Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2009, Vol. 3 Issue (4) : 367-373    https://doi.org/10.1007/s11706-009-0058-4
Research articles
Stabilization of horseradish peroxidase in silk materials
Shen-zhou LU1,Ming-zhong LI1,Xiao-qin WANG2,Neha UPPAL2,David L. KAPLAN2,
1.National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China; 2.Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
 Download: PDF(254 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Horseradish peroxidase (HRP) is widely used as an indicator enzyme in enzyme immunoassays, enzyme electrodes, effluent treatment and synthetic organics. Previous studies showed that HRP was not stable in solution especially for low concentration solutions. It is important to prevent HRP from losing its activity. In the present study, we describe HRP stabilization in silk fibroin solution and in silk films. The results showed that HRP activity increased 30%―40% after being added into silk solution. The half-life time of HRP activity was 25 days at room temperature and 1h at 60°C in silk solution while it was only 2.5h at room temperature and 0.3h at 60°C in PBS buffer. The HRP activity in silk film still remained at 24%, 22%, 17%, when compared with the original amount of activity, after being immobilized in silk films stored at 4°C, room temperature and 37°C for 5 months, respectively. Electrostatic interactions and hydrophobic interactions between silk and HRP might account for this improved stabilization. Silk fibroin can be used as an HRP protecting reagent in solution and in films.
Keywords stabilization      horseradish peroxidase (HRP)      enzyme      silk fibroin      
Issue Date: 05 December 2009
 Cite this article:   
Xiao-qin WANG,David L. KAPLAN,Shen-zhou LU, et al. Stabilization of horseradish peroxidase in silk materials[J]. Front. Mater. Sci., 2009, 3(4): 367-373.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0058-4
https://academic.hep.com.cn/foms/EN/Y2009/V3/I4/367
Cao L. Immobilised enzymes: science or art? CurrentOpinion in Chemical Biology, 2005, 9(2): 217―226

doi: 10.1016/j.cbpa.2005.02.014
Bornscheuer U T. Trends and challenges in enzyme technology. Advances in Biochemical Engineering/Biotechnology, 2005, 100: 181―203

doi: 10.1007/b136413
Mateo C, Palomo J M, Fernandez G L, et al. Improvement of enzyme activity, stability andselectivity via immobilization techniques. Enzyme and Microbial Technology, 2007, 40(6): 1451―1463

doi: 10.1016/j.enzmictec.2007.01.018
Bornscheuer U T. Immobilizing enzymes: how to create more suitable biocatalysts. Angewandte Chemie International Edition in English, 2003, 42(29): 3336―3337

doi: 10.1002/anie.200301664
Wei Y, Dong H, Xu J G, et al. Simultaneous immobilization of horseradish peroxidaseand glucose oxidase in mesoporous sol-gel host materials. ChemPhysChem, 2002, 3(9): 802―808

doi: 10.1002/1439-7641(20020916)3:9<802::AID-CPHC802>3.0.CO;2-H
Ryan B, Carolan N, O'Fágáin C. Horseradish and soybean peroxidases:comparable tools for alternative niches. Trends in Biotechnology, 2006, 24: 355―363

doi: 10.1016/j.tibtech.2006.06.007
Borole A, Dai S, Cheng C L, et al. Performance of chloroperoxidase stabilizationin mesoporous sol-gel glass using in situ glucose oxidase peroxidegeneration. Applied Biochemistry and Biotechnology, 2004, 113: 273―285

doi: 10.1385/ABAB:113:1-3:273
Ryan B J, Ó'Fágáin C. Effects of single mutations on the stability of horseradish peroxidaseto hydrogen peroxide. Biochimie, 2007, 89: 1029―1032

doi: 10.1016/j.biochi.2007.03.013
Lu H Y, Rusling J F, Hu N F. Protecting peroxidase activity of multilayer enzyme-polyionfilms using outer catalase layers. TheJournal of Physical Chemistry B, 2007, 111: 14378―14386

doi: 10.1021/jp076036w
Altman G H, Diaz F, Jakuba D, et al. Silk-based biomaterials. Biomaterials, 2003, 24(3): 401―416

doi: 10.1016/S0142-9612(02)00353-8
Demura M, Asakura T, Kuroo T. Immobilization of biocatalysts with Bombyx mori silkfibroin by several kinds of physical treatment and its applicationto glucose sensors.?Biosensors, 1989, 4(6): 361―372

doi: 10.1016/0265-928X(89)80002-1
Wu Y, Shen Q, Hu S. Direct electrochemistry and electrocatalysis of heme-proteinsin regenerated silk fibroin film.?AnalyticaChimica Acta, 2006, 558(1―2): 179―186

doi: 10.1016/j.aca.2005.11.031
Vepari C P, Kaplan D L. Covalently immobilized enzymegradients within three-dimensional porous scaffolds. Biotechnology and Bioengineering, 2006, 93(6): 1130―1137

doi: 10.1002/bit.20833
Schmidt A, Schumacher J T, Reichelt J, et al. Mechanistic and molecular investigations onstabilization of horseradish peroxidase C. Analytical Chemistry, 2002, 74(13): 3037―3045

doi: 10.1021/ac0108111
Drummy L F, Phillips D M, Stone M O, et al. Thermally induced α-helix to β-sheettransition in regenerated silk fibers and films. Biomacromolecules, 2005, 6(6): 3328―3333

doi: 10.1021/bm0503524
Ó’Fágáin C. Enzyme stabilization-recent experimental progress. Enzyme and Microbial Technology, 2003, 33: 137―149
Vijayakumar A, Csoregi E, Ruzgas T, et al. Comparison of carbon paste electrodes modifiedwith native and polyethylene glycol derivatized horseradish peroxidasesfor the amperometric monitoring of H2O2. Sensors and Actuators B:Chemical, 1996, 37(1―2): 97―102

doi: 10.1016/S0925-4005(97)80076-7
Mallard F, Marchand G, Ginot F, et al. Opto-electronic DNA chip: high performance chipreading with an all-electric interface. Biosensors & Bioelectronics, 2005, 20(9): 1813―1820

doi: 10.1016/j.bios.2004.07.031
Yamazaki I. In: Hayaishi O, ed. Molecular Mechanisms ofOxygen Activation. New York: Academic Press, 1974, 535―558
Schumacher J T, Münch I, Richter T, et al. Investigations with respect to stabilizationof screen-printed enzyme electrodes. Journalof Molecular Catalysis B: Enzyme, 1999, 7(1―4): 67―76

doi: 10.1016/S1381-1177(99)00022-3
Alexander N H, Josefa H R, José R L, et al. The inactivation of horseradishperoxidase isoenzyme A2 by hydrogen peroxide:an example of partial resistance due to the formation of a stableenzyme intermediate. Journal of BiologicalInorganic Chemistry, 2001, 6(5―6): 504―516
Gajhede M, Schuller D J, Henriksen A, et al. Crystal structure of horseradish peroxidaseC at 2.15 angstrom resolution. Nature StructuralBiology, 1997, 4(12): 1032―1038

doi: 10.1038/nsb1297-1032
[1] Lei CHANG, Xiangrui LI, Xuhui TANG, He ZHANG, Ding HE, Yujun WANG, Jiayin ZHAO, Jingan LI, Jun WANG, Shijie ZHU, Liguo WANG, Shaokang GUAN. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg--Zn--Y--Nd--Zr alloys for better corrosion resistance and cell behavior guidance[J]. Front. Mater. Sci., 2020, 14(4): 413-425.
[2] Chengzhi YANG, Shikun CHEN, Huilan SU, Haoyue ZHANG, Jianfei TANG, Cuiping GUO, Fang SONG, Wang ZHANG, Jiajun GU, Qinglei LIU. Biocompatible, small-sized and well-dispersed gold nanoparticles regulated by silk fibroin fiber from Bombyx mori cocoons[J]. Front. Mater. Sci., 2019, 13(2): 126-132.
[3] Qinglin SHENG, Dan ZHANG, Yu SHEN, Jianbin ZHENG. Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide[J]. Front. Mater. Sci., 2017, 11(2): 147-154.
[4] Ming LI,Pan XIONG,Maosong MO,Yan CHENG,Yufeng ZHENG. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications[J]. Front. Mater. Sci., 2016, 10(3): 270-280.
[5] Jin-Ning WANG,Bin PI,Peng WANG,Xue-Feng LI,Hui-Lin YANG,Xue-Song ZHU. Sustained release of Semaphorin 3A from α-tricalcium phosphate based cement composite contributes to osteoblastic differentiation of MC3T3-E1 cells[J]. Front. Mater. Sci., 2015, 9(3): 282-292.
[6] Peng WANG,Bin PI,Jin-Ning WANG,Xue-Song ZHU,Hui-Lin YANG. Preparation and properties of calcium sulfate bone cement incorporated with silk fibroin and Sema3A-loaded chitosan microspheres[J]. Front. Mater. Sci., 2015, 9(1): 51-65.
[7] Wen-Feng LIANG,Ding-Quan XIAO,Jia-Gang WU,Wen-Juan WU,Jian-Guo ZHU. Origin of high mechanical quality factor in CuO-doped (K, Na)NbO3-based ceramics[J]. Front. Mater. Sci., 2014, 8(2): 165-175.
[8] Zi-Heng LI, Shi-Chen JI, Ya-Zhen WANG, Xing-Can SHEN, Hong LIANG. Silk fibroin-based scaffolds for tissue engineering[J]. Front Mater Sci, 2013, 7(3): 237-247.
[9] Jian-Guang ZHANG, Xiu-Mei MO. Current research on electrospinning of silk fibroin and its blends with natural and synthetic biodegradable polymers[J]. Front Mater Sci, 2013, 7(2): 129-142.
[10] Xiao-Jie LIAN, Song WANG, He-Sun ZHU, . Surface properties and cytocompatibillity of silk fibroin films cast from aqueous solutions in different concentrations[J]. Front. Mater. Sci., 2010, 4(1): 57-63.
[11] Zhen-ding SHE, Wei-qiang LIU, Qing-ling FENG. Preparation and cytocompatibility of silk fibroin / chitosan scaffolds[J]. Front Mater Sci Chin, 2009, 3(3): 241-247.
[12] BAI Lun, ZUO Bao-qi, GUAN Guo-ping, DAI Li-xing, CHEN Yong-zhen, ZHOU Zheng-yu, XU Jian-mei, WU Zhen-yu. On the growth morphous of capillaries and tissue in porous silk fibroin films[J]. Front. Mater. Sci., 2008, 2(3): 266-270.
[13] GAO Zhen, WANG Song, ZHU He-sun, ZHAO Dong-xu, XU Jia-chao. Improvements of anticoagulant activities of silk fibroin films with fucoidan[J]. Front. Mater. Sci., 2008, 2(2): 221-227.
[14] XIE Zhiguo, HOU Dandan, YE Lin, ZHANG Aiying, FENG Zengguo. Enzyme-catalyzed preparation of supramolecular structured hydrogel of polypseudorotaxanes derived from the self-assembly of α-CDs with 3-arm p-hydroxyphenylpropionate terminated PEG[J]. Front. Mater. Sci., 2007, 1(4): 395-400.
[15] BAI Lun, XU Jianmei, SUN Qilong, DI Chuanxia, ZUO Baoqi, GUAN Guoping, WU Zhenyu. Density of capillaries and the oxygen diffusion model in the porous silk fibroin film[J]. Front. Mater. Sci., 2007, 1(3): 237-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed