Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (2) : 218-223    https://doi.org/10.1007/s11706-009-0020-5
RESEARCH ARTICLE
Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions
He-sheng LI1,2, Yong-xin QI1,2, Yuan-pei ZHANG1,2, Mu-sen LI1,2()
1. Key Laboratory of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Jinan 250061, China; 2. Shandong Engineering Research Center for Superhard Materials, Zoucheng 273500, China
 Download: PDF(226 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The fracture behavior of the diamond single crystals with metallic inclusions was investigated in the present paper. Single diamond crystals with metallic inclusions were formed by a special process with high pressure and high temperature (HPHT). The inclusions trapped in the diamond were characterized mainly to be metallic carbide of (Fe,Ni)23C6 or Fe3C and solid solution of γ-(Fe,Ni) by transmission electronic microscopy (TEM). The grain size of the inclusions is about micrometers. The fracture characteristics of the diamond single crystals, after compression and heating, were investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The fracture sections of the compressed and heated diamonds were found to be parallel to the (111) plane. The interface of the inclusions and diamond is deduced to be the key factor and the original region of the fracture formation. Mechanisms of the fracture behavior of the HPHT synthesized diamonds are discussed.

Keywords synthetic diamond      metallic inclusions      fracture      microstructure     
Corresponding Author(s): LI Mu-sen,Email:msli@sdu.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
He-sheng LI,Yong-xin QI,Yuan-pei ZHANG, et al. Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions[J]. Front Mater Sci Chin, 2009, 3(2): 218-223.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0020-5
https://academic.hep.com.cn/foms/EN/Y2009/V3/I2/218
Fig.1  Photograph of diamond single crystals containing many large-size inclusions
Fig.2  TEM image of FeC particle in the diamond crystal; The corresponding SAD pattern from the [101] zone axis of FeC
Fig.3  TEM image of γ-(Fe,Ni) particles in the diamond crystal; The corresponding SAD pattern from the [211] zone axis of γ-(Fe,Ni)
Fig.4  TEM image of (Fe,Ni)C particles in the diamond crystal; The corresponding SAD pattern from the [211] zone axis of (Fe,Ni)C
Fig.5  Photographs of chapped diamond crystals after pressing and oxidization at 1000oC for 10 min
Fig.6  SEM images of the fracture section of the compressed diamond crystal after being shattered by supersonic wave ((b) is the local magnification of (a))
Fig.7  SEM image of the fracture section of heated diamond crystal after being shattered by supersonic wave
1 Ferro S. Synthesis of diamond. Journal of Material Chemistry , 2002, 12: 2843-2855
doi: 10.1039/b204143j
2 Queisser H J. Modern Crystallograph . Berlin: Springer-Verlag, 1984
3 Huggins C M, Cannon P. Diamond containing controllable impurity concentration. Nature , 1962, 120: 829-830
doi: 10.1038/194829a0
4 Pavel E. The nature of the metallic inclusions in synthetic diamond crystals synthesized at ~5.5 GPa in Fe-C system. Solid State Communications , 1990, 76(4): 531-533
doi: 10.1016/0038-1098(90)90664-W
5 Kaneko J, Yonezawa C, Kasugai Y, . Determination of metallic impurities in high-purity type a diamond grown by high-pressure and high-temperature synthesis using neutron activation analysis. Diamond and Related Materials , 2000, 9: 2019-2023
doi: 10.1016/S0925-9635(00)00357-5
6 Kupriyanov I N, Gusev V A, Borzdo Y M, . Photoluminescence study of annealed nickel- and nitrogen- containing synthetic diamond. Diamond and Related Materials , 1999, 8: 1301-1309
doi: 10.1016/S0925-9635(99)00122-3
7 Kanda H, Watanabe K. Distribution of nickel related luminescence centers in HPHT diamond. Diamond and Related Materials , 1999, 8: 1463-1469
doi: 10.1016/S0925-9635(99)00070-9
8 Jia X, Hayakawa S, Li W, . Cobalt impurities in synthetic diamond. Diamond and Related Materials , 1999, 8: 1895-1899
doi: 10.1016/S0925-9635(99)00164-8
9 Shimomura S, Kanda H, Nakezawa H. Observation of micro-inclusions in diamond by scanning X-ray analytical microscope. Diamond and Related Materials , 1997, 6: 1680-1682
doi: 10.1016/S0925-9635(07)00041-6
10 Isoya J, Kanda H, Norris J R, . Fourier-transform and continuous-wave EPR studies of nickel in synthetic diamond: Site and spin multiplicity. Physics Review B , 1990, 41: 3905-3913
doi: 10.1103/PhysRevB.41.3905
11 Collins A T. Spectroscopy of defects and transition metals in diamond. Diamond and Related Materials , 2000, 9: 417-423
doi: 10.1016/S0925-9635(99)00314-3
12 Langenhorst F, Poirier J P, Frost D J. TEM observations of microscopic inclusions in synthetic diamond. Journal of Materials Science , 2004, 39: 1865-1867
doi: 10.1023/B:JMSC.0000016205.14981.11
13 Yin L W, Zou Z D, Li M S, . Some inclusions and defects in a synthetic diamond single crystal. Journal of Crystal Growth , 2000, 218: 455-458
doi: 10.1016/S0022-0248(00)00562-5
14 Giardini A A, Tyding J E. Diamond synthesis: observations on the mechanism of formation. American Mineralogist , 1962, 47: 1393-1399
15 Yin L W, Li M S, Sun D S, . Transmission electron microscopic study of some inclusions in synthetic diamond crystals. Materials Letters , 2001, 48: 21-25
doi: 10.1016/S0167-577X(00)00274-3
16 Liu Y X, Xiao L M, Yin L W. Entrapment of inclusions in diamond crystals grown from Fe-Ni-C system. Journal of Materials Science and Technology , 2002, 18(2): 171-172
17 Zhang Y F, Zhang F Q, Chen G H. A study of the pressure-temperature conditions for diamond growth. Journal of Materials Research , 1994, 9: 2845-2849
doi: 10.1557/JMR.1994.2845
18 Yin L W, Li M S, Gong Z G, . Analysis of nanometer inclusions in high pressure synthesized diamond single crystals. Chemical Physics Letters , 2002, 355: 490-496
doi: 10.1016/S0009-2614(02)00282-8
19 Shterenberg L E, Slesarev V N, Korsunskaya I A, . The experimental study of the interaction between the melt, carbides and diamond in the iron-carbon system at high pressure. High Temperatures High Pressures , 1975, 7: 517-522
20 Watson J H P, Li Z, Hyde A M. Compressive strength of synthetic diamond grits containing metallic nanoparticles. Applied Physics Letters , 2000, 77(26): 4330-4331
doi: 10.1063/1.1334352
21 Xu B, Li M S, Cui J J, . An investigation of a thin metal film covering on HPHT as-grown diamond from Fe-Ni-C system. Materials Science and Engineering: A , 2005, 396: 352-359
doi: 10.1016/j.msea.2005.02.005
22 Field J E. The Properties of Natural and Synthetic Diamond. London: Academic Press, 1992, 473-514
23 Li J, Mao H K, Fei Y, . Compression of Fe3C to 30 GPa at room temperature. Physics Chemical Miner , 2002, 29: 166-169
doi: 10.1007/s00269-001-0224-4
24 Strong H M, Hanneman R E. Crystallization of diamond and graphite. Journal of Chemical Physics , 1967, 46(9): 3668-3676
doi: 10.1063/1.1841272
25 Anthony T R. Stresses generated by impurities in diamond. Diamond and Related Materials , 1995, 4: 1346-1352
doi: 10.1016/0925-9635(95)00317-7
26 Shulshenko A A, Varga L, Hidasi B. Strength and thermal resistance of synthetic diamonds. International Journal Refractory Metal and Hard Materials , 1992, 11(5): 285-294
doi: 10.1016/0263-4368(92)90040-9
[1] Chengzhi LUO, Guanghui LIU, Min ZHANG. Electric-field-induced microstructure modulation of carbon nanotubes for high-performance supercapacitors[J]. Front. Mater. Sci., 2019, 13(3): 270-276.
[2] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[3] Dirk ZAHN. Multi-scale simulations of apatite–collagen composites: from molecules to materials[J]. Front. Mater. Sci., 2017, 11(1): 1-12.
[4] Qianli HUANG,Ningmin HU,Xing YANG,Ranran ZHANG,Qingling FENG. Microstructure and inclusion of Ti–6Al–4V fabricated by selective laser melting[J]. Front. Mater. Sci., 2016, 10(4): 428-431.
[5] Rui GAO,Wen-jun GE,Shu MIAO,Tao ZHANG,Xian-ping WANG,Qian-feng FANG. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting[J]. Front. Mater. Sci., 2016, 10(1): 73-79.
[6] Qianli HUANG,Xujie LIU,Xing YANG,Ranran ZHANG,Zhijian SHEN,Qingling FENG. Specific heat treatment of selective laser melted Ti–6Al–4V for biomedical applications[J]. Front. Mater. Sci., 2015, 9(4): 373-381.
[7] Yongze CAO,Qiang WANG,Guojian LI,Yonghui MA,Jiaojiao DU,Jicheng HE. Effects of different magnetic flux densities on microstructure and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe64Ni36 thin films[J]. Front. Mater. Sci., 2015, 9(2): 163-169.
[8] Masaaki TAKEZAWA,Hiroyuki TANEDA,Yuji MORIMOTO. Relationship between microstructure and magnetic domain structure of Nd--Fe--B melt-spun ribbon magnets[J]. Front. Mater. Sci., 2015, 9(2): 206-210.
[9] Peng-Cheng XIA,Feng-Wen CHEN,Kun XIE,Ling QIAO,Jin-Jiang YU. Influence of microstructures on thermal fatigue property of a nickel-base superalloy[J]. Front. Mater. Sci., 2015, 9(1): 85-92.
[10] Ya-Ming WANG,Jun-Wei GUO,Yun-Feng WU,Yan LIU,Jian-Yun CAO,Yu ZHOU,De-Chang JIA. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts[J]. Front. Mater. Sci., 2014, 8(3): 295-306.
[11] Zhen-Tao YU,Ming-Hua ZHANG,Yu-Xing TIAN,Jun CHENG,Xi-Qun MA,Han-Yuan LIU,Chang WANG. Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants[J]. Front. Mater. Sci., 2014, 8(3): 219-229.
[12] Rong SONG,De-Bao LIU,Yi-Chi LIU,Wen-Bo ZHENG,Yue ZHAO,Min-Fang CHEN. Effect of corrosion on mechanical behaviors of Mg--Zn--Zr alloy in simulated body fluid[J]. Front. Mater. Sci., 2014, 8(3): 264-270.
[13] Ke-Bin LIU,Kui HUANG,Yu TENG,Yan-Zheng QU,Wei CUI,Zhen-Fei HUANG,Ting-Fang SUN,Xiao-Dong GUO. Use of mineralized collagen bone graft substitutes and dorsal locking plate in treatment of elder metaphyseal comminuted distal radius fracture[J]. Front. Mater. Sci., 2014, 8(1): 87-94.
[14] Zhi-Wen CHEN, Chan-Hung SHEK, C. M. Lawrence WU, Joseph K. L. LAI. Recent research situation in tin dioxide nanomaterials: synthesis, microstructures, and properties[J]. Front Mater Sci, 2013, 7(3): 203-226.
[15] Wei YAN, Wei WANG, Yi-Yin SHAN, Ke YANG. Microstructural stability of 9--12%Cr ferrite/martensite heat-resistant steels[J]. Front Mater Sci, 2013, 7(1): 1-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed