Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2009, Vol. 2 Issue (2) : 153-158    https://doi.org/10.1007/s12200-009-0024-x
RESEARCH ARTICLE
Engineering modes in optical fibers with metamaterial
Min YAN1(), Niels Asger MORTENSEN1, Min QIU2
1. Department of Photonics Engineering, Technical University of Denmark, DTU-Fotonik, DK-2800 Kongens Lyngby, Denmark; 2. Department of Microelectronics and Applied Physics, Royal Institute of Technology, 16440 Kista, Sweden
 Download: PDF(204 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we report a preliminary theoretical study on optical fibers with fine material inclusions whose geometrical inhomogeneity is almost indistinguishable by the operating wavelength. We refer to such fibers as metamaterial optical fibers, which can conceptually be considered as an extension from the previously much publicized microstructured optical fibers. Metamaterials can have optical properties not obtainable in naturally existing materials, including artificial anisotropy as well as graded material properties. Therefore, incorporation of metamaterial in optical fiber designs can produce a new range of fiber properties. With a particular example, we will show how mode discrimination can be achieved in a multimode Bragg fiber with the help of metamaterial. We also look into the mean field theory as well as Maxwell-Garnett theory for homogenizing a fine metamaterial structure to a homogeneous one. The accuracies of the two homogenization approaches are compared with full-structure calculation.

Keywords optical fiber      metamaterial      Bragg fiber      mode discrimination     
Corresponding Author(s): YAN Min,Email:miyan@fotonik.dtu.dk   
Issue Date: 05 June 2009
 Cite this article:   
Min YAN,Niels Asger MORTENSEN,Min QIU. Engineering modes in optical fibers with metamaterial[J]. Front Optoelec Chin, 2009, 2(2): 153-158.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-009-0024-x
https://academic.hep.com.cn/foe/EN/Y2009/V2/I2/153
Fig.1  Schematic diagrams of metamaterial optical fibers with high birefringence. (a) Fiber with core made of 1D layered medium; (b) fiber with core made of two-dimensional (2D) nanostructured medium (gray region denotes material with higher refractive index than background)
Fig.2  (a)       (b)        (c)
Schematic diagrams of three Bragg fiber cross-sections. (a) Conventional Bragg fiber with a homogeneous isotropic core; (b) Bragg fiber with a metamaterial core, which is made of subwavelength concentric bilayers; (c) Bragg fiber with a metamaterial core, which is made of subwavelength annular sectors (gray region denotes material with higher refractive index than background)
Fig.3  (a)       (b)
Dispersion (a) and loss (b) curves of second-order modes in a homogeneous-core Bragg fiber (notice the almost complete overlap of dispersion curves in (a))
Fig.4  Index profile along radial position for metamaterial-core Bragg fiber
Fig.5  (a)        (b)
Dispersion (a) and loss (b) curves of TE and TM modes in a metamaterial-core Bragg fiber
Fig.6  (a) Relative error in value for MFT and MGT approximation models; (b) relative error in loss
1 Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science , 2001, 292(5514): 77-79
doi: 10.1126/science.1058847
2 Shalaev V M. Optical negative-index metamaterials. Nature Photonics , 2006, 1: 41-48
doi: 10.1038/nphoton.2006.49
3 Birks T A, Knight J C, Russell P S. Endlessly single-mode photonic crystal fiber. Optics Letters , 1997, 22(13): 961-963
doi: 10.1364/OL.22.000961
4 Yan M, Shum P. Antiguiding in microstructured optical fibers. Optics Express , 2004, 12(1): 104-116
doi: 10.1364/OPEX.12.000104
5 Koshiba M, Saitoh K. Simple evaluation of confinement losses in holey fibers. Optics Communications , 2005, 253(1-3 ): 95-98
doi: 10.1016/j.optcom.2005.04.040
6 Wang A, George A, Liu J, Knight J. Highly birefringent lamellar core fiber. Optics Express , 2005, 13(16): 5988-5993
doi: 10.1364/OPEX.13.005988
7 Hu J, Yan M, Shum P. Birefringent optical fiber with a photonic-crystal core. In: Proceedings of Australian Conference on Optical Fibre Technology (ACOFT) , 2006, 60-62
8 Yu X, Shum P, Yan M, Ren G. Silica based birefringent large mode area fiber with a nanostructure core. IEEE Photonics Technology Letters , 2008, 20(4): 246-248
doi: 10.1109/LPT.2007.913657
9 Yu X, Shum P, Ngo N, Tong W, Luo J, Ren G, Gong Y, Zhou J. Silica-based nanostructure core fiber. IEEE Photonics Technology Letters , 2008, 20(2): 162-164
doi: 10.1109/LPT.2007.912486
10 Yan M, Shum P. Analysis of perturbed Bragg fibers with an extended transfer matrix method. Optics Express , 2006, 14(7): 2596-2610
doi: 10.1364/OE.14.002596
11 Yeh P, Yariv A, Marom E. Theory of Bragg fiber. Journal of Optical Society of the America , 1978, 68(9): 1196-1201
doi: 10.1364/JOSA.68.001196
12 Johnson S, Ibanescu M, Skorobogatiy M, Weisberg O, Engeness T, Soljacic M, Jacobs S, Joannopoulos J, Fink Y. Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers. Optics Express , 2001, 9(13): 748-779
[1] Muhammad Noaman ZAHID, Jianliang JIANG, Saad RIZVI. Reflectometric and interferometric fiber optic sensor’s principles and applications[J]. Front. Optoelectron., 2019, 12(2): 215-226.
[2] Xiupu ZHANG. Broadband linearization for 5G fronthaul transmission[J]. Front. Optoelectron., 2018, 11(2): 107-115.
[3] John C. CARTLEDGE. Performance of coherent optical fiber transmission systems[J]. Front. Optoelectron., 2018, 11(2): 128-133.
[4] Eric Y. ZHU, Costantino CORBARI, Alexey V. GLADYSHEV, Peter G. KAZANSKY, Li QIAN. Franson interferometry with a single pulse[J]. Front. Optoelectron., 2018, 11(2): 148-154.
[5] Yanhua LUO, Binbin YAN, Jianzhong ZHANG, Jianxiang WEN, Jun HE, Gang-Ding PENG. Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications[J]. Front. Optoelectron., 2018, 11(1): 37-52.
[6] Shaghik ATAKARAMIANS, Tanya M. MONRO, Shahraam AFSHAR V.. Dipole-fiber system: from single photon source to metadevices[J]. Front. Optoelectron., 2018, 11(1): 30-36.
[7] Xiangkun KONG, Junyi XU, Jin-jun MO, Shaobin LIU. Broadband and conformal metamaterial absorber[J]. Front. Optoelectron., 2017, 10(2): 124-131.
[8] Benxin WANG,Xiang ZHAI,Guizhen WANG,Weiqing HUANG,Lingling WANG. Broadband coplane metamaterial filter based on two nested split-ring-resonators[J]. Front. Optoelectron., 2016, 9(4): 565-570.
[9] Xiangang LUO. Subwavelength electromagnetics[J]. Front. Optoelectron., 2016, 9(2): 138-150.
[10] Xiaoling ZHANG,Jianqiang GU,Jiaguang HAN,Weili ZHANG. Tailoring electromagnetic responses in terahertz superconducting metamaterials[J]. Front. Optoelectron., 2015, 8(1): 44-56.
[11] Hou-Tong CHEN. Semiconductor activated terahertz metamaterials[J]. Front. Optoelectron., 2015, 8(1): 27-43.
[12] Jian WANG. A review of recent progress in plasmon-assisted nanophotonic devices[J]. Front. Optoelectron., 2014, 7(3): 320-337.
[13] Qi MO,Cheng DU,Wei CHEN,Yili KE,Tao ZHANG,Rushan CHEN. Review on developments of novel specialty fibers: performance, application and process[J]. Front. Optoelectron., 2014, 7(3): 338-347.
[14] Yinghui GUO, Lianshan YAN, Wei PAN, Bin LUO, Xiantao ZHANG, Xiangang LUO. Misalignments among stacked layers of metamaterial terahertz absorbers[J]. Front Optoelec, 2014, 7(1): 53-58.
[15] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed