Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 61504    https://doi.org/10.1007/s11467-022-1178-x
RESEARCH ARTICLE
The uncertainty and quantum correlation of measurement in double quantum-dot systems
Long-Yu Cheng1, Fei Ming1, Fa Zhao1, Liu Ye1, Dong Wang1,2()
1. School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
2. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(5610 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, we study the entropic uncertainty and quantum discord in two double-quantum-dot (DQD) system coupled via a transmission line resonator (TLR). Explicitly, the dynamics of the systemic quantum correlation and measured uncertainty are analysed with respect to a general X-type state as the initial state. Interestingly, it is found that the different parameters, including the eigenvalue α of the coherent state, detuning amount δ, frequency ω and the coupling constant g, have subtle effects on the dynamics of the entropic uncertainty, such as the oscillation period of the uncertainty. It is clear to reveal that the quantum discord and the lower bound of the entropic uncertainty are anti-correlated when the initial state of the system is the Werner-type state, while quantum discord and the lower bound of the entropic uncertainty are not anti-correlated when the initial state of the system is the Bell-diagonal state. Thereby, we claim that the current investigation would provide an insight into the entropic uncertainty and quantum correlation in DQDs system, and are basically of importance to quantum precision measurement in practical quantum information processing.

Keywords uncertainty relations      quantum correlation      quantum dot     
Corresponding Author(s): Dong Wang   
Issue Date: 02 August 2022
 Cite this article:   
Long-Yu Cheng,Fei Ming,Fa Zhao, et al. The uncertainty and quantum correlation of measurement in double quantum-dot systems[J]. Front. Phys. , 2022, 17(6): 61504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1178-x
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/61504
Fig.1  Schematic of a system consisting of two DQDs and TLR. L denotes the length of the TLR. The two DQDs are labeled as 1 and 2, which positions are located at L/4 and 3L/4 of the TLR respectively, with the external potentials Δ0j. The distance between the two quantum dots is r, which is same as that from one of quantum dots to the nearest TLR.
Fig.2  The entropic uncertainty U with respect to time t in the case of the different eigenvalues α of the coherent state, detuning δ, frequency ω and the coupling constant g. (a) α=1 (red solid line), α=2 (black solid line), α=3 (green solid line), with ω=1, δ=1 and g=1. (b) δ=0.5 (red solid line), δ=1 (black solid line), δ=1.5 (green solid line), with ω=1, α=1, g=1. (c) ω=0 (red solid line), ω=2 (black solid line), ω=5 (green solid line), with δ=1, α=1, g=1. (d) g=0.7 (red solid line), g=1 (black solid line), g=1.3 (green solid line) with ω=1, δ=1, α=1. And p=0.5 is set for all plotted.
Fig.3  The lower bound ( UR) of the entropic uncertainty and quantum discord (QD) as a function of time t. The solid lines represent UR, and the dashed lines represent QD. (a) UR and QD vs. time t for ω=1, δ=1 and g=1. (b) UR and QD vs. time t for ω=1, α=1 and g=1. (c) UR and QD vs. time t for δ=1, α=1 and g=1. (d) UR and QD vs. time t for ω=1, δ=1 and α=1. All results are plotted with p=0.5.
Fig.4  The entropic uncertainty U with respect to time t in the case of the different eigenvalues α of the coherent state, detuning δ, frequency ω and the coupling constant g. (a) α=1 (red solid line), α=2 (black solid line), α=3 (green solid line), with ω=1, δ=1 and g=1. (b) δ=0.5 (red solid line), δ=1 (black solid line), δ=1.5 (green solid line), with ω=1, α=1, g=1. (c) ω=0 (red solid line), ω=2 (black solid line), ω=5 (green solid line), with δ=1, α=1, g=1. (d) g=0.7 (red solid line), g=1 (black solid line), g=1.3 (green solid line), with ω=1, δ=1, α=1. p=0.5 is set for all plotted.
Fig.5  The lower bound ( UR) of the entropic uncertainty and quantum discord (QD) as a function of time t. The solid lines represent UR, and the dashed lines represent QD. (a) UR and QD vs. time t for ω=1, δ=1 and g=1. (b) UR and QD vs. time t for ω=1, α=1 and g=1. (c) UR and QD vs. time t for δ=1, α=1 and g=1. (d) UR and QD vs. time t for ω=1, δ=1 and α=1. All results are plotted with p=0.5.
1 Heisenberg W. . Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys., 1927, 43( 3−4): 172
https://doi.org/10.1007/BF01397280
2 H. Kennard E. . Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys., 1927, 44( 4−5): 326
https://doi.org/10.1007/BF01391200
3 P. Robertson H. . The uncertainty principle. Phys. Rev., 1929, 34( 1): 163
https://doi.org/10.1103/PhysRev.34.163
4 Deutsch D. . Uncertainty in quantum measurements. Phys. Rev. Lett., 1983, 50( 9): 631
https://doi.org/10.1103/PhysRevLett.50.631
5 Kraus K. . Complementary observables and uncertainty relations. Phys. Rev. D, 1987, 35( 10): 3070
https://doi.org/10.1103/PhysRevD.35.3070
6 Maassen H. , B. M. Uffink J. . Generalized entropic uncertainty relations. Phys. Rev. Lett., 1988, 60( 12): 1103
https://doi.org/10.1103/PhysRevLett.60.1103
7 M. Renes J. , Boileau J.-C. . Conjectured strong complementary information tradeoff. Phys. Rev. Lett., 2009, 103( 2): 020402
https://doi.org/10.1103/PhysRevLett.103.020402
8 Berta M. , Christandl M. , Colbeck R. , M. Renes J. , Renner R. . The uncertainty principle in the presence of quantum memory. Nat. Phys., 2010, 6( 9): 659
https://doi.org/10.1038/nphys1734
9 J. Li L. , Ming F. , K. Song X. , Ye L. , Wang D. . Review on entropic uncertainty relations. Acta Physica Sinica, 2022, 71( 7): 070302
https://doi.org/10.7498/aps.71.20212197
10 Pramanik T. , Mal S. , S. Majumdar A. . Lower bound of quantum uncertainty from extractable classical information. Quantum Inform. Process., 2016, 15( 2): 981
https://doi.org/10.1007/s11128-015-1187-6
11 L. Hu M. , Fan H. . Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A, 2013, 87( 2): 022314
https://doi.org/10.1103/PhysRevA.87.022314
12 J. Coles P. , Piani M. . Improved entropic uncertainty relations and information exclusion relations. Phys. Rev. A, 2014, 89( 2): 022112
https://doi.org/10.1103/PhysRevA.89.022112
13 Liu S. , Z. Mu L. , Fan H. . Entropic uncertainty relations for multiple measurements. Phys. Rev. A, 2015, 91( 4): 042133
https://doi.org/10.1103/PhysRevA.91.042133
14 Adabi F. , Salimi S. , Haseli S. . Tightening the entropic uncertainty bound in the presence of quantum memory. Phys. Rev. A, 2016, 93( 6): 062123
https://doi.org/10.1103/PhysRevA.93.062123
15 L. Huang J. , C. Gan W. , L. Xiao Y. , W. Shu F. , H. Yung M. . Holevo bound of entropic uncertainty in Schwarzschild spacetime. Eur. Phys. J. C, 2018, 78( 7): 545
https://doi.org/10.1140/epjc/s10052-018-6026-3
16 Y. Yang Y. , Y. Sun W. , N. Shi W. , Ming F. , Wang D. , Ye L. . Dynamical characteristic of measurement uncertainty under Heisenberg spin models with Dzyaloshinskii−Moriya interactions. Front. Phys., 2019, 14( 3): 31601
https://doi.org/10.1007/s11467-018-0880-1
17 N. Chen M. , Wang D. , Ye L. . Characterization of dynamical measurement’s uncertainty in a two-qubit system coupled with bosonic reservoirs. Phys. Lett. A, 2019, 383( 10): 977
https://doi.org/10.1016/j.physleta.2018.12.025
18 Wang D. , Ming F. , L. Hu M. , Ye L. . Quantum-memory-assisted entropic uncertainty relations. Ann. Phys., 2019, 531( 10): 1900124
https://doi.org/10.1002/andp.201900124
19 Ming F. , Wang D. , G. Fan X. , N. Shi W. , Ye L. , L. Chen J. . Improved tripartite uncertainty relation with quantum memory. Phys. Rev. A, 2020, 102( 1): 012206
https://doi.org/10.1103/PhysRevA.102.012206
20 Wang D. , Ming F. , K. Song X. , Ye L. , L. Chen J. . Entropic uncertainty relation in neutrino oscillations. Eur. Phys. J. C, 2020, 80( 8): 800
https://doi.org/10.1140/epjc/s10052-020-8403-y
21 Dolatkhah H. , Haseli S. , Salimi S. , S. Khorashad A. . Tightening the tripartite quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A, 2020, 102( 5): 052227
https://doi.org/10.1103/PhysRevA.102.052227
22 F. Xie B. , Ming F. , Wang D. , Ye L. , L. Chen J. . Optimized entropic uncertainty relations for multiple measurements. Phys. Rev. A, 2021, 104( 6): 062204
https://doi.org/10.1103/PhysRevA.104.062204
23 A. Abdelghany R. , B. A. Mohamed A. , Tammam M. , Kuo W. , Eleuch H. . Tripartite entropic uncertainty relation under phase decoherence. Sci. Rep., 2021, 11( 1): 11830
https://doi.org/10.1038/s41598-021-90689-3
24 Haddadi S. , Ghominejad M. , Akhound A. , R. Pourkarimi M. . Suppressing measurement uncertainty in an inhomogeneous spin star system. Sci. Rep., 2021, 11( 1): 22691
https://doi.org/10.1038/s41598-021-02045-0
25 C. Ma W. , H. Ma Z. , Y. Wang H. , H. Chen Z. , Liu Y. , Kong F. , K. Li Z. , H. Peng X. , J. Shi M. , Z. Shi F. , M. Fei S. , F. Du J. . Experimental test of Heisenbergs measurement uncertainty relation based on statistical distances. Phys. Rev. Lett., 2016, 116( 16): 160405
https://doi.org/10.1103/PhysRevLett.116.160405
26 X. Chen Z. , L. Li J. , C. Song Q. , Wang H. , M. Zangi S. , F. Qiao C. . Experimental investigation of multi-observable uncertainty relations. Phys. Rev. A, 2017, 96( 6): 062123
https://doi.org/10.1103/PhysRevA.96.062123
27 M. Lv W. , Zhang C. , M. Hu X. , Cao H. , Wang J. , F. Huang Y. , H. Liu B. , F. Li C. , C. Guo G. . Experimental test of the trade-off relation for quantum coherence. Phys. Rev. A, 2018, 98( 6): 062337
https://doi.org/10.1103/PhysRevA.98.062337
28 Y. Wang H. , H. Ma Z. , J. Wu S. , Q. Zheng W. , Cao Z. , H. Chen Z. , K. Li Z. , M. Fei S. , H. Peng X. , Vedral V. , F. Du J. . Uncertainty equality with quantum memory and its experimental verification. npj Quantum Inform., 2019, 5( 1): 39
29 M. Lv W. , Zhang C. , M. Hu X. , F. Huang Y. , Cao H. , Wang J. , B. Hou Z. , H. Liu B. , F. Li C. , C. Guo G. . Experimental test of fine-grained entropic uncertainty relation in the presence of quantum memory. Sci. Rep., 2019, 9( 1): 8748
https://doi.org/10.1038/s41598-019-45205-z
30 A. Lott J. , N. Ledentsov N. , M. Ustinov V. , Y. Egorov A. , E. Zhukov A. , S. Kopev P. , Alferov Z. , Bimberg D. . Vertical cavity lasers based on vertically coupled quantum dots. Electron. Lett., 1997, 33( 13): 1150
https://doi.org/10.1049/el:19970785
31 L. Huffaker D. , Park G. , Zou Z. , B. Shchekin O. , G. Deppe D. . 1.3 m room-temperature GaAs-based quantum-dot laser. Appl. Phys. Lett., 1998, 73( 18): 2564
https://doi.org/10.1063/1.122534
32 S. Jang H. , Yang H. , W. Kim S. , Y. Han J. , G. Lee S. , Y. Jeon D. . White light-emitting diodes with excellent color rendering based on organically capped CdSe quantum dots and Sr3SiO5:Ce3+, Li+ phosphors. Adv. Mater., 2008, 20( 14): 2696
https://doi.org/10.1002/adma.200702846
33 Sun Q. , A. Wang Y. , S. Li L. , Wang D. , Zhu T. , Xu J. , Li Y. . Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics, 2007, 1( 12): 717
https://doi.org/10.1038/nphoton.2007.226
34 Bagalkot V. , Zhang L. , Levy-Nissenbaum E. , Jon S. , W. Kantoff P. , Langer R. , C. Farokhzad O. . Quantum dot−Aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett., 2007, 7( 10): 3065
https://doi.org/10.1021/nl071546n
35 N. Golovach V. , Khaetskii A. , Loss D. . Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett., 2004, 93( 1): 016601
https://doi.org/10.1103/PhysRevLett.93.016601
36 H. L. Koppens F. , Buizert C. , J. Tielrooij K. , T. Vink I. , C. Nowack K. , Meunier T. , P. Kouwenhoven L. , M. K. Vandersypen L. . Driven coherent oscillations of a single electron spin in a quantum dot. Nature, 2006, 442( 7104): 766
https://doi.org/10.1038/nature05065
37 C. Nowack K. , H. L. Koppens F. , V. Nazarov Y. , M. K. Vandersypen L. . Coherent control of a single electron spin with electric fields. Science, 2007, 318( 5855): 1430
https://doi.org/10.1126/science.1148092
38 N. Golovach V. , Borhani M. , Loss D. . Electric-dipole induced spin resonance in quantum dots. Phys. Rev. B, 2006, 74( 16): 165319
https://doi.org/10.1103/PhysRevB.74.165319
39 R. Petta J. , C. Johnson A. , M. Taylor J. , A. Laird E. , Yacoby A. , D. Lukin M. , M. Marcus C. , P. Hanson M. , C. Gossard A. . Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 2005, 309( 5744): 2180
https://doi.org/10.1126/science.1116955
40 H. Oosterkamp T. , Fujisawa T. , G. van der Wiel W. , Ishibashi K. , V. Hijman R. , Tarucha S. , P. Kouwenhoven L. . Microwave spectroscopy of a quantum-dot molecule. Nature, 1998, 395( 6705): 873
https://doi.org/10.1038/27617
41 Blais A. , Gambetta J. , Wallraff A. , I. Schuster D. , M. Girvin S. , H. Devoret M. , J. Schoelkopf R. . Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A, 2007, 75( 3): 032329
https://doi.org/10.1103/PhysRevA.75.032329
42 Wallraff A. , I. Schuster D. , Blais A. , Frunzio L. , S. Huang R. , Majer J. , Kumar S. , M. Girvin S. , J. Schoelkopf R. . Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 2004, 431( 7005): 162
https://doi.org/10.1038/nature02851
43 I. Schuster D. , A. Houck A. , A. Schreier J. , Wallraff A. , M. Gambetta J. , Blais A. , Frunzio L. , Majer J. , Johnson B. , H. Devoret M. , M. Girvin S. , J. Schoelkopf R. . Resolving photon number states in a superconducting circuit. Nature, 2007, 445( 7127): 515
https://doi.org/10.1038/nature05461
44 Q. Wu Q. , Q. Liao J. , M. Kuang L. . Quantum state transfer between charge and flux qubits in circuit-QED. Chin. Phys. Lett., 2008, 25( 4): 1179
https://doi.org/10.1088/0256-307X/25/4/005
45 A. Sillanpää M. , I. Park J. , W. Simmonds R. . Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature, 2007, 449( 7161): 438
https://doi.org/10.1038/nature06124
46 R. Lin Z. , P. Guo G. , Tu T. , Y. Zhu F. , C. Guo G. . Erratum: Generation of quantum-dot cluster states with a superconducting transmission line resonator. Phys. Rev. Lett., 2008, 101( 23): 230501
https://doi.org/10.1103/PhysRevLett.101.230501
47 Pei P. , Li C. , S. Jin J. , S. Song H. . Quantum coherence versus quantum discord in two coupled semiconductor double-dot molecules via a transmission line resonator. J. Phys. B: At. Mol. Opt. Phys., 2011, 44( 3): 035501
https://doi.org/10.1088/0953-4075/44/3/035501
48 Burkard G. , Imamoglu A. . Ultra-long distance interaction between spin qubits. Phys. Rev. B, 2006, 74( 4): 041307
https://doi.org/10.1103/PhysRevB.74.041307
49 M. Taylor J. D. Lukin M. , Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip, arXiv: cond-mat/0605144 ( 2006)
50 Q. Wu Q. , S. Tan Q. , M. Kuang L. . Controllable coupling and quantum correlation dynamics of two double quantum dots coupled via a transmission line resonator. Eur. Phys. J. B, 2011, 83( 4): 465
https://doi.org/10.1140/epjb/e2011-20072-7
51 Abdel-Khalek S. , Berrada K. , Alkaoud A. . Nonlocality and coherence in double quantum dot systems. Physica E, 2021, 130( 23): 114679
https://doi.org/10.1016/j.physe.2021.114679
52 X. Liang L. , Y. Zheng Y. , X. Zhang Y. , Zhang M. . Error-detected N-photon cluster state generation based on the controlledphase gate using a quantum dot in an optical microcavity. Front. Phys., 2020, 15( 2): 21601
https://doi.org/10.1007/s11467-019-0931-2
53 Wu X. , Z. Zhao P. . Nonadiabatic geometric quantum computation protected by dynamical decoupling via the XXZ Hamiltonian. Front. Phys., 2022, 17( 3): 31502
https://doi.org/10.1007/s11467-021-1128-z
54 Y. Li S. , He L. . Recent progresses of quantum confinement in graphene quantum dots. Front. Phys., 2022, 17( 3): 33201
https://doi.org/10.1007/s11467-021-1125-2
55 M. Taylor J. , R. Petta J. , C. Johnson A. , Yacoby A. , M. Marcus C. , D. Lukin M. . Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B, 2007, 76( 3): 035315
https://doi.org/10.1103/PhysRevB.76.035315
56 N. Jouravlev O. , V. Nazarov Y. . Electron transport in a double quantum dot governed by a nuclear magnetic field. Phys. Rev. Lett., 2006, 96( 17): 176804
https://doi.org/10.1103/PhysRevLett.96.176804
57 H. L. Koppens F. , Buizert C. , T. Vink I. , C. Nowack K. , Meunier T. , P. Kouwenhoven L. , M. K. Vandersypen L. . Detection of single electron spin resonance in a double quantum dot. J. Appl. Phys., 2007, 101( 8): 081706
https://doi.org/10.1063/1.2722734
[1] Si-Yu Li, Lin He. Recent progresses of quantum confinement in graphene quantum dots[J]. Front. Phys. , 2022, 17(3): 33201-.
[2] Qingquan Kong, Xuguang An, Lin Huang, Xiaolian Wang, Wei Feng, Siyao Qiu, Qingyuan Wang, Chenghua Sun. A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance[J]. Front. Phys. , 2021, 16(5): 53506-.
[3] Guo-Feng Zhang, Yong-Gang Peng, Hai-Qing Xie, Bin Li, Zhi-Jie Li, Chang-Gang Yang, Wen-Li Guo, Cheng-Bing Qin, Rui-Yun Chen, Yan Gao, Yu-Jun Zheng, Lian-Tuan Xiao, Suo-Tang Jia. Linear dipole behavior of single quantum dots encased in metal oxide semiconductor nanoparticles films[J]. Front. Phys. , 2019, 14(2): 23605-.
[4] Guang-Yong Zhou, Lin-Jian Huang, Jun-Ya Pan, Li-Yun Hu, Jie-Hui Huang. Quantifying quantum correlation via quantum coherence[J]. Front. Phys. , 2018, 13(4): 130701-.
[5] Qi-Bo Zeng,Shu Chen,L. You,Rong Lü. Transport through a quantum dot coupled to two Majorana bound states[J]. Front. Phys. , 2017, 12(4): 127302-.
[6] Gang Luo, Zhuo-Zhi Zhang, Hai-Ou Li, Xiang-Xiang Song, Guang-Wei Deng, Gang Cao, Ming Xiao, Guo-Ping Guo. Quantum dot behavior in transition metal dichalcogenides nanostructures[J]. Front. Phys. , 2017, 12(4): 128502-.
[7] Reinhard F. Werner. Uncertainty relations for general phase spaces[J]. Front. Phys. , 2016, 11(3): 110305-.
[8] Ju Wu, Peng Jin. Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy[J]. Front. Phys. , 2015, 10(1): 108101-.
[9] Guang-Cun Shan, Zhang-Qi Yin, Chan Hung Shek, Wei Huang. Single photon sources with single semiconductor quantum dots[J]. Front. Phys. , 2014, 9(2): 170-193.
[10] Wei-dong Sheng, Marek Korkusinski, Alev Devrim Gü?lü, Michal Zielinski, Pawel Potasz, Eugene S. Kadantsev, Oleksandr Voznyy, Pawel Hawrylak. Electronic and optical properties of semiconductor and graphene quantum dots[J]. Front. Phys. , 2012, 7(3): 328-352.
[11] Werner A. Hofer. Heisenberg, uncertainty, and the scanning tunneling microscope[J]. Front. Phys. , 2012, 7(2): 218-222.
[12] Christoph Stampfer, Stefan Fringes, Johannes Güttinger, Francoise Molitor, Christian Volk, Bernat Terrés, Jan Dauber, Stephan Engels, Stefan Schnez, Arnhild Jacobsen, Susanne Droscher, Thomas Ihn, Klaus Ensslin. Transport in graphene nanostructures[J]. Front. Phys. , 2011, 6(3): 271-293.
[13] Guang-cun SHAN (单光存), Shu-ying BAO (包术颖), Kang ZHANG (张康), Wei HUANG (黄维). Theoretical study of photon emission from single quantum dot emitter coupled to surface plasmons[J]. Front. Phys. , 2011, 6(3): 313-319.
[14] Hai-feng MA (马海峰), Mario THOMANN, Jeanette SCHMIDLIN, Silvan ROTH, Martin MORSCHER, Thomas GREBER. Corrugated single layer templates for molecules: From h-BN nanomesh to graphene based quantum dot arrays[J]. Front Phys Chin, 2010, 5(4): 387-392.
[15] Jing-feng LIU(刘景锋), Xue-hua WANG(王雪华), . Spontaneous emission in micro- and nano-structures[J]. Front. Phys. , 2010, 5(3): 245-259.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed