|
|
Black ring entropy from the Weyl tensor |
Ze-Wei Zhao1, Chun-Kai Yu1,2, Nan Li1( ) |
1. Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China 2. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract A black ring is an asymptotically flat vacuum solution of the n-dimensional Einstein equations with an event horizon of topology S1×Sn−3. In this study, a connection between the black ring entropy and the Weyl tensor Cμνλρ is explored by interpreting the Weyl scalar invariant CμνλρCμνλρ as the entropy density in five-dimensional space-time. It is shown that the proper volume integral of CμνλρCμνλρ for a neutral black ring is proportional to the black ring entropy in the thin-ring limit. Similar calculations are extended to more general cases: a black string, a black ring with two angular momenta, and a black ring with a cosmological constant. The proportionality is also found to be valid for these complex black objects at the leading order.
|
Keywords
black ring
Weyl tensor
entropy
Penrose conjecture
|
Corresponding Author(s):
Nan Li
|
Issue Date: 25 May 2018
|
|
1 |
R. Penrose, General Relativity, an Einstein Centenary Survey, Cambridge: Cambridge University Press, 1979
|
2 |
J. Wainwright, Power law singularities in orthogonal spatially homogeneous cosmologies, Gen. Relativ. Gravit. 16(7), 657 (1984)
https://doi.org/10.1007/BF00767859
|
3 |
S. W. Goode and J. Wainwright, Isotropic singularities in cosmological models, Class. Quantum Gravity 2(1), 99 (1985)
https://doi.org/10.1088/0264-9381/2/1/010
|
4 |
W. B. Bonnor, The gravitational arrow of time and the Szekeres cosmological models, Class. Quantum Gravity 3(4), 495 (1986)
https://doi.org/10.1088/0264-9381/3/4/005
|
5 |
W. B. Bonnor, Arrow of time for a collapsing, radiating sphere, Phys. Lett. A 122(6–7), 305 (1987)
https://doi.org/10.1016/0375-9601(87)90830-9
|
6 |
V. Husain, Weyl tensor and gravitational entropy, Phys. Rev. D 38(10), 3314 (1988)
https://doi.org/10.1103/PhysRevD.38.3314
|
7 |
S. W. Goode, Isotropic singularities and the Penrose-Weyl tensor hypothesis, Class. Quantum Gravity 8(1), L1 (1991)
https://doi.org/10.1088/0264-9381/8/1/001
|
8 |
S. W. Goode, A. A. Coley, and J. Wainwright, The isotropic singularity in cosmology, Class. Quantum Gravity 9(2), 445 (1992)
https://doi.org/10.1088/0264-9381/9/2/010
|
9 |
R. P. A. C. Newman, On the structure of conformal singularities in classical general relativity, Proc. R. Soc. A 443(1919), 473 (1993)
|
10 |
S. A. Hayward, On cosmological isotropy, quantum cosmology and the Weyl curvature hypothesis, Class. Quantum Gravity 10(1), L7 (1993)
https://doi.org/10.1088/0264-9381/10/1/002
|
11 |
A. V. Nesteruk, The Weyl curvature hypothesis and a choice of the initial vacuum for quantum fields at the cosmological singularity,Class. Quantum Gravity 11(1), L15 (1994)
https://doi.org/10.1088/0264-9381/11/1/004
|
12 |
T. Rothman and P. Anninos, Phase space approach to the gravitational arrow of time, Phys. Rev. D 55(4), 1948 (1997)
https://doi.org/10.1103/PhysRevD.55.1948
|
13 |
S. Barve and T. P. Singh, Naked singularities and the Weyl curvature hypothesis, arXiv: gr-qc/9705060 (1997)
|
14 |
N. Pelavas and K. Lake, Measures of gravitational entropy: Self-similar spacetimes, Phys. Rev. D 62(4), 044009 (2000)
https://doi.org/10.1103/PhysRevD.62.044009
|
15 |
Ø. Grøn and S. Hervik, The Weyl curvature conjecture, arXiv: gr-qc/0205026 (2002)
|
16 |
J. D. Barrow and S. Hervik, The Weyl tensor in spatially homogeneous cosmological models, Class. Quantum Gravity 19(20), 5173 (2002)
https://doi.org/10.1088/0264-9381/19/20/311
|
17 |
W. C. Lim, H. van Elst, C. Uggla, and J. Wainwright, Asymptotic isotropization in inhomogeneous cosmology, Phys. Rev. D 69(10), 103507 (2004)
https://doi.org/10.1103/PhysRevD.69.103507
|
18 |
Ø. Rudjord, Ø. Grøn, and S. Hervik, The Weyl curvature conjecture and black hole entropy, Phys. Scr. 77(5), 055901 (2008)
https://doi.org/10.1088/0031-8949/77/05/055901
|
19 |
N. Li, T. Buchert, A. Hosoya, M. Morita, and D. J. Schwarz, Relative information entropy and Weyl curvature of the inhomogeneous universe, Phys. Rev. D 86(8), 083539 (2012)
https://doi.org/10.1103/PhysRevD.86.083539
|
20 |
O. C. Stoica, On the Weyl curvature hypothesis, Ann. Phys. 338, 186 (2013)
https://doi.org/10.1016/j.aop.2013.08.002
|
21 |
T. Maki and M. Morita, Weyl curvature hypothesis in terms of spacetime thermodynamics, in: Progress in Mathematical Relativity, Gravitation and Cosmology, Vol. 60 of Springer Proc. Math. Stat., 2014, p 311
https://doi.org/10.1007/978-3-642-40157-2_44
|
22 |
N. Li, X. L. Li, and S. P. Song, Kullback-Leibler entropy and Penrose conjecture in the Lemaître–Tolman–Bondi model, Eur. Phys. J. C 75(3), 114 (2015)
https://doi.org/10.1140/epjc/s10052-015-3334-8
|
23 |
G. Marozzi, J. P. Uzan, O. Umeh, and C. Clarkson, Cosmological evolution of the gravitational entropy of the large-scale structure, Gen. Relativ. Gravit. 47(10), 114 (2015)
https://doi.org/10.1007/s10714-015-1955-8
|
24 |
E. Okon and D. Sudarsky, A (not so?) novel explanation for the very special initial state of the universe, Class. Quantum Gravity 33(22), 225015 (2016)
https://doi.org/10.1088/0264-9381/33/22/225015
|
25 |
T. Clifton, G. F. R. Ellis, and R. Tavakol, A gravitational entropy proposal, Class. Quantum Gravity 30(12), 125009 (2013)
https://doi.org/10.1088/0264-9381/30/12/125009
|
26 |
S. Barve and T. P. Singh, Are naked singularities forbidden by the second law of thermodynamics? Mod. Phys. Lett. A 12(32), 2415 (1997)
https://doi.org/10.1142/S021773239700251X
|
27 |
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7(8), 2333 (1973)
https://doi.org/10.1103/PhysRevD.7.2333
|
28 |
J. M. Bardeen, B. Carter, and S. W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys. 31(2), 161 (1973)
https://doi.org/10.1007/BF01645742
|
29 |
N. Li, X. L. Li, and S. P. Song, An exploration of the black hole entropy via the Weyl tensor, Eur. Phys. J. C 76(3), 111 (2016)
https://doi.org/10.1140/epjc/s10052-016-3960-9
|
30 |
R. Emparan and H. S. Reall, A rotating black ring solution in five dimensions, Phys. Rev. Lett. 88(10), 101101 (2002)
https://doi.org/10.1103/PhysRevLett.88.101101
|
31 |
H. Elvang and R. Emparan, Black rings, supertubes, and a stringy resolution of black hole non-uniqueness, J. High Energy Phys. 2003(11), 035 (2003)
|
32 |
R. Emparan, Rotating circular strings, and in finite non-uniqueness of black rings, J. High Energy Phys. 2004(03), 064 (2004)
|
33 |
R. Emparan and H. S. Reall, Black rings, Class. Quantum Gravity 23(20), R169 (2006)
https://doi.org/10.1088/0264-9381/23/20/R01
|
34 |
H. Elvang, R. Emparan, and A. Virmani, Dynamics and stability of black rings, J. High Energy Phys. 2006(12), 074 (2006)
|
35 |
H. Elvang, R. Emparan, and P. Figueras, Phases of fivedimensional black holes, J. High Energy Phys. 2007(05), 056 (2007)
|
36 |
R. Emparan, T. Harmark, V. Niarchos, N. A. Obers, and M. J. Rodriguez, The phase structure of higherdimensional black rings and black holes, J. High Energy Phys. 2007(10), 110 (2007)
https://doi.org/10.1088/1126-6708/2007/10/110
|
37 |
R. Emparan and H. S. Reall, Black holes in higher dimensions, Living Rev. Relativ. 11(1), 6 (2008)
https://doi.org/10.12942/lrr-2008-6
|
38 |
R. Emparan and H. S. Reall, Black Holes in Higher Dimensions, Cambridge: Cambridge University Press, 2012
|
39 |
R. C. Myers and M. J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172(2), 304 (1986)
https://doi.org/10.1016/0003-4916(86)90186-7
|
40 |
R. Gregory and R. Laflamme, Black strings and pbranes are unstable, Phys. Rev. Lett. 70(19), 2837 (1993)
https://doi.org/10.1103/PhysRevLett.70.2837
|
41 |
R. Gregory and R. Laflamme, The instability of charged black strings and p-branes, Nucl. Phys. B 428(1–2), 399 (1994)
https://doi.org/10.1016/0550-3213(94)90206-2
|
42 |
A. A. Pomeransky and R. A. Sen’kov, Black ring with two angular momenta, arXiv: hep-th/0612005 (2006)
|
43 |
P. Figueras and S. Tunyasuvunakool, Black rings in global anti-de Sitter space, J. High Energy Phys. 2015(03), 149 (2015)
https://doi.org/10.1007/JHEP03(2015)149
|
44 |
M. M. Caldarelli, R. Emparan, and M. J. Rodríguez, Black rings in (anti)-de Sitter space, J. High Energy Phys. 2008(11), 011 (2008)
|
45 |
R. Bousso and S. W. Hawking, (Anti-)evaporation of Schwarzschild–de Sitter black holes, Phys. Rev. D 57(4), 2436 (1998)
https://doi.org/10.1103/PhysRevD.57.2436
|
46 |
F. L. Lin and Y. S. Wu, Near-horizon virasoro symmetry and the entropy of de Sitter space in any dimension, Phys. Lett. B 453(3–4), 222 (1999)
https://doi.org/10.1016/S0370-2693(99)00340-8
|
47 |
Z. Stuchlík and S. Hledík, Some properties of the Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter spacetimes, Phys. Rev. D 60(4), 044006 (1999)
https://doi.org/10.1103/PhysRevD.60.044006
|
48 |
Y. S. Myung, Entropy of the three-dimensional Schwarzschild–de Sitter black hole, Mod. Phys. Lett. A 16(36), 2353 (2001)
https://doi.org/10.1142/S0217732301005795
|
49 |
V. Balasubramanian, J. de Boer, and D. Minic, Mass, entropy, and holography in asymptotically de Sitter spaces, Phys. Rev. D 65(12), 123508 (2002)
https://doi.org/10.1103/PhysRevD.65.123508
|
50 |
A. M. Ghezelbash and R. B. Mann, Action, mass and entropy of Schwarzschild–de Sitter black holes and the de Sitter/CFT correspondence, J. High Energy Phys. 2002(01), 005 (2002)
|
51 |
M. R. Setare, The Cardy–Verlinde formula and entropy of topological Reissner–Nordstrom black holes in de Sitter spaces, Mod. Phys. Lett. A 17(32), 2089 (2002)
https://doi.org/10.1142/S0217732302008733
|
52 |
V. Cardoso and J. P. S. Lemos, Quasinormal modes of the near extremal Schwarzschild–de Sitter black hole, Phys. Rev. D 67(8), 084020 (2003)
https://doi.org/10.1103/PhysRevD.67.084020
|
53 |
S. Shankaranarayanan, Temperature and entropy of Schwarzschild–de Sitter space-time, Phys. Rev. D 67(8), 084026 (2003)
https://doi.org/10.1103/PhysRevD.67.084026
|
54 |
Y. S. Myung, Relationship between five-dimensional black holes and de Sitter spaces, Class. Quantum Gravity 21(4), 1279 (2004)
https://doi.org/10.1088/0264-9381/21/4/035
|
55 |
Y. S. Myung, Thermodynamics of the Schwarzschild–de Sitter black hole: Thermal stability of the Nariai black hole, Phys. Rev. D 77(10), 104007 (2008)
https://doi.org/10.1103/PhysRevD.77.104007
|
56 |
A. Araujo and J. G. Pereira, Entropy in locally-de Sitter spacetimes, Int. J. Mod. Phys. D 24(14), 1550099 (2015)
https://doi.org/10.1142/S0218271815500996
|
57 |
S. Bhattacharya, A note on entropy of de Sitter black holes, Eur. Phys. J. C 76(3), 112 (2016)
https://doi.org/10.1140/epjc/s10052-016-3955-6
|
58 |
D. Kubizňák and F. Simovic, Thermodynamics of horizons: de Sitter black holes and reentrant phase transitions, Class. Quantum Gravity 33(24), 245001 (2016)
https://doi.org/10.1088/0264-9381/33/24/245001
|
59 |
M. Khuri and E. Woolgar, Nonexistence of extremal de Sitter black rings, Class. Quantum Gravity 34(22), 22LT01 (2017)
https://doi.org/10.1088/1361-6382/aa9154
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|