|
|
Chaotic-periodic transition in a two-sided minority game |
Xiao-Hui Li( ),Guang Yang,Ji-Ping Huang( ) |
Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China |
|
|
Abstract Phase transitions are being used increasingly to probe the collective behaviors of social human systems. In this study, we propose a different way of investigating such transitions in a human system by establishing a two-sided minority game model. A new type of agents who can actively transfer resources are added to our artificial bipartite resource-allocation market. The degree of deviation from equilibria is characterized by the entropy-like quantity of market complexity. Under different threshold values, Qth, two phases are found by calculating the exponents of the associated power spectra. For large values of Qth, the general motion of strategies for the agents is relatively periodic whereas for low values of Qth, the motion becomes chaotic. The transition occurs abruptly at a critical value of Qth. Our simulation results were also tested based on human experiments. The results of this study suggest that a chaotic-periodic transition related to the quantity of market information should exist in most bipartite markets, thereby allowing better control of such a transition and providing a better understanding of the endogenous emergence of business cycles from the perspective of quantum mechanics.
|
Keywords
phase transition
minority game
complex adaptive system
random walk
two-sided market
human experiment
entropy-like quantity
market complexity
|
Corresponding Author(s):
Xiao-Hui Li,Ji-Ping Huang
|
Online First Date: 01 February 2016
Issue Date: 08 June 2016
|
|
1 |
D. Challet and Y. C. Zhang, Emergence of cooperation and organization in an evolutionary game, Physica A 246(3-4), 407 (1997)
https://doi.org/10.1016/S0378-4371(97)00419-6
|
2 |
L. X. Zhong, D. F. Zheng, B. Zheng, and P. M. Hui, Effects of contrarians in the minority game, Phys. Rev. E 72(2), 026134 (2005)
https://doi.org/10.1103/PhysRevE.72.026134
pmid: 16196671
|
3 |
O. P. Hauser, D. G. Rand, A. Peysakhovich, and M. A. Nowak, Cooperating with the future, Nature 511(7508), 220 (2014)
https://doi.org/10.1038/nature13530
pmid: 25008530
|
4 |
I. Erev and A. E. Roth, Maximization, learning, and economic behavior, Proc. Natl. Acad. Sci. USA 111(Suppl 3), 10818 (2014)
https://doi.org/10.1073/pnas.1402846111
pmid: 25024182
|
5 |
S. Biswas, A. Ghosh, A. Chatterjee, T. Naskar, and B. K. Chakrabarti, Continuous transition of social efficiencies in the stochastic-strategy minority game, Phys. Rev. E 85(3), 031104 (2012)
https://doi.org/10.1103/PhysRevE.85.031104
pmid: 22587035
|
6 |
B. Zheng, T. Qiu, and F. Ren, Two-phase phenomena, minority games, and herding models, Phys. Rev. E 69(4), 046115 (2004)
https://doi.org/10.1103/PhysRevE.69.046115
pmid: 15169077
|
7 |
M. Anghel, Z. Toroczkai, K. E. Bassler, and G. Korniss, Competition-driven network dynamics: Emergence of a scale-free leadership structure and collective efficiency, Phys. Rev. Lett. 92(5), 058701 (2004)
https://doi.org/10.1103/PhysRevLett.92.058701
pmid: 14995348
|
8 |
D. Challet and M. Marsili, Criticality and market efficiency in a simple realistic model of the stock market, Phys. Rev. E 68(3), 036132 (2003)
https://doi.org/10.1103/PhysRevE.68.036132
pmid: 14524857
|
9 |
D. Challet, M. Marsili, and Y. C. Zhang, Stylized facts of financial markets and market crashes in minority games, Physica A 294(3-4), 514 (2001)
https://doi.org/10.1016/S0378-4371(01)00103-0
|
10 |
W. Wang, Y. Chen, and J. Huang, Heterogeneous preferences, decision-making capacity, and phase transitions in a complex adaptive system, Proc. Natl. Acad. Sci. USA 106(21), 8423 (2009)
https://doi.org/10.1073/pnas.0811782106
pmid: 19435846
|
11 |
J. P. Huang, Experimental econophysics: Complexity, self-organization, and emergent properties, Phys. Rep. 564, 1 (2014)
https://doi.org/10.1016/j.physrep.2014.11.005
|
12 |
Y. Liang, K. N. An, G. Yang, and J. P. Huang, Contrarian behavior in a complex adaptive system, Phys. Rev. E 87(1), 012809 (2013)
https://doi.org/10.1103/PhysRevE.87.012809
pmid: 23410390
|
13 |
G. Yang, W. Z. Zheng, and J. P. Huang, Partial information, market efficiency, and anomalous continuous phase transition, J. Stat. Mech. 2014(4), P04017 (2014)
https://doi.org/10.1088/1742-5468/2014/04/P04017
|
14 |
L. Zhao, G. Yang, W. Wang, Y. Chen, J. P. Huang, H. Ohashi, and H. E. Stanley, Herd behavior in a complex adaptive system, Proc. Natl. Acad. Sci. USA 108(37), 15058 (2011)
https://doi.org/10.1073/pnas.1105239108
pmid: 21876133
|
15 |
W. Z. Zheng, Y. Liang, and J. P. Huang, Equilibrium state and non-equilibrium steady state in an isolated human system, Front. Phys. 9(1), 128 (2014)
https://doi.org/10.1007/s11467-013-0337-5
|
16 |
J. C. Rochet and J. Tirole, Platform competition in two-sided markets, J. Eur. Econ. Assoc. 1(4), 990 (2003)
https://doi.org/10.1162/154247603322493212
|
17 |
G. G. Parker and M. W. Van Alstyne, Two-sided network effects: A theory of information product design, Manage. Sci. 51(10), 1494 (2005)
https://doi.org/10.1287/mnsc.1050.0400
|
18 |
Y. Zhang and W. H. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
https://doi.org/10.1007/s11467-014-0426-0
|
19 |
Y. H. Chen, W. Wu, G. C. Liu, H. S. Tao, and W. M. Liu, Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys. 7(2), 223 (2012)
https://doi.org/10.1007/s11467-012-0247-y
|
20 |
Y. Liang and J. P. Huang, Robustness of critical points in a complex adaptive system: Effects of hedge behavior, Front. Phys. 8(4), 461 (2013)
https://doi.org/10.1007/s11467-013-0339-3
|
21 |
B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10(4), 422 (1968)
https://doi.org/10.1137/1010093
|
22 |
P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59(4), 381 (1987)
https://doi.org/10.1103/PhysRevLett.59.381
pmid: 10035754
|
23 |
M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter, Fractional Brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics, Phys. Rev. Lett. 103(18), 180602 (2009)
https://doi.org/10.1103/PhysRevLett.103.180602
pmid: 19905793
|
24 |
R. Metzler, J. H. Jeon, A. G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys. 16(44), 24128 (2014)
https://doi.org/10.1039/C4CP03465A
pmid: 25297814
|
25 |
S. Gualdi, J. P. Bouchaud, G. Cencetti, M. Tarzia, and F. Zamponi, Endogenous crisis waves: Stochastic model with synchronized collective behavior, Phys. Rev. Lett. 114(8), 088701 (2015)
https://doi.org/10.1103/PhysRevLett.114.088701
pmid: 25768786
|
26 |
I. Bashkirtseva, T. Ryazanova, and L. Ryashko, Confidence domains in the analysis of noise-induced transition to chaos for goodwin model of business cycles, Int. J. Bifurcation Chaos 24(08), 1440020 (2014)
https://doi.org/10.1142/S0218127414400203
|
27 |
J. P. Huang, Experimental Econophysics: Properties and Mechanisms of Laboratory Markets, Berlin Heidelberg: Springer, 2015
https://doi.org/10.1007/978-3-662-44234-0
|
28 |
L. Putterman, Behavioural economics: A caring majority secures the future, Nature 511(7508), 165 (2014)
https://doi.org/10.1038/nature13510
pmid: 25008520
|
29 |
T. Jia, B. Jiang, K. Carling, M. Bolin, and Y. F. Ban, An empirical study on human mobility and its agent-based modeling, J. Stat. Mech. 2012(11), P11024 (2012)
https://doi.org/10.1088/1742-5468/2012/11/P11024
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|