Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci    2011, Vol. 5 Issue (4) : 401-411    https://doi.org/10.1007/s11706-011-0149-x
RESEARCH ARTICLE
Mechanical, thermal and fire retardation behaviours of nanoclay/vinylester nanocomposites
K. R. VISHNU MAHESH1, H. N. NARASIMHA MURTHY2(), B. E. KUMARA SWAMY1, S. C. SHARMA3, R. SRIDHAR2, Niranjan PATTAR2, M. KRISHNA2, B. S. SHERIGARA1
1. Department of P. G. Studies and Research in Industrial Chemistry, Kuvempu University, Shankaraghatta, Shimoga 577451, Karnataka, India; 2. Department of Mechanical Engineering, R. V. College of Engineering, Bangalore 560059, Karnataka, India; 3. Tumkur University, Tumkur 572103, Karnataka, India
 Download: PDF(898 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The dispersion of montmorillonite (MMT) in vinylester for preparing nanoclay/vinylester gel coat was reported. Two sets of MMT/vinylester specimens, namely Type 1 and Type 2, were prepared for comparative studies. Type 1 specimens were prepared using ultrasonication only, and Type 2 specimens were prepared using both ultrasonication and twin-screw extrusion. According to XRD and TEM results, Type 2 specimens showed lower levels of nanoclay agglomeration and higher levels of exfoliation. DSC results showed that the glass transition temperatures of Type 2 specimens are higher than those of Type 1 specimens. TGA results showed that the residual weight of 4 wt.% MMT/vinylester of Type 1 was 7.38%, while the corresponding value of Type 2 was 13.5%, indicating lower thermal degradation in the latter. MMT/vinylester/glass and MMT/vinylester/carbon specimens were fabricated and tested for mechanical and fire retardation behaviours. Type 2 based nanocomposite laminates showed greater values of ultimate tensile strength, flexural strength, interlaminar shear strength, impact strength, horizontal burning rate, and vertical burning rate than Type 1 based laminates. SEM images of tensile fractured surfaces revealed that Type 2 based laminates have no or less agglomeration of nanoclay than Type 1 based laminates.

Keywords twin-screw extrusion      montmorillonite      nanoclay      nanocomposite      vinylester     
Corresponding Author(s): NARASIMHA MURTHY H. N.,Email:hnmdatta@yahoo.com   
Issue Date: 05 December 2011
 Cite this article:   
K. R. VISHNU MAHESH,H. N. NARASIMHA MURTHY,B. E. KUMARA SWAMY, et al. Mechanical, thermal and fire retardation behaviours of nanoclay/vinylester nanocomposites[J]. Front Mater Sci, 2011, 5(4): 401-411.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-011-0149-x
https://academic.hep.com.cn/foms/EN/Y2011/V5/I4/401
Ultrasoncator (Tip Type)VPL-P2 of & dia 1”
SupplierVibronics Pvt. Ltd., Pune
Frequency37 kHz
Voltage220 V
Capacity500 mL
Power250 W
Tab.1  Specifications of ultrasonicator
Fig.1  Configuration of screw elements selected.
ExtruderAlpha 18
SupplierSteer Engineering, Bangalore
Barrel diameter18.8 mm
Centre distance16 mm
Screw diameter18.5 mm
L/D ratio26
Do/Di Ratio1.48
Screw speed1200 rpm
Nominal torque per shaft30 Nm/shaft
Specific torque7.1 Nm/cm3
Length of barrel section1200 mm
Number of zones6
1D AdaptorNil
Barrel cooling mediumWater
Tab.2  Specifications of co-rotating twin-screw extruder
Fig.2  XRD patterns of Type 1 specimens with different MMT loadings. (a — 1 wt.% MMT/vinylester Type 1; b — 2 wt.% MMT/vinylester Type 1; c — 3 wt.% MMT/vinylester Type 1; d — 4 wt.% MMT/vinylester Type 1; e — 5 wt.% MMT/vinylester Type 1; f — pure MMT)
Fig.3  Comparison of XRD patterns of Type 1 and Type 2 specimens. (a — 4 wt.% MMT/vinylester Type 2; b — 4 wt.% MMT/vinylester Type 1; c — 5 wt.% MMT/vinylester Type 2; d — 5 wt.% MMT/vinylester Type 1)
Fig.4  TEM images of 4 wt.% MMT/vinylester Type 1, 5 wt.% MMT/vinylester Type 1, 4 wt.% MMT/vinylester Type 2, and 5 wt.% MMT/vinylester Type 2.
Fig.5  DSC curves of 0-5 wt.% MMT/vinylester Type 1 specimens indicating different values.
Fig.6  DSC curves of 0-5 wt.% MMT/vinylester Type 2 specimens indicating different values.
Fig.7  Comparison of values of 0-5 wt.% MMT/vinylester Type 1 and Type 2 specimens.
Fig.8  TGA thermograms of 4 wt.% MMT/vinylester Type 1 and Type 2 specimens.
Fig.9  Effect of MMT loading on mechanical properties of vinylester based GFRP and CFRP composites Type 1 and Type 2 specimens: UTS; flexural strength; ILSS; impact energy.
Fig.10  Effect of MMT loading on VBR of vinylester based GFRP and CFRP composites.
Fig.11  Effect of MMT loading on HBR of vinylester based GFRP and CFRP composites.
Fig.12  SEM images revealing the fracture surfaces of vinylester/glass, vinylester/carbon, 4 wt.% MMT/vinylester/glass Type 1, 4 wt.% MMT/vinylester/glass Type 2, 5 wt.% MMT/vinylester/glass Type 1, 5 wt.% MMT/vinylester/glass Type 2, 4 wt.% MMT/vinylester/carbon Type 2, and 5 wt.% MMT/vinylester/carbon Type 2.
1 Tjong S C. Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering R: Reports , 2006, 53(3-4): 73–197
2 Wang L, Wang K, Chen L, . Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Composites Part A: Applied Science and Manufacturing , 2006, 37(11): 1890–1896
3 Subramaniyan A K, Sun C T. Toughening polymeric composites using nanoclay: Crack tip scale effects on fracture toughness. Composites Part A: Applied Science and Manufacturing , 2007, 38(1): 34–43
4 Kim J-K, Hu C, Woo R S C, . Moisture barrier characteristics of organoclay-epoxy nanocomposites. Composites Science and Technology , 2005, 65(5): 805–813
5 Xu B, Zheng Q, Song Y, . Calculating barrier properties of polymer/clay nanocomposites: Effects of clay layers. Polymer , 2006, 47(8): 2904–2910
6 Zhao Z, Gou J, Bietto S, . Fire retardancy of clay/carbon nanofiber hybrid sheet in fiber reinforced polymer composites. Composites Science and Technology , 2009, 69(13): 2081–2087
7 Schmidt D, Shah D, Giannelis E P. New advances in polymer/layered silicate nanocomposites. Current Opinion in Solid State and Materials Science , 2002, 6(3): 205–212
8 Ray S S, Okamoto M. Polymer/layered silicate nanocomposite: a review from preparation to processing. Progress in Polymer Science , 2003, 28(11): 1539–1641
9 Bhat G, Hegde R R, Kamath M G, . Nanoclay reinforced fibers and nonwovens. Journal of Engineered Fibers and Fabrics , 2008, 3(3): 22–34
10 Jo B-W, Park S-K, Kim D-K. Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete. Construction and Building Materials , 2008, 22(1): 14–20
11 Ray D, Sengupta S, Sengupta S P. Preparation and properties of vinylester resin/clay nanocomposites. Macromolecular Materials and Engineering , 2006, 291(12): 1513–1520
12 Uddin M F, Sun C T. Effect of nanoparticle dispersion on mechanical behavior of polymer nanocomposites. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, USA , May4-7, 2009
13 Jeon I-Y, Baek J-B. Nanocomposites derived from polymers and inorganic nanoparticles. Materials , 2010, 3(6): 3654–3674
14 Villmow T, Potschke P, Pegel S, et al. Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly (lactic acid) matrix. Polymer , 2008, 49(16): 3500–3509
15 Ji G, Li G. Effects of nanoclay morphology on the mechanical, thermal, and fire-retardant properties of vinyl ester based nanocomposites. Materials Science and Engineering A , 2008, 498(1-2): 327–334
16 See S C, Zhang Z Y, Dhakal H N, . Nanomechanical behaviour and thermal degradation of nanoclays and supernanoclays enhanced marine gelcoat system. International Journal of Materials Engineering Innovation , 2009, 1(1): 21–39
17 Park J H, Jana S C. Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromolecules , 2003, 36(8): 2758–2768
18 Hwang T Y, Kim H J, Ahn Y, . Influence of twin screw extrusion processing condition on the properties of polypropylene/multi-walled carbon nanotube nanocomposites. Korea-Australia Rheology Journal , 2010, 22(2): 141–148
19 Hotta S, Paul D R. Nanocomposites formed from linear low density polyethylene and organoclays. Polymer , 2004, 45(22): 7639–7654
20 Lertwimolnun W, Vergnes B. Influence of compatibilizer and processing conditions on the dispersion of nanoclay in a polypropylene matrix. Polymer , 2005, 46(10): 3462–3471
21 Samyn F, Bourbigot S, Jama C, et al. Fire retardancy of polymer clay nanocomposites: Is there an influence of the nanomorphology? Polymer Degradation and Stability , 2008, 93(11): 2019–2024
22 Karippal J J, Narasimha Murthy H N, Rai K S, et al. Effect of amine functionalization of CNF on electrical, thermal, and mechanical properties of epoxy/CNF composites. Polymer Bulletin , 2010, 65(8): 849–861
23 Karippal J J, Narasimha Murthy H N, Rai K S, et al. Electrical and thermal properties of twin-screw extruded multiwalled carbon nanotube/epoxy composites. Journal of Materials Engineering and Performance , 2010, 19(8): 1143–1149
24 Herzog B, Gardner D J, Lopez-Anido R, . Glass-transition temperature based on dynamic mechanical thermal analysis techniques as an indicator of the adhesive performance of vinyl ester resin. Journal of Applied Polymer Science , 2005, 97(6): 2221–2229
25 Yasmin A, Luo J J, Abot J L, . Mechanical and thermal behavior of clay/epoxy nanocomposites. Composites Science and Technology , 2006, 66(14): 2415–2422
26 Lomakin S M, Zaikov G E. Flame-resistant polymer nanocomposites based on layered silicates. Polymer Science Series B , 2005, 47(1-2): 9–21
27 Subramaniyan A K, Sun C T. Interlaminar fracture behavior of nanoclay reinforced glass fiber composites. Journal of Composite Materials , 2008, 42(20): 2111–2122
28 Iqbal K, Khan S-U, Munir A, . Impact damage resistance of CFRP with nanoclay-filled epoxy matrix. Composites Science and Technology , 2009, 69(11-12): 1949–1957
29 Zhang J, Hereid J, Hagen M, . Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE. Fire Safety Journal , 2009, 44(4): 504–513
[1] Yun ZHAO, Linan YANG, Canliang MA. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage[J]. Front. Mater. Sci., 2020, 14(2): 145-154.
[2] Danhua ZHU, Qianjie ZHOU, Aiqin LIANG, Weiqiang ZHOU, Yanan CHANG, Danqin LI, Jing WU, Guo YE, Jingkun XU, Yong REN. Two-step preparation of carbon nanotubes/RuO2/polyindole ternary nanocomposites and their application as high-performance supercapacitors[J]. Front. Mater. Sci., 2020, 14(2): 109-119.
[3] Yanlin JIA, Zhiyuan MA, Zhicheng LI, Zhenli HE, Junming SHAO, Hong ZHANG. Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries[J]. Front. Mater. Sci., 2019, 13(4): 367-374.
[4] Liuxin YANG, Zhou CHEN, Jian ZHANG, Chang-An WANG. SrTiO3/TiO2 heterostructure nanowires with enhanced electron--hole separation for efficient photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 342-351.
[5] Wei LI, Lizhong ZHAO, Zhongwu LIU. Micromagnetic simulation on magnetic properties of Nd2Fe14B/α-Fe nanocomposites with Fe nanowires as the soft phase[J]. Front. Mater. Sci., 2018, 12(4): 348-353.
[6] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[7] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[8] Abdollah SABOORI, Matteo PAVESE, Claudio BADINI, Paolo FINO. Development of Al- and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization[J]. Front. Mater. Sci., 2017, 11(2): 171-181.
[9] Hassan Rayat AZIMI,Mahmood GHORANNEVISS,Seyed Mohammad ELAHI,Mohammad Reza MAHMOUDIAN,Farid JAMALI-SHEINI,Ramin YOUSEFI. Excellent photocatalytic performance under visible-light irradiation of ZnS/rGO nanocomposites synthesized by a green method[J]. Front. Mater. Sci., 2016, 10(4): 385-393.
[10] Minh Thi TRAN,Thi Huyen Trang NGUYEN,Quoc Trung VU,Minh Vuong NGUYEN. Properties of poly(1-naphthylamine)/Fe3O4 composites and arsenic adsorption capacity in wastewater[J]. Front. Mater. Sci., 2016, 10(1): 56-65.
[11] Xianshuo CAO,Jun WANG,Min LIU,Yong CHEN,Yang CAO,Xiaolong YU. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering[J]. Front. Mater. Sci., 2015, 9(4): 405-412.
[12] N. RAGHAVENDRA, H. N. NARASIMHA MURTHY, M. KRISHNA, K. R. VISHNU MAHESH, R. SRIDHAR, S. FIRDOSH, G. ANGADI, S. C. SHARMA. Mechanical behavior of organo-modified Indian bentonite nanoclay fiber-reinforced plastic nanocomposites[J]. Front Mater Sci, 2013, 7(4): 396-404.
[13] Zai-Feng LI, Yuan WU, Fu-Tao ZHANG, Yu-Yang CAO, Shou-Peng WU, Ting WANG. Preparation and properties of poly HTBN-based urethane--urea/organo reactive montmorillonite nanocomposites[J]. Front Mater Sci, 2012, 6(4): 338-346.
[14] Xi CHEN, Qiang CAI, Lin-Hao SUN, Wei ZHANG, Xing-Yu JIANG. Synthesis of novel thiol-functionalized mesoporous silica nanorods and their sorbent properties on heavy metals[J]. Front Mater Sci, 2012, 6(3): 278-282.
[15] Jing SUN, Ling-Hao HE, Qiao-Ling ZHAO, Li-Fang CAI, Rui SONG, Yong-Mei HAO, Zhi MA, Wei HUANG. A simple and controllable nanostructure comprising non-conductive poly(vinylidene fluoride) and graphene nanosheets for supercapacitor[J]. Front Mater Sci, 2012, 6(2): 149-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed