Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (1) : 130304    https://doi.org/10.1007/s11467-017-0713-7
RESEARCH ARTICLE
Uncertainty relations for quantum coherence with respect to mutually unbiased bases
Alexey E. Rastegin()
Department of Theoretical Physics, Irkutsk State University, Russia
 Download: PDF(149 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The concept of quantum coherence, including various ways to quantify the degree of coherence with respect to the prescribed basis, is currently the subject of active research. The complementarity of quantum coherence in different bases was studied by deriving upper bounds on the sum of the corresponding measures. To obtain a two-sided estimate, lower bounds on the coherence quantifiers are also of interest. Such bounds are naturally referred to as uncertainty relations for quantum coherence. We obtain new uncertainty relations for coherence quantifiers averaged with respect to a set of mutually unbiased bases (MUBs). To quantify the degree of coherence, the relative entropy of coherence and the geometric coherence are used. Further, we also derive novel state-independent uncertainty relations for a set of MUBs in terms of the min-entropy.

Keywords coherence      complementarity      uncertainty      mutually unbiased bases     
Corresponding Author(s): Alexey E. Rastegin   
Issue Date: 22 September 2017
 Cite this article:   
Alexey E. Rastegin. Uncertainty relations for quantum coherence with respect to mutually unbiased bases[J]. Front. Phys. , 2018, 13(1): 130304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0713-7
https://academic.hep.com.cn/fop/EN/Y2018/V13/I1/130304
1 T.Baumgratz, M.Cramer, and M. B.Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)
https://doi.org/10.1103/PhysRevLett.113.140401
2 A.Streltsov, G.Adesso, and M. B.Plenio, Quantum coherence as a resource, arXiv: 1609.02439 [quant-ph] (2016)
3 G.Adesso, T. R.Bromley, and M.Cianciaruso, Measures and applications of quantum correlations, J. Phys. A Math. Theor. 49(47), 473001(2016)
https://doi.org/10.1088/1751-8113/49/47/473001
4 W. H.Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Phys. Rev. D24(6), 1516(1981)
https://doi.org/10.1103/PhysRevD.24.1516
5 P.Ćwikliński, M.Studziński, M.Horodecki, and J.Oppenheim, Limitations on the evolution of quantum coherences: Towards fully quantum second laws of thermodynamics, Phys. Rev. Lett. 115(21), 210403(2015)
https://doi.org/10.1103/PhysRevLett.115.210403
6 M.Lostaglio, K.Korzekwa,D.Jennings, and T.Rudolph, Quantum coherence, time-translation symmetry, and thermodynamics, Phys. Rev. X5(2), 021001(2015)
https://doi.org/10.1103/PhysRevX.5.021001
7 V.Narasimhacharand G.Gour, Low-temperature thermodynamics with quantum coherence, Nat. Commun. 6, 7689(2015)
https://doi.org/10.1038/ncomms8689
8 M.Hillery, Coherence as a resource in decision problems: The Deutsch–Jozsa algorithm and a variation, Phys. Rev. A93(1), 012111(2016)
https://doi.org/10.1103/PhysRevA.93.012111
9 H. L.Shi, S. Y.Liu, X. H.Wang, W. L.Yang, Z. Y.Yang, and H.Fan, Coherence depletion in the Grover quantum search algorithm, Phys. Rev. A95(3), 032307(2017)
https://doi.org/10.1103/PhysRevA.95.032307
10 M. N.Bera, T.Qureshi, M. A.Siddiqui, and A. K.Pati, Duality of quantum coherence and path distinguishability, Phys. Rev. A92(1), 012118(2015)
https://doi.org/10.1103/PhysRevA.92.012118
11 E.Bagan, J. A.Bergou, S. S.Cottrell, and M.Hillery, Relations between coherence and path information, Phys. Rev. Lett. 116(16), 160406(2016)
https://doi.org/10.1103/PhysRevLett.116.160406
12 S.Chengand M. J. W.Hall, Complementarity relations for quantum coherence, Phys. Rev. A92(4), 042101(2015)
https://doi.org/10.1103/PhysRevA.92.042101
13 R. F.Werner, Uncertainty relations for general phase spaces, Front. Phys. 11(3), 110305(2016)
https://doi.org/10.1007/s11467-016-0558-5
14 A. E.Rastegin, Entropic uncertainty relations for successive measurements of canonically conjugate observables, Ann. Phys. 528(11–12), 835(2016)
https://doi.org/10.1002/andp.201600130
15 A. E.Rastegin, On entropic uncertainty relations in the presence of a minimal length, Ann. Phys. 382, 170(2017)
https://doi.org/10.1016/j.aop.2017.04.014
16 S.Wehnerand A.Winter, Entropic uncertainty relations-A survey, New J. Phys. 12(2), 025009(2010)
https://doi.org/10.1088/1367-2630/12/2/025009
17 I.Bia lynicki-Birulaand L.Rudnicki, Entropic Uncertainty Relations in Quantum Physics, in: K. D. Sen (Ed.), Statistical Complexity, Berlin: Springer, 2011
18 P. J.Coles, M.Berta, M.Tomamichel, and S.Wehner, Entropic uncertainty relations and their applications, Rev. Mod. Phys. 89(1), 015002(2017)
https://doi.org/10.1103/RevModPhys.89.015002
19 H.Maassenand J. B. M.Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60(12), 1103(1988)
https://doi.org/10.1103/PhysRevLett.60.1103
20 M.Berta, M.Christandl, R.Colbeck, J. M.Renes, and R.Renner, The uncertainty principle in the presence of quantum memory, Nat. Phys. 6(9), 659(2010)
21 U.Singh, A. K.Pati, and M. N.Bera, Uncertainty relations for quantum coherence, Mathematics4(3), 47(2016)
https://doi.org/10.3390/math4030047
22 Y.Peng, Y. R.Zhang, Z.Y.Fan, S.Liu, and H.Fan, Complementary relation of quantum coherence and quantum correlations in multiple measurements, arXiv: 1608.07950 [quant-ph] (2016)
23 X.Yuan, G.Bai, T.Peng, and X.Ma, Quantum uncertainty relation of coherence, arXiv: 1612.02573 [quantph] (2016)
24 T.Durt, B. G.Englert, I.Bengtsson, and K.Życzkowski, On mutually unbiased bases, Int. J. Quant. Inf. 08(04), 535(2010)
https://doi.org/10.1142/S0219749910006502
25 M. A.Nielsen, and I. L.Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
26 V.Vedral, The role of relative entropy in quantum information theory, Rev. Mod. Phys. 74(1), 197(2002)
https://doi.org/10.1103/RevModPhys.74.197
27 D.Petz, Quasi-entropies for finite quantum systems, Rep. Math. Phys. 23(1), 57(1986)
https://doi.org/10.1016/0034-4877(86)90067-4
28 A. E.Rastegin, Quantum-coherence quantifiers based the Tsallis relative entropies, Phys. Rev. A93(3), 032136(2016)
https://doi.org/10.1103/PhysRevA.93.032136
29 E.Chitambarand G.Gour, Comparison of incoherent operations and measures of coherence, Phys. Rev. A94(5), 052336(2016)
https://doi.org/10.1103/PhysRevA.94.052336
30 L. H.Shao, Y. M.Li, Y.Luo, and Z. J.Xi, Quantum coherence quantifiers based on Rényi α-relative entropy, Commum. Theor. Phys. 67(6), 631(2017)
https://doi.org/10.1088/0253-6102/67/6/631
31 A.Streltsov, H.Kampermann, S.Wölk, M.Gessner, and D.Bruß, Maximal coherence and the resource theory of purity, arXiv: 1612.07570 [quant-ph] (2016)
32 A.Uhlmann, The “transition probability” in the state space of a *-algebra, Rep. Math. Phys. 9(2), 273(1976)
https://doi.org/10.1016/0034-4877(76)90060-4
33 R.Jozsa, Fidelity for mixed quantum states, J. Mod. Opt. 41(12), 2315(1994)
https://doi.org/10.1080/09500349414552171
34 A.Gilchrist, N. K.Langford, and M. A.Nielsen, Distance measures to compare real and ideal quantum processes, Phys. Rev. A71(6), 062310(2005)
https://doi.org/10.1103/PhysRevA.71.062310
35 A. E.Rastegin, Sine distance for quantum states, arXiv: quant-ph/0602112 (2006)
36 H. J.Zhang, B.Chen, M.Li, S. M.Fei, and G. L.Long, Estimation on geometric measure of quantum coherence, Commum. Theor. Phys. 67(2), 166(2017)
https://doi.org/10.1088/0253-6102/67/2/166
37 J. A.Miszczak, Z.Puchała, P.Horodecki, A.Uhlmann, and K.Życzkowski, Sub- and super-fidelity as bounds for quantum fidelity, arXiv: 0805.2037 (2008)
38 S.Wu, S.Yu, and K.Mølmer, Entropic uncertainty relation for mutually unbiased bases, Phys. Rev. A79(2), 022104(2009)
https://doi.org/10.1103/PhysRevA.79.022104
39 A. E.Rastegin, Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies, Eur. Phys. J. D67(12), 269(2013)
https://doi.org/10.1140/epjd/e2013-40453-2
40 T.Miyaderaand H.Imai, Generalized Landau–Pollak uncertainty relation, Phys. Rev. A76(6), 062108(2007)
https://doi.org/10.1103/PhysRevA.76.062108
41 G. M.Bosyk, S.Zozor, M.Portesi, T. M.Osán, and P. W.Lamberti, Geometric approach to extend Landau- Pollak uncertainty relations for positive operator-valued measures, Phys. Rev. A90(5), 052114(2014)
https://doi.org/10.1103/PhysRevA.90.052114
42 S.Liu, L. Z.Mu, and H.Fan, Entropic uncertainty relations for multiple measurements, Phys. Rev. A91(4), 042133(2015)
https://doi.org/10.1103/PhysRevA.91.042133
43 P. J.Coles, R.Colbeck, L.Yu, and M.Zwolak, Uncertainty relations from simple entropic properties, Phys. Rev. Lett. 108(21), 210405(2012)
https://doi.org/10.1103/PhysRevLett.108.210405
44 A. E.Rastegin, Separability conditions based on local fine-grained uncertainty relations, Quantum Inform. Process. 15(6), 2621(2016)
https://doi.org/10.1007/s11128-016-1286-z
[1] Yang-Ting Fu, Wei-Lun Gu, Zong-Yu Hou, Sher Afgan Muhammed, Tian-Qi Li, Yun Wang, Zhe Wang. Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy[J]. Front. Phys. , 2021, 16(2): 22502-.
[2] Jin-Fu Chen, Yu-Han Ma, Chang-Pu Sun. Directional quantum random walk induced by coherence[J]. Front. Phys. , 2020, 15(2): 21602-.
[3] Ying-Yue Yang, Wen-Yang Sun, Wei-Nan Shi, Fei Ming, Dong Wang, Liu Ye. Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii–Moriya interactions[J]. Front. Phys. , 2019, 14(3): 31601-.
[4] Alexey E. Rastegin. Degradation of Grover’s search under collective phase flips in queries to the oracle[J]. Front. Phys. , 2018, 13(5): 130318-.
[5] Long-Mei Yang, Bin Chen, Shao-Ming Fei, Zhi-Xi Wang. Dynamics of coherence-induced state ordering under Markovian channels[J]. Front. Phys. , 2018, 13(5): 130310-.
[6] Guang-Yong Zhou, Lin-Jian Huang, Jun-Ya Pan, Li-Yun Hu, Jie-Hui Huang. Quantifying quantum correlation via quantum coherence[J]. Front. Phys. , 2018, 13(4): 130701-.
[7] Hai-Tao Cui (崔海涛),Xue-Xi Yi (衣学喜). Detecting ground-state degeneracy in many-body systems through qubit decoherence[J]. Front. Phys. , 2017, 12(1): 120304-.
[8] Reinhard F. Werner. Uncertainty relations for general phase spaces[J]. Front. Phys. , 2016, 11(3): 110305-.
[9] Wang Rui-Feng(王瑞峰). A possible interplay between electron beams and magnetic fluxes in the Aharonov–Bohm effect[J]. Front. Phys. , 2015, 10(3): 100305-.
[10] Qiao Bi. Quantum computation in triangular decoherence-free subdynamic space[J]. Front. Phys. , 2015, 10(2): 100304-.
[11] Wenxi Lai, Chao Zhang, Zhongshui Ma. Single molecular shuttle-junction: Shot noise and decoherence[J]. Front. Phys. , 2015, 10(1): 108501-.
[12] Shuai Liu, Zhi-Wei He, Meng Zhan. Firing rates of coupled noisy excitable elements[J]. Front. Phys. , 2014, 9(1): 120-127.
[13] Hong-Yi Fan, Shuai Wang, Li-Yun Hu. Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel[J]. Front. Phys. , 2014, 9(1): 74-81.
[14] Werner A. Hofer. Heisenberg, uncertainty, and the scanning tunneling microscope[J]. Front. Phys. , 2012, 7(2): 218-222.
[15] Alice Sinatra, Jean-Christophe Dornstetter, Yvan Castin. Spin squeezing in Bose–Einstein condensates: Limits imposed by decoherence and non-zero temperature[J]. Front. Phys. , 2012, 7(1): 86-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed