Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2015, Vol. 8 Issue (2) : 163-169    https://doi.org/10.1007/s12200-015-0463-5
RESEARCH ARTICLE
Fourier domain optical coherence tomography with ultralong depth range
Zhihua DING(),Yi SHEN,Wen BAO,Peng LI
State Key Lab of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
 Download: PDF(1061 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The depth ranges of typical implementations of Fourier domain optical coherence tomography (FDOCT), including spectral domain OCT (SDOCT) and swept source OCT (SSOCT), are limited to several millimeters. To extend the depth range of current OCT systems, two novel systems with ultralong depth range were developed in this study. One is the orthogonal dispersive SDOCT (OD-SDOCT), and the other is the recirculated swept source (R-SS) interferometer/OCT. No compromise between depth range and depth resolution is required in both systems. The developed OD-SDOCT system realized the longest depth range (over 100 mm) ever achieved by SDOCT, which is ready to be modified for depth-encoded parallel imaging on multiple sites. The developed R-SS interferometer achieved submicron precision within a depth range of 30 mm, holding potential in real-time contact-free on-axis metrology of complex optical systems.

Keywords optical coherence tomography (OCT)      virtually-imaged phased array (VIPA)      orthogonal dispersion      swept source      light recirculation      parallel imaging      dimensional metrology     
Corresponding Author(s): Zhihua DING   
Just Accepted Date: 26 January 2015   Online First Date: 10 February 2015    Issue Date: 24 June 2015
 Cite this article:   
Wen BAO,Peng LI,Zhihua DING, et al. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0463-5
https://academic.hep.com.cn/foe/EN/Y2015/V8/I2/163
Fig.1  (a) Schematic of OD-SDOCT system based on a virtually-imaged phased array (VIPA)-grating spectrometer; (b) detailed layout of the dispersive VIPA-grating spectrometer. SLD: super luminescent diode; CCD: charge coupled device
Fig.2  Schematic of R-SS interferometer. Coupler: 50:50 fiber coupler; PC: polarization controllers; AOFS1, 2: acousto-optic frequency shifters; SOA: semiconductor optical amplifier; CIR: circulator; OD: optical delay line; MZI: Mach–Zehnder interferometer; BPD: balanced photodetector; CH1: channel 1; CH2: channel 2; TRG: trigger channel; DAQ: data acquisition
Fig.3  Comparison imaging of a model eye by the OD-SDOCT system and conventional SDOCT system
Fig.4  Ultralong-range imaging of a steel post connected to a post holder base by the OD-SDOCT system
Fig.5  Schematic of the depth-encoded OD-SDOCT for simultaneous multi-site imaging. Ref: reference arm; L: lens; BS: beam?splitter?; MS: multi-site; M: mirror; S1,2: sample lateral locations 1,2
Fig.6  Measured profiles for a sample consisting of four interfaces in frequency domain and depth domain
location/mm optical thickness/μm standard deviation/μm
5 1779.5 0.02
10 1778.1 0.03
15 1779.3 0.14
20 1779.9 0.91
25 1779.5 0.36
30 1778.6 0.97
Tab.1  Optical thickness measurements at different locations
1 Wang Z, Yuan Z, Wang H, Pan Y. Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique. Optics Express, 2006, 14(16): 7014–7023
https://doi.org/10.1364/OE.14.007014 pmid: 19529072
2 Huber R, Wojtkowski M, Taira K, Fujimoto J, Hsu K. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Optics Express, 2005, 13(9): 3513–3528
https://doi.org/10.1364/OPEX.13.003513 pmid: 19495256
3 Wojtkowski M, Kowalczyk A, Leitgeb R, Fercher A F. Full range complex spectral optical coherence tomography technique in eye imaging. Optics Letters, 2002, 27(16): 1415–1417
https://doi.org/10.1364/OL.27.001415 pmid: 18026464
4 Wang K, Ding Z, Zeng Y, Meng J, Chen M. Sinusoidal B-M method based spectral domain optical coherence tomography for the elimination of complex-conjugate artifact. Optics Express, 2009, 17(19): 16820–16833
https://doi.org/10.1364/OE.17.016820 pmid: 19770899
5 Davis A M, Choma M A, Izatt J A. Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal. Journal of Biomedical Optics, 2005, 10(6): 064005
https://doi.org/10.1117/1.2136147 pmid: 16409070
6 Bajraszewski T, Wojtkowski M, Szkulmowski M, Szkulmowska A, Huber R, Kowalczyk A. Improved spectral optical coherence tomography using optical frequency comb. Optics Express, 2008, 16(6): 4163–4176
https://doi.org/10.1364/OE.16.004163 pmid: 18542513
7 Wang C, Ding Z, Mei S, Yu H, Hong W, Yan Y, Shen W. Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography. Optics Letters, 2012, 37(21): 4555–4557
https://doi.org/10.1364/OL.37.004555 pmid: 23114361
8 Bao W, Ding Z, Li P, Chen Z, Shen Y, Wang C. Orthogonal dispersive spectral-domain optical coherence tomography. Optics Express, 2014, 22(8): 10081–10090
https://doi.org/10.1364/OE.22.010081 pmid: 24787889
9 Shen Y, Ding Z, Yan Y, Wang C, Yang Y, Zhang Y. Extended range phase-sensitive swept source interferometer for real-time dimensional metrology. Optics Communications, 2014, 318: 88–94
https://doi.org/10.1016/j.optcom.2013.12.065
10 Hendargo H C, Bower B A, Reinstein A S, Shepherd N, Tao Y K, Izatt J A. Depth-encoded spectral domain phase microscopy for simultaneous multi-site nanoscale optical measurements. Optics Communications, 2011, 284(19): 4847–4851
https://doi.org/10.1016/j.optcom.2011.06.001 pmid: 21886940
[1] Sergey Yu. KSENOFONTOV, Pavel A. SHILYAGIN, Dmitry A. TERPELOV, Valentin M. GELIKONOV, Grigory V. GELIKONOV. Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2020, 13(4): 393-401.
[2] Jonas OGIEN, Anthony DAURES, Maxime CAZALAS, Jean-Luc PERROT, Arnaud DUBOIS. Line-field confocal optical coherence tomography for three-dimensional skin imaging[J]. Front. Optoelectron., 2020, 13(4): 381-392.
[3] Vasily A. MATKIVSKY, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2017, 10(3): 323-328.
[4] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[5] Jian GAO,Xiao PENG,Peng LI,Zhihua DING,Junle QU,Hanben NIU. Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 170-176.
[6] Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods[J]. Front Optoelec Chin, 2009, 2(2): 141-145.
[7] Xiaonong ZHU, Yanmei LIANG, Youxin MAO, Yaqing JIA, Yiheng LIU, Guoguang MU. Analyses and calculations of noise in optical coherence tomography systems[J]. Front Optoelec Chin, 2008, 1(3-4): 247-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed