Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2016, Vol. 11 Issue (4) : 118901    https://doi.org/10.1007/s11467-016-0552-y
RESEARCH ARTICLE
Chaotic-periodic transition in a two-sided minority game
Xiao-Hui Li(),Guang Yang,Ji-Ping Huang()
Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
 Download: PDF(377 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Phase transitions are being used increasingly to probe the collective behaviors of social human systems. In this study, we propose a different way of investigating such transitions in a human system by establishing a two-sided minority game model. A new type of agents who can actively transfer resources are added to our artificial bipartite resource-allocation market. The degree of deviation from equilibria is characterized by the entropy-like quantity of market complexity. Under different threshold values, Qth, two phases are found by calculating the exponents of the associated power spectra. For large values of Qth, the general motion of strategies for the agents is relatively periodic whereas for low values of Qth, the motion becomes chaotic. The transition occurs abruptly at a critical value of Qth. Our simulation results were also tested based on human experiments. The results of this study suggest that a chaotic-periodic transition related to the quantity of market information should exist in most bipartite markets, thereby allowing better control of such a transition and providing a better understanding of the endogenous emergence of business cycles from the perspective of quantum mechanics.

Keywords phase transition      minority game      complex adaptive system      random walk      two-sided market      human experiment      entropy-like quantity      market complexity     
Corresponding Author(s): Xiao-Hui Li,Ji-Ping Huang   
Online First Date: 01 February 2016    Issue Date: 08 June 2016
 Cite this article:   
Xiao-Hui Li,Guang Yang,Ji-Ping Huang. Chaotic-periodic transition in a two-sided minority game[J]. Front. Phys. , 2016, 11(4): 118901.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-016-0552-y
https://academic.hep.com.cn/fop/EN/Y2016/V11/I4/118901
1 D. Challet and Y. C. Zhang, Emergence of cooperation and organization in an evolutionary game, Physica A 246(3-4), 407 (1997)
https://doi.org/10.1016/S0378-4371(97)00419-6
2 L. X. Zhong, D. F. Zheng, B. Zheng, and P. M. Hui, Effects of contrarians in the minority game, Phys. Rev. E 72(2), 026134 (2005)
https://doi.org/10.1103/PhysRevE.72.026134 pmid: 16196671
3 O. P. Hauser, D. G. Rand, A. Peysakhovich, and M. A. Nowak, Cooperating with the future, Nature 511(7508), 220 (2014)
https://doi.org/10.1038/nature13530 pmid: 25008530
4 I. Erev and A. E. Roth, Maximization, learning, and economic behavior, Proc. Natl. Acad. Sci. USA 111(Suppl 3), 10818 (2014)
https://doi.org/10.1073/pnas.1402846111 pmid: 25024182
5 S. Biswas, A. Ghosh, A. Chatterjee, T. Naskar, and B. K. Chakrabarti, Continuous transition of social efficiencies in the stochastic-strategy minority game, Phys. Rev. E 85(3), 031104 (2012)
https://doi.org/10.1103/PhysRevE.85.031104 pmid: 22587035
6 B. Zheng, T. Qiu, and F. Ren, Two-phase phenomena, minority games, and herding models, Phys. Rev. E 69(4), 046115 (2004)
https://doi.org/10.1103/PhysRevE.69.046115 pmid: 15169077
7 M. Anghel, Z. Toroczkai, K. E. Bassler, and G. Korniss, Competition-driven network dynamics: Emergence of a scale-free leadership structure and collective efficiency, Phys. Rev. Lett. 92(5), 058701 (2004)
https://doi.org/10.1103/PhysRevLett.92.058701 pmid: 14995348
8 D. Challet and M. Marsili, Criticality and market efficiency in a simple realistic model of the stock market, Phys. Rev. E 68(3), 036132 (2003)
https://doi.org/10.1103/PhysRevE.68.036132 pmid: 14524857
9 D. Challet, M. Marsili, and Y. C. Zhang, Stylized facts of financial markets and market crashes in minority games, Physica A 294(3-4), 514 (2001)
https://doi.org/10.1016/S0378-4371(01)00103-0
10 W. Wang, Y. Chen, and J. Huang, Heterogeneous preferences, decision-making capacity, and phase transitions in a complex adaptive system, Proc. Natl. Acad. Sci. USA 106(21), 8423 (2009)
https://doi.org/10.1073/pnas.0811782106 pmid: 19435846
11 J. P. Huang, Experimental econophysics: Complexity, self-organization, and emergent properties, Phys. Rep. 564, 1 (2014)
https://doi.org/10.1016/j.physrep.2014.11.005
12 Y. Liang, K. N. An, G. Yang, and J. P. Huang, Contrarian behavior in a complex adaptive system, Phys. Rev. E 87(1), 012809 (2013)
https://doi.org/10.1103/PhysRevE.87.012809 pmid: 23410390
13 G. Yang, W. Z. Zheng, and J. P. Huang, Partial information, market efficiency, and anomalous continuous phase transition, J. Stat. Mech. 2014(4), P04017 (2014)
https://doi.org/10.1088/1742-5468/2014/04/P04017
14 L. Zhao, G. Yang, W. Wang, Y. Chen, J. P. Huang, H. Ohashi, and H. E. Stanley, Herd behavior in a complex adaptive system, Proc. Natl. Acad. Sci. USA 108(37), 15058 (2011)
https://doi.org/10.1073/pnas.1105239108 pmid: 21876133
15 W. Z. Zheng, Y. Liang, and J. P. Huang, Equilibrium state and non-equilibrium steady state in an isolated human system, Front. Phys. 9(1), 128 (2014)
https://doi.org/10.1007/s11467-013-0337-5
16 J. C. Rochet and J. Tirole, Platform competition in two-sided markets, J. Eur. Econ. Assoc. 1(4), 990 (2003)
https://doi.org/10.1162/154247603322493212
17 G. G. Parker and M. W. Van Alstyne, Two-sided network effects: A theory of information product design, Manage. Sci. 51(10), 1494 (2005)
https://doi.org/10.1287/mnsc.1050.0400
18 Y. Zhang and W. H. Wan, States and transitions in mixed networks, Front. Phys. 9(4), 523 (2014)
https://doi.org/10.1007/s11467-014-0426-0
19 Y. H. Chen, W. Wu, G. C. Liu, H. S. Tao, and W. M. Liu, Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys. 7(2), 223 (2012)
https://doi.org/10.1007/s11467-012-0247-y
20 Y. Liang and J. P. Huang, Robustness of critical points in a complex adaptive system: Effects of hedge behavior, Front. Phys. 8(4), 461 (2013)
https://doi.org/10.1007/s11467-013-0339-3
21 B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10(4), 422 (1968)
https://doi.org/10.1137/1010093
22 P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59(4), 381 (1987)
https://doi.org/10.1103/PhysRevLett.59.381 pmid: 10035754
23 M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter, Fractional Brownian motion versus the continuous-time random walk: a simple test for subdiffusive dynamics, Phys. Rev. Lett. 103(18), 180602 (2009)
https://doi.org/10.1103/PhysRevLett.103.180602 pmid: 19905793
24 R. Metzler, J. H. Jeon, A. G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys. 16(44), 24128 (2014)
https://doi.org/10.1039/C4CP03465A pmid: 25297814
25 S. Gualdi, J. P. Bouchaud, G. Cencetti, M. Tarzia, and F. Zamponi, Endogenous crisis waves: Stochastic model with synchronized collective behavior, Phys. Rev. Lett. 114(8), 088701 (2015)
https://doi.org/10.1103/PhysRevLett.114.088701 pmid: 25768786
26 I. Bashkirtseva, T. Ryazanova, and L. Ryashko, Confidence domains in the analysis of noise-induced transition to chaos for goodwin model of business cycles, Int. J. Bifurcation Chaos 24(08), 1440020 (2014)
https://doi.org/10.1142/S0218127414400203
27 J. P. Huang, Experimental Econophysics: Properties and Mechanisms of Laboratory Markets, Berlin Heidelberg: Springer, 2015
https://doi.org/10.1007/978-3-662-44234-0
28 L. Putterman, Behavioural economics: A caring majority secures the future, Nature 511(7508), 165 (2014)
https://doi.org/10.1038/nature13510 pmid: 25008520
29 T. Jia, B. Jiang, K. Carling, M. Bolin, and Y. F. Ban, An empirical study on human mobility and its agent-based modeling, J. Stat. Mech. 2012(11), P11024 (2012)
https://doi.org/10.1088/1742-5468/2012/11/P11024
[1] Zhen-Ming Xu (许震明). Analytic phase structures and thermodynamic curvature for the charged AdS black hole in alternative phase space[J]. Front. Phys. , 2021, 16(2): 24502-.
[2] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[3] Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications[J]. Front. Phys. , 2021, 16(1): 13301-.
[4] Lu Qi, Guo-Li Wang, Shutian Liu, Shou Zhang, Hong-Fu Wang. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice[J]. Front. Phys. , 2021, 16(1): 12503-.
[5] Jin-Fu Chen, Yu-Han Ma, Chang-Pu Sun. Directional quantum random walk induced by coherence[J]. Front. Phys. , 2020, 15(2): 21602-.
[6] Yan-Ping Liu (刘艳平), Xiang Li (李翔), Jing Qu (屈静), Xue-Juan Gao (高学娟), Qing-Zu He (何情祖), Li-Yu Liu (刘雳宇), Ru-Chuan Liu (刘如川), Jian-Wei Shuai (帅建伟). Motile parameters of cell migration in anisotropic environment derived by speed power spectrum fitting with double exponential decay[J]. Front. Phys. , 2020, 15(1): 13602-.
[7] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[8] Yan-Rong Zhang, Ze-Zheng Zhang, Jia-Qi Yuan, Ming Kang, Jing Chen. High-order exceptional points in non-Hermitian Moiré lattices[J]. Front. Phys. , 2019, 14(5): 53603-.
[9] Ai-Yuan Hu, Lin Wen, Guo-Pin Qin, Zhi-Min Wu, Peng Yu, Yu-Ting Cui. Possible phase transition of anisotropic frustrated Heisenberg model at finite temperature[J]. Front. Phys. , 2019, 14(5): 53601-.
[10] Gui-Lei Zhu, Xin-You Lü, Shang-Wu Bin, Cai You, Ying Wu. Entanglement and excited-state quantum phase transition in an extended Dicke model[J]. Front. Phys. , 2019, 14(5): 52602-.
[11] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[12] Zhi Lin, Wanli Liu. Analytic calculation of high-order corrections to quantum phase transitions of ultracold Bose gases in bipartite superlattices[J]. Front. Phys. , 2018, 13(5): 136402-.
[13] Jian Lv, Xin Yang, Dan Xu, Yu-Xin Huang, Hong-Bo Wang, Hui Wang. High-pressure polymorphs of LiPN2: A first-principles study[J]. Front. Phys. , 2018, 13(5): 136104-.
[14] Xia Huang, Jin Dong, Wen-Jing Jia, Zhi-Gang Zheng, Can Xu. Dynamics of clustering patterns in the Kuramoto model with unidirectional coupling[J]. Front. Phys. , 2018, 13(5): 130506-.
[15] Kai-Tong Wang, Fuming Xu, Yanxia Xing, Hong-Kang Zhao. Evolution of individual quantum Hall edge states in the presence of disorder[J]. Front. Phys. , 2018, 13(4): 137306-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed