBT technology
Xianjie LI1(), Yonglin ZHAO1, Daomin CAI1, Qingming ZENG1, Yunzhang PU1, Yana GUO1, Zhigong WANG2, Rong WANG3, Ming QI3, Xiaojie CHEN3, Anhuai XU3
1. 13th Institute of China Electronic Technology Group Corporation; 2. Institute of RF&OEICs, Southeast University; 3. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
 Download: PDF(196 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The epitaxial structure and growth, circuit design, fabrication process and characterization are described for the photoreceiver opto-electronic integrated circuit (OEIC) based on the InP/InGaAs HBT/PIN photodetector integration scheme. A 1.55 μm wavelength monolithically integrated photoreceiver OEIC is demonstrated with self-aligned InP/InGaAs heterojunction bipolar transistor (HBT) process. The InP/InGaAs HBT with a 2 μm × 8 μm emitter showed a DC gain of 40, a DC gain cutoff frequency of 45 GHz and a maximum frequency of oscillation of 54 GHz. The integrated InGaAs photodetector exhibited a responsivity of 0.45 A/W at λ = 1.55 μm, a dark current less than 10 nA at a bias of -5 V and a -3 dB bandwidth of 10.6 GHz. Clear and opening eye diagrams were obtained for an NRZ 223-1 pseudorandom code at both 2.5 and 3.0 Gbit/s. The sensitivity for a bit error ratio of 10-9 at 2.5 Gbit/s is less than -15.2 dBm.

Keywords InP/InGaAs heterojunction bipolar transistor (HBT)      PIN      photoreceiver      opto-electronic integrated circuit (OEIC)     
Corresponding Author(s): LI Xianjie,Email:xianjie@tom.com   
Issue Date: 05 September 2009
 Cite this article:   
Xiaojie CHEN,Anhuai XU,Xianjie LI, et al. Monolithically integrated long wavelength photoreceiver OEIC based on InP/InGaAs HBT technology[J]. Front Optoelec Chin, 2008, 1(3-4): 336-340.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0059-4
https://academic.hep.com.cn/foe/EN/Y2008/V1/I3-4/336
Fig0  Schematic of PIN/HBT photoreceiver OEIC
layermaterialthickness/nmdoping
dopantdensity/cm-3
cap1InGaAs200n+–Si2 × 1019
cap2InP50n+–Si1 × 1019
emitterInp100n–Si5 × 1017
spacerInGaAs10i
baseInGaAs55p+–Be3.5 × 1019
spacerInGaAs10i
collectorInGaAs700i
subcollectorInGaAs400n–Si1 × 1019
Tab0  Epitaxial structure for PIN/HBT OEIC
1 BitterM, BauknechtR, HunzikerW, . Monolithically integrated 40-Gb/s InP/InGaAs PIN/HBT optical receiver module. In: Proceedings of the 11th International Conference on Indium Phosphide and Related Materials, Davos . IEEE Press, 1999: 381–384
2 HuberD, BitterM, DülkM, . A 53 GHz monolithically integrated InP/InGaAs PIN/HBT receiver OEIC with an electrical bandwidth of 63 GHz. In: Proceedings of the 12th International Conference on Indium Phosphide and Related Materials, Williamsburg . IEEE Press, 2000: 325–328
3 MekonnenG G, BachH G, BelingA, . 80-Gb/s InP-based waveguide-integrated photoreceiver. IEEE Journal of Selected Topics in Quantum Electronics , 2005, 11(2): 356–360
doi: 10.1109/JSTQE.2005.846518
4 Gutierrez-AitkenA L, YangK, ZhangX, . 16-GHz bandwidth InAlAs-InGaAs monolithically integrated PIN/HBT photoreceiver. IEEE Photonics Technology Letters , 1995, 7(11): 1339–1341
doi: 10.1109/68.473491
5 AoJ P, LiuW J, LiX J, . Long wavelength monolithic integrated photoreceiver. Semiconductor Optoelectronics , 2002, 23(1): 26–28 (in Chinese)
6 LiX J, AoJ P, WangR, . An 850 nm wavelength monolithic integrated photoreceiver with a single-power- supplied transimpedance amplifier based on GaAs PHEMT technology. In: Proceedings of the 23rd IEEE Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, Baltimore . IEEE Press, 2001: 65–69
7 LiX J, CaiD M, ZhaoY L, . Design and process for self-aligned InP/InGaAs SHBT structure. Chinese Journal of Semiconductors , 2005, 26(z1): 136–139 (in Chinese)
[1] Jieyin BAI, Jie ZHU, Rui ZHAO, Fengqiang GU, Jiao WANG. Area-based non-maximum suppression algorithm for multi-object fault detection[J]. Front. Optoelectron., 2020, 13(4): 425-432.
[2] Chuanzhong YAN, Kebin LIN, Jianxun LU, Zhanhua WEI. Composition engineering to obtain efficient hybrid perovskite light-emitting diodes[J]. Front. Optoelectron., 2020, 13(3): 282-290.
[3] Jinghui LI, Zhifang TAN, Manchen HU, Chao CHEN, Jiajun LUO, Shunran LI, Liang GAO, Zewen XIAO, Guangda NIU, Jiang TANG. Antimony doped Cs2SnCl6 with bright and stable emission[J]. Front. Optoelectron., 2019, 12(4): 352-364.
[4] Yuchen SONG, Yunfeng CHEN, Jianguo XIN, Teng SUN. Two-dimensional beam shaping and homogenization of high power laser diode stack with rectangular waveguide[J]. Front. Optoelectron., 2019, 12(3): 311-316.
[5] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[6] Jianjun YU. Spectrally efficient single carrier 400G optical signal transmission[J]. Front. Optoelectron., 2019, 12(1): 15-23.
[7] Hongbao XIN, Baojun LI. Fiber-based optical trapping and manipulation[J]. Front. Optoelectron., 2019, 12(1): 97-110.
[8] Peng LI, Sheng LIU, Yi ZHANG, Lei HAN, Dongjing WU, Huachao CHENG, Shuxia QI, Xuyue GUO, Jianlin ZHAO. Modulation of orbital angular momentum on the propagation dynamics of light fields[J]. Front. Optoelectron., 2019, 12(1): 69-87.
[9] Runda GUO, Wenzhi ZHANG, Qing ZHANG, Xialei LV, Lei WANG. Efficient deep red phosphorescent OLEDs using 1,2,4-thiadiazole core-based novel bipolar host with low efficiency roll-off[J]. Front. Optoelectron., 2018, 11(4): 375-384.
[10] Ru GE, Fei QIN, Lin HU, Sixing XIONG, Yinhua ZHOU. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells[J]. Front. Optoelectron., 2018, 11(4): 360-366.
[11] Lauro J. Q. MAIA, Jyothis THOMAS, Yannick LEDEMI, Kummara V. KRISHNAIAH, Denis SELETSKIY, Younès MESSADDEQ, Raman KASHYAP. Photonic properties of novel Yb3+ doped germanium-lead oxyfluoride glass-ceramics for laser cooling applications[J]. Front. Optoelectron., 2018, 11(2): 189-198.
[12] Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Front. Optoelectron., 2018, 11(1): 2-22.
[13] Sakhawat HUSSAIN, Tasnim ZERIN, Md. Ashik KHAN. Design and simulation to improve the structural efficiency of green light emission of GaN/InGaN/AlGaN light emitting diode[J]. Front. Optoelectron., 2017, 10(4): 370-377.
[14] Zongxin ZHANG,Xiaoming LU,Yuxin LENG. Multi-operation laser oscillator: an example of multi-operation laser[J]. Front. Optoelectron., 2017, 10(1): 14-17.
[15] Qirong XIAO,Yusheng HUANG,Junyi SUN,Xuejiao WANG,Dan LI,Mali GONG,Ping YAN. Research on multi-kilowatts level tapered fiber bundle N×1 pumping combiner for high power fiber laser[J]. Front. Optoelectron., 2016, 9(2): 301-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed